CaltechAUTHORS
  A Caltech Library Service

Status of mercury accumulation in agricultural soil across China: Spatial distribution, temporal trend, influencing factor and risk assessment

Zhou, Yuting and Aamir, Muhammad and Liu, Kai and Yang, Fangxing and Liu, Weiping (2018) Status of mercury accumulation in agricultural soil across China: Spatial distribution, temporal trend, influencing factor and risk assessment. Environmental Pollution, 240 . pp. 116-124. ISSN 0269-7491. http://resolver.caltech.edu/CaltechAUTHORS:20180507-080719242

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20180507-080719242

Abstract

Given its wide distribution in the natural environment and global transport potential, mercury (Hg) is regarded as a ubiquitous pollutant. In this study, we carried out nation-wide sampling campaigns across China to investigate the distribution of Hg in agricultural soils. Concentrations of Hg in the soils collected in 2011 and 2016 ranged from 0.04 to 0.69 and 0.06–0.78 mg kg^(−1), respectively. Based on the data from 2016, the reserve of Hg in the surface arable soils (0–20 cm) in China was 4.1 × 10^4 metric tons and Chinese cultivated soils accounted for 63.4–364 metric tons of Hg released to the global atmosphere. The soil Hg concentrations were significantly higher than the reference background level, highlighting the impacts of anthropogenic activities. The vertical distribution pattern showed a clear enrichment at the surface and a decrease with depth of the soils. Comparison of calculated geo-accumulation indexes among individual provinces showed that Northwest China had higher levels of Hg contamination than other regions of China, likely due to long-term energy related combustions in the area. Soil Hg level showed strong positive correlations with organic matter contents of soil, as well as the mean annual precipitation and temperature of the sampling locations. The non-carcinogenic human health risks of soil Hg were below the threshold level, but the general risk to the ecosystem was considerable. The increases in Hg accumulation from 2011 to 2016 at provincial level were found to relate to coal combustion, power generation and per capita GDP. This examination of energy consumption and socioeconomic drivers for China's soil Hg reserve increase is critical for direct Hg control by guiding policy-making and targets of technology development in era of rapid economic growth.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1016/j.envpol.2018.03.086DOIArticle
ORCID:
AuthorORCID
Liu, Kai0000-0002-2109-8196
Liu, Weiping0000-0002-1173-892X
Additional Information:© 2018 Elsevier Ltd. Received 18 December 2017, Revised 12 March 2018, Accepted 24 March 2018, Available online 3 May 2018.
Subject Keywords:Soil mercury; Spatial distribution; Temporal trend; China energy consumption; Ecological and human health risk
Record Number:CaltechAUTHORS:20180507-080719242
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20180507-080719242
Official Citation:Yuting Zhou, Muhammad Aamir, Kai Liu, Fangxing Yang, Weiping Liu, Status of mercury accumulation in agricultural soil across China: Spatial distribution, temporal trend, influencing factor and risk assessment, Environmental Pollution, Volume 240, September 2018, Pages 116-124, ISSN 0269-7491, https://doi.org/10.1016/j.envpol.2018.03.086. (https://www.sciencedirect.com/science/article/pii/S0269749117352235)
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:86232
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:07 May 2018 17:29
Last Modified:07 May 2018 17:29

Repository Staff Only: item control page