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A measurement of CMB cluster lensing with SPT and DES year 1 data
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ABSTRACT
Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation,
resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect
offers a promising way to constrain the masses of galaxy clusters, particularly those at high
redshift. We use CMB maps from the South Pole Telescope Sunyaev–Zel’dovich (SZ) survey
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to measure the CMB lensing signal around galaxy clusters identified in optical imaging from
first year observations of the Dark Energy Survey. The cluster catalogue used in this analysis
contains 3697 members with mean redshift of z̄ = 0.45. We detect lensing of the CMB by
the galaxy clusters at 8.1σ significance. Using the measured lensing signal, we constrain the
amplitude of the relation between cluster mass and optical richness to roughly 17 per cent
precision, finding good agreement with recent constraints obtained with galaxy lensing. The
error budget is dominated by statistical noise but includes significant contributions from
systematic biases due to the thermal SZ effect and cluster miscentring.

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmic background
radiation.

1 IN T RO D U C T I O N

Cosmic microwave background (CMB) photons passing near mas-
sive galaxy clusters are gravitationally deflected, leading to small-
amplitude (typically �10 µK) distortions in the observed CMB on
arcminute scales. As pointed out by several authors (e.g. Seljak &
Zaldarriaga 2000; Dodelson 2004; Holder & Kosowsky 2004; Vale,
Amblard & White 2004; Lewis & King 2006; Hu, DeDeo & Vale
2007), these distortions can be used to measure the masses of galaxy
clusters. Because gravitational lensing is sensitive to the total cluster
mass, cluster masses determined from the CMB lensing signal are in
principle robust to uncertainties on baryonic processes occurring in-
side the clusters. In contrast, cluster observables such as the thermal
Sunyaev–Zel’dovich (tSZ) decrement, X-ray temperature, and clus-
ter richness may depend on complicated baryonic physics that can
introduce systematic uncertainty into the cluster mass-observable
relations. Systematic uncertainty on cluster masses dominates the
error budget of most recent cluster abundance constraints on cos-
mology (e.g. Rozo et al. 2010; Mantz et al. 2015; de Haan et al.
2016; Planck Collaboration XXIV 2016).

Cluster masses can also be inferred from gravitationally in-
duced shearing of images of background galaxies (for a review see
Hoekstra et al. 2013). However, at high redshift, measurements of
cluster masses with galaxy lensing become challenging because the
source galaxies become harder to detect and their shapes and red-
shifts become more difficult to measure (e.g. Hoekstra 2001). CMB
cluster lensing, on the other hand, has the advantage that the sig-
nal to noise is roughly constant with cluster redshift (Lewis & King
2006). Furthermore, CMB cluster lensing is not sensitive to many of
the sources of systematic error that affect estimates of cluster mass
derived from galaxy shear, including PSF modelling errors (e.g.
Jarvis et al. 2016), biases in the photometric redshift estimates of
source galaxies (e.g. Melchior et al. 2017), and contamination of the
shear sample with unlensed cluster galaxies (e.g. Applegate et al.
2014; Melchior et al. 2017). Consequently, even at low redshifts
where CMB lensing-derived constraints on cluster masses may not
be statistically competitive with galaxy lensing-derived constraints,
CMB cluster lensing offers an important test of systematic errors
associated with galaxy lensing.

The CMB lensing signal induced by galaxy clusters was first
measured around clusters detected in the South Pole Telescope
(SPT) SZ Survey by Baxter et al. (2015, hereafter B15). A sim-
ilar measurement around Planck-detected clusters was performed
in Planck Collaboration XXIV (2016). Both of these early mea-
surements used the CMB cluster lensing signal to place (weak)
constraints on the scaling between the lensing-derived mass and
the mass inferred from measurement of the tSZ. Related work by
Madhavacheril et al. (2015) used CMB lensing to constrain the mean
mass of optically selected CMASS galaxies (Eisenstein et al. 2011;

Dawson et al. 2013; Ahn et al. 2014) using CMB data from the
Atacama Cosmology Telescope Polarimeter (ACTPol). Recently,
Geach & Peacock (2017) used CMB lensing measurements derived
from Planck data to constrain the masses of clusters detected in the
Sloan Digital Sky Survey.

The aim of this work is to measure the CMB cluster lensing
signal around galaxy clusters identified in optical imaging from
year 1 (Y1) Dark Energy Survey (DES) observations and to use
the measurement of CMB cluster lensing to calibrate the relation
between cluster mass and optical richness. To this end, we employ
the same SPT-SZ CMB temperature maps as used in B15. However,
the galaxy cluster sample employed here is significantly expanded
relative to that used in B15. B15 measured the CMB cluster lensing
signal using 513 SZ-selected clusters; here we use 3697 clusters
identified using the redMaPPer (Rykoff et al. 2014) algorithm ap-
plied to DES imaging.

This work also represents a significant departure in methodology
from the B15 analysis. B15 defined a map-space likelihood for the
observed CMB temperature measurements around a cluster as a
function of cluster mass, and used that likelihood to constrain the
stacked cluster mass of the sample. In this work, we employ the
more standard quadratic estimator approach to estimate the lens-
ing convergence, κ , in small cutouts of the CMB around the galaxy
clusters. The primary advantage of the quadratic estimator approach
employed here is its robustness to important sources of systematic
error. With minor modification to the standard filters used to con-
struct the quadratic estimator, we find that the estimator is fairly
robust to the presence of tSZ signal around the cluster. Addition-
ally, the quadratic estimator is less sensitive to other sources of
systematic error, such as foreground lensing. Consequently, in this
analysis we are able to directly use the low-noise 150 GHz CMB
maps from the SPT rather than creating higher noise tSZ-free maps
from multifrequency data.

We fit the stacked CMB lensing-derived κ measurements
around the redMaPPer clusters to place constraints on the
redMaPPer mass–richness relation. We show that two impor-
tant sources of systematic error for these constraints are cluster
miscentring and contamination of the lensing estimator by tSZ
signal.

The structure of the paper is as follows: in Section 2 we introduce
the formalism for computing κ from CMB temperature maps around
clusters; Section 3 describes the SPT and DES data sets used in
this work; Section 4 describes the pipeline we have developed for
measuring CMB lensing around galaxy clusters; Section 5 describes
the process of fitting the lensing measurements to obtain constraints
on the masses of the clusters in our sample; Section 6 describes the
simulations we have developed to test the analysis pipeline. Our
results are described in Section 7 and discussion of these results is
presented in Section 8.
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Throughout this analysis we assume the best-fitting �CDM cos-
mological model from the Planck TT,TE,EE+lowP fits in Planck
Collaboration XIII (2016). Cluster masses are described in terms of
M200m, the mass enclosed within a sphere of radius R200m centred
on the cluster. R200m is in turn the distance from the cluster centre
at which the mean enclosed density is 200 times the mean density
of the Universe at the redshift of the cluster.

2 A QUA D R AT I C ES T I M ATO R F O R κ

Gravitational lensing of the CMB remaps the image of the last
scattering surface. The observed temperature in direction n̂ is equal
to the unlensed temperature shifted by the deflection angle, ∇φ:

T (n̂) = T̄ (n̂ + ∇φ), (1)

where the overbar is used to indicate unlensed quantities, and φ is
the lensing potential. The lensing potential is in turn related to the
convergence, κ , via

κ = −1

2
∇2φ. (2)

As a result of diffusion damping, the primordial CMB has little
power on arcminute scales. Because the deflections induced by
cluster lensing are at most a few arcminutes we can approximate
the CMB as a pure gradient over the scales at which the deflections
are occurring. This allows us to re-write the temperature of the
lensed CMB as

T ≈ T̄ + ∇T̄ · ∇φ, (3)

where we have suppressed the dependence on n̂ for clarity.
equation (3) makes it apparent that lensing introduces a correlation
between fluctuations in CMB temperature field and the background
gradient field. The quadratic estimator introduced by Hu & Okamoto
(2002) recovers an estimate of κ by identifying these correlations
in the maps: a filtered gradient map is multiplied by a high-pass
filtered temperature map (see below). This estimator is quadratic in
the sense that it involves two powers of the temperature field. Hu &
Okamoto (2002) showed how to construct Fourier-space filters that
give the minimum variance estimate of κ in this approach.

As pointed out by Hu et al. (2007) and others, the quadratic
estimator formulated by Hu & Okamoto (2002) is biased in regions
of high κ . This bias can be understood as resulting from the fact that a
very massive lens (such as a cluster) will magnify the CMB gradient
behind it, effectively decreasing the magnitude of the estimated
gradient field; the result is that the κ estimate is biased low. To
remove this bias, Hu et al. (2007) showed that one could simply
apply an additional low-pass filter to the maps before estimating the
gradient field. This additional filter separates out the scales used to
estimate the gradient from those used to measure the small-scale
CMB fluctuations caused by lensing, and thereby removes the bias.
The filter scale used, lG, becomes an additional parameter of the
analysis, but the results are not expected to be very sensitive to
variations in this scale.

Explicitly, the Hu et al. (2007) estimator for κ is

κ̂l

Al
= −

∫
d2n̂ e−in̂·l Re {∇ · [G(n̂)L(n̂)]} , (4)

where G(n̂) is the filtered gradient field, L(n̂) is the filtered tem-
perature field, and Al is a normalization term. The filtered gradient
field can be written in Fourier space as

G(l) = ilWlTl , (5)

where Tl is the Fourier transform of the temperature field and Wl

represents the filter function. Following Hu et al. (2007), we set

Wl =
{

C̄l (Cl + Nl)
−1 if l ≤ lG

0 if l > lG,
(6)

where Cl (C̄l) is the (un)lensed temperature power spectrum, N (l)
is the noise power spectrum, and lG is the parameter that controls
the gradient filter scale. The filtered temperature map is generated
using inverse variance weighting:

L(l) = WlTl , (7)

with Wl = (Cl + Nl)−1.
In order to return an unbiased estimate of κ , the normalization

factor Al introduced in equation (4) should be

1

Al
= 2

l2

∫
dl1

(2π )2
l · l1Wl1W l2f

T T (l1, l2), (8)

where

f T T (l1, l2) = (l · l1)C̄l1 + (l · l2)C̄l2 , (9)

and l = l1 + l2.
In the analysis presented below, we will apply the Hu et al. (2007)

quadratic estimator to estimate κ in cutouts of the SPT CMB maps
around galaxy clusters. Because κ is directly related to the integrated
mass along the line of sight, by fitting a model to the recovered κ we
can extract constraints on the masses of the clusters in our sample.

3 DATA

3.1 CMB maps from SPT

The SPT is a 10-metre millimetre/submillimetre telescope operating
at the geographical South Pole (Carlstrom et al. 2011). The CMB
maps used in this analysis are from the 2500 deg2 SPT-SZ survey,
which mapped the sky in three frequency bands centred at 95, 150,
and 220 GHz over an observation period from 2008 to 2011 (Story
et al. 2013). We use only the SPT 150 GHz maps in this analysis as
these have the lowest noise.

SPT observations are divided into patches of the sky (fields)
that each have an area �100 deg2. For most fields, SPT scans the
sky in strips of constant elevation, first moving left, then right,
followed by a step in elevation. For one field (ra21hdec-50), a
modified scanning strategy was used for some observations, but we
use only the azimuthal scan data from that field in this analysis. The
time ordered data from these scans is filtered to prevent aliasing of
high-frequency noise and to remove atmospheric and instrumental
noise. The time ordered data is processed into maps with 0.5 arcmin
resolution using the Lambert equal-area azimuthal projection. The
maps used here are identical to those used in the George et al. (2015,
hereafter G15) analysis, and we refer readers to that work for more
details of the map making process.

The signal on the sky observed with the SPT is modified by
a response function consisting of a beam function and a transfer
function. The beam function describes the smearing of sky sources
as a result of the finite aperture of the SPT primary mirror. The
transfer function accounts for time-domain filtering applied to the
SPT signal. The total SPT response function to a mode l on the sky
can be modelled as the product B(l)T (l), where B(l) and T (l) are
the beam and transfer functions, respectively, and B(l) only depends
on l = |l| since the beam is close to rotationally invariant.

The amount of time spent observing each field in the SPT-SZ
survey is not constant, and the effective depth across a field varies

MNRAS 476, 2674–2688 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/476/2/2674/4848275
by California Institute of Technology user
on 09 May 2018



DES+SPT CMB cluster lensing 2677

slightly as a result of scanning strategy. To characterize the varying
depth levels between fields and within a field, we define the weight,
ωi, at map pixel i. The weight is roughly proportional to the in-
verse variance of the map noise at that pixel. We will use maps of
the weight across the sky to calculate the appropriate noise power
spectrum for each cluster cutout.

Before computing κ from the CMB maps, point sources detected
in the maps at 5σ are masked and inpainted with Gaussian noise
that matches the noise level of the SPT maps. The point source
catalogue used for this purpose is the same as used in George et al.
(2015) for masking.

3.2 redMaPPer cluster catalogue from DES

DES is a five-year optical imaging survey of 5000 deg2 of the south-
ern sky using the Dark Energy Camera on the Blanco Telescope
(Flaugher et al. 2015). In this analysis, we make use of first year
(Y1) DES data, which covers roughly 1800 deg2 of sky (Diehl et al.
2014; Drlica-Wagner et al. 2017). The total area of overlap between
Y1 observations and the SPT-SZ survey is roughly 1500 deg2.

Galaxy clusters were identified in the Y1 data using the
redMaPPer algorithm (Rykoff et al. 2014). The application of
redMaPPer to early DES Science Verification (SV) data is described
in Rykoff et al. (2016). The application of redMaPPer to Y1 data
will be described in more detail in an upcoming publication (Mc-
Clintock et al. in preparation). redMaPPer identifies cluster candi-
dates as overdensities of red-sequence galaxies on the sky. For each
cluster candidate, redMaPPer determines a list of possible cluster
member galaxies and their corresponding membership probabili-
ties. The redMaPPer estimate of the cluster richness, λ, is defined
as the sum over these membership probabilities for each cluster.
redMaPPer also computes centring probabilities, Pcen, which char-
acterize the probability that a member galaxy is at the centre of the
cluster. We treat the galaxy with the highest Pcen as the cluster cen-
tre in this analysis, but also consider the effects of various degrees
of miscentring. We will also use the redMaPPer estimates of the
cluster redshifts in this analysis; these are expected to be accurate
to roughly σ z ∼ 0.01(1 + z).

We consider only the volume-limited redMaPPer DES Y1 cat-
alogue, restricted to clusters with richness λ > 20, resulting in a
total of 7066 clusters. We further impose the requirements that the
minimum SPT-defined weight in a ∼2◦ × 2◦ cutout around the
cluster (see Section 4 for a more detailed description of the cutouts)
is greater than zero and is at least 80 per cent of the weight at the
cluster location. These restrictions ensure that we do not include
clusters outside of the SPT fields or clusters for which the weight is
varying significantly across the cutout (as may occur near the field
boundaries). After imposing this restriction, the cluster catalogue is
reduced to 4552 clusters. Finally, as will be described in more de-
tail in Section 7.3.1, we find that the presence of tSZ signal around
high-mass clusters can bias the κ reconstruction. Because the am-
plitude of the tSZ signal scales as M5/3, by restricting our analysis
to lower mass clusters we find that we can reduce the tSZ bias to
acceptable levels while preserving much of the lensing signal. To
this end, we employ a somewhat conservative richness cut, restrict-
ing our analysis to λ < 40. This richness threshold corresponds to a
mass of about 3.2 × 1014 M� assuming the mass–richness relation
of Melchior et al. (2017, hereafter M17). We discuss the motivation
for the richness cut and tests of potential tSZ biases in more detail
in Section 7.3. Imposing the richness cut yields a final catalogue of
3697 clusters ranging in redshift from roughly z ∼ 0.1 to 0.7, with
mean redshift z̄ = 0.45.

4 MEASUREMENT O F κ

For each DES-identified cluster, we estimate κ using cluster-centred
cutouts from the SPT 150 GHz temperature maps presented in G15.
The CMB temperature maps are pixelized at 0.5 arcmin resolution
and the cutouts are 256 pixels on a side.

We rotate each cutout so that it is aligned along lines of constant
azimuth and elevation (see e.g. Schaffer et al. 2011 for description
of the rotation angles corresponding to the Lambert equal-area az-
imuthal projection). Aligning the cutouts with altitude and azimuth
ensures that the transfer function is the same for every cutout, signif-
icantly simplifying the subsequent analysis. Rotation is performed
using third-order spline interpolation. The rotated cutouts are then
apodized using a Tukey window with α = 0.1. Our analysis of sim-
ulated data in Section 6 confirms that this choice of apodization is
reasonable.

The SPT beam and transfer functions are deconvolved from the
cutouts before the application of the quadratic estimator. Estimates
of the beam functions used for this purpose are described in Story
et al. (2013). The transfer function deconvolved from each cutout
is an analytic approximation to the true transfer function consisting
of three pieces:

T (l) = F1(l)F2(l)F3(l), (10)

where

F1(l) = exp(−(l1/l)
6), (11)

F2(l) = exp(−(l2/lx)6), (12)

F3(l) = exp(−(lx/l3)6), (13)

with l1 = 500, l2 = 400, and l3 = 15 000. We have checked that
there is negligible difference between the deconvolved cutouts ob-
tained using the above transfer function approximation and the
deconvolved cutouts obtained using a more accurate estimate of
the transfer function that was computed by mock observing a δ-
function signal located at the centre of the field. To prevent highly
filtered modes from introducing numerical problems as a result of
deconvolution, we additionally filter each cutout to remove modes
with l < l1, lx < l2, and lx > l3.

4.1 Noise and foregrounds

Estimating κ near each cluster requires an estimate of the noise
power spectrum in each CMB temperature cutout. We consider as
noise any contribution to the cutouts that is not CMB and that is
not expected to be correlated with the positions of the galaxy clus-
ters. Non-CMB signal that is correlated with the clusters – such as
the cluster tSZ signal – is treated as a source of systematic error
and is discussed in Section 7.3. Each cutout receives contributions
from astronomical, atmospheric, and instrumental noise sources.
We will take a model-based approach to estimating the contribu-
tions from astronomical noise sources; we estimate the contribu-
tion from atmospheric and instrumental noise directly from the
data.

We first consider the contribution to the cutouts from astronomi-
cal noise sources; such noise is constant over the time-scale of the
observations. In addition to the CMB, the sky signal at 150 GHz
receives significant contributions from several sources, including
galaxies that are bright at microwave frequencies and unresolved
tSZ signal. The relative contributions of these various sources is
l-dependent: at low multipoles (� � 3000), the CMB dominates
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while at higher multipoles (� � 3000), foreground emission be-
comes dominant. In general, the astrophysical foreground sources
can be approximated as Gaussian random noise. Although fore-
ground emission from extragalactic sources such as dusty galaxies
and the tSZ are known to be non-Gaussian at some level (e.g.
Crawford et al. 2014), the Gaussian approximation should be suffi-
cient for the noise levels considered here (van Engelen et al. 2014).
The SPT CMB maps also receive some contribution from galactic
foregrounds, such as dust. However, this foreground contribution is
expected to be significantly below the contributions from the other
foregrounds mentioned above (e.g. Keisler et al. 2011).

Once bright point sources have been removed, the dominant fore-
ground contribution to the sky at 150 GHz comes from dusty,
star-forming galaxies (DSFGs). The power spectrum of DSFG
emission can be divided into two components: one arising from
sources on the sky that are unclustered, and another arising from
sources that are clustered on the sky. The unclustered compo-
nent has an angular power spectrum given by Cl = C0, where
C0 is a constant. Expressed in terms of Dl = l(l + 1)Cl/(2π ), the
analysis of G15 found D3000 = 9.16 ± 0.36 µK2 for the unclus-
tered component. The clustered DSFG component, on the other
hand, can be modelled with Dl ∝ l0.8 for l > 1500. The G15
analysis found D3000 = 3.46 ± 0.54 µK2 for this component. For
l < 1500, the contribution of the clustered DSFG foreground can be
ignored.

Two other significant foreground contributors at 150 GHz are ra-
dio galaxy emission below the detection threshold of SPT maps and
the tSZ signal from undetected galaxy groups or clusters. Following
G15, we model the signal from radio galaxies below the SPT detec-
tion threshold as an unclustered component with D3000 = 1.28 µK2.
To model the tSZ signal from sources below the detection thresh-
old we use the templates from Shaw et al. (2010), normalized us-
ing the constraint from G15. G15 constrained the amplitude of
the tSZ power spectrum after masking sources above the detec-
tion threshold to be D3000 = 2.33+0.8

−1.4 µK2, and we use this value
here.

For our fiducial analysis we make the simplifying approxima-
tion that all emission from astrophysical foregrounds is unlensed by
the galaxy clusters. In reality, this approximation is not very good.
The cosmic infrared background (CIB), for instance, is expected
to receive significant contribution from redshifts 1 < z < 3 (e.g.
Béthermin et al. 2013). Because the clusters used in this analy-
sis have z̄ = 0.45, a significant portion of the CIB may be lensed
by the clusters. However, the precise redshift distribution of the
DSFGs and other foreground sources is not known, making mod-
elling of foreground lensing difficult. While treating the foregrounds
as unlensed is incorrect at some level, we will show in Section 7.3.2
that this simplifying assumption has little effect on our results.

Unlike astrophysical foregrounds, the contribution from atmo-
spheric and instrumental noise sources is not constant over the
SPT observation time, allowing us to estimate the contributions
to the noise power spectrum from these sources by differencing
maps constructed from observations taken at different times. As de-
scribed in Section 3.1, SPT fields are observed by scanning the
telescope left and right across the full field at a series of dis-
crete elevations. We can form a signal-free map as the combina-
tion mdiff = (mL − mR)/2, where mL and mR are the maps formed
from left and right-going scans, respectively. Because atmospheric
and instrumental noise vary on time-scales that are much shorter
than the time difference between the mL and mR observations, mdiff

should provide a realization of the instrumental and atmospheric
noise.

The SPT-SZ survey spent different amounts of time observing
each field, resulting in field-to-field variations in the effective noise
levels of the resultant CMB maps. Additional variation in the noise
levels between and within fields occurs as a result of sky projection.
To account for field-to-field variation in the noise level, each cluster
is analysed using the difference maps for the field in which it was
observed. To account for variation in the noise level across the field,
we use the SPT weight maps, ω.

We first construct a scaled difference map that has effectively
uniform weight by multiplying the map by

√
ω/〈ω〉, where 〈ω〉 is

the mean weight across the inner [0.3, 0.7] of the map. We then
compute the instrumental and atmospheric noise power spectrum at
the mean weight using this scaled difference map. To determine the
estimate of the instrumental and atmospheric noise power spectrum
for the ith cutout we then rescale the noise power spectrum estimate
for the scaled difference map by 〈ω〉/ωi, where ωi is the mean
weight across the ith cutout.

Finally, because we deconvolve the beam and transfer functions
from the cutouts before applying the quadratic estimator, we must
account for this in the noise power spectrum estimate. The total
noise power spectrum estimate for the ith cutout is then

Ni(l) = NF (l) + 〈ω〉
ωi

NIA(l)

[B(l)T (l)]2 , (14)

where NF (l) is the estimate of the noise contribution from the
astrophysical foregrounds described above, NIA is the estimate of
the instrumental and atmospheric noise from the scaled difference
map, and B(l) and T (l) are the beam and transfer function estimates,
respectively. The estimate of the foreground noise contribution has
no beam or transfer function by construction, so it does not require
the beam or transfer function to be deconvolved.

4.2 Stacked, filtered κ estimate

Given the beam and transfer function deconvolved cutouts and the
estimate of the noise power spectrum in the cutout, we compute κ

across the cutouts as described in Section 2. When generating the κ

estimate for each cutout we use a gradient filter scale of lG = 1500.
In principle, higher signal to noise could be achieved by setting
lG = 2000 as originally suggested by Hu et al. (2007). However,
we have found in tests on simulated data (see Section 7.3.1) that
the tSZ signal from massive clusters can lead to a significant bias
in the recovered mass when using lG = 2000. By using the lower
value of lG = 1500, we find that this bias can be significantly
reduced without significantly degrading the signal to noise. The low-
pass filter removes some of the highly localized tSZ signal while
preserving most of the information about the large-scale gradient in
the CMB near the cluster.

By deconvolving the beam function from the cutouts, we increase
the effective noise of small-scale modes that are heavily filtered by
the beam [e.g. equation (14)]. Such small-scale noise is problematic
for our analysis since we attempt to fit the κ profiles of the clus-
ters in real space. In real space the filtered scales are not cleanly
separated from the unfiltered scales, and the resultant small-scale
noise introduces numerical problems. To reduce the effects of such
noise, we filter the κ cutouts with a low-pass filter to remove modes
with l <

√
8 ln 2/θFWHM, where θFWHM = 1.3 arcmin is chosen to

roughly match the beam size of the SPT.
Because the estimate of κ at the cluster location depends on the

gradient of the CMB temperature field, there is useful information
for constraining κ in the temperature maps at scales well beyond
the halo virial radius. However, once the estimate of κ has been
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computed, areas of the κ cutout that are well beyond the virial radius
of the cluster do not contain significant information about the halo
density profile.1 We can therefore speed up our analysis pipeline
with little reduction in signal to noise by restricting our analysis to
the inner parts of the κ cutouts. To this end, we restrict our fitting
to the inner 10 arcmin × 10 arcmin region at the centre of the full
κ cutouts. The size of this reduced cutout can be compared to the
halo virial radius of a M = 5 × 1014 M� halo at the mean redshift
of the cluster sample (z̄ = 0.45), which is ∼5 arcmin. As noted
previously, the richness limit imposed in this analysis corresponds
to roughly 3.25 × 1014 M�, so restricting the analysis to the inner 10
arcmin captures the region within the virial radius for the majority
(if not all) of the clusters in our sample. To reiterate: we use large
128 arcmin × 128 arcmin cutouts of the CMB temperature maps to
estimate κ , but we only use the inner 10 arcmin × 10 arcmin of the
resulting κ map for cluster mass estimation.

Even if the true κ in the cutout is zero, the application of the
quadratic estimator to the cutout is still expected to return a non-
zero estimate of κ because of the apodization window that is applied.
To estimate the true κ , then, we must subtract an estimate of the
mean κ in the absence of any CMB lensing, i.e. the mean field.
We form an estimate of the mean field for each observation field
by performing the κ estimation process around random locations
within the field. The number of random points is approximately
40 times the number of clusters in each field, and we confirm that
the scatter in the mean field estimate for each field is negligible
compared to the noise in the κ estimate around the clusters.

Because the signal to noise for the κ measurements around an
individual cluster is much less than 1, we form a stack of the κ

cutouts. To maximize the signal to noise of the stack, we use inverse
variance weighting when stacking. The stacked κ measurement, κ s ,
is then

κ s =
∑

i wiκi∑
i wi

, (15)

where the sum runs over all cutouts and wi = 1/σ 2
i is the inverse

variance weight. The estimate of the variance, σ 2
i , used for weight-

ing is the same for each field and is calculated by taking the variance
across all κ cutouts in that field. Note that we do not attempt to per-
fectly align cluster centres when performing the stacking; instead,
we keep track of the full coordinate information for each cutout, and
take this into account when constructing the model for the stacked κ

cutout. The vector notation for κ s indicates that the measurements
are a function of pixel location across the cutout (defined relative to
the cluster centre).

Because the SPT transfer function is anisotropic, the κ cutouts
necessarily have anisotropic noise. We therefore fit the stacked 2D
κ s cutout in our analysis rather than the azimuthally averaged profile
of this cutout, as will be described in more detail below. To estimate
the covariance of κ s we use jackknifing.

5 FI T T I N G T H E κ MEASUREMENTS

5.1 Model

We fit the 2D stacked κ s measurement to constrain the relation
between M200m and λ for the clusters in our sample. Each cluster

1 Large scales do contain information about the halo–matter correlation,
which in turn is related to the halo mass. However, our focus here is on
measuring the halo mass directly in the ‘1-halo regime’.

is modelled as the sum of a ‘1-halo’ term resulting from the mass
of the cluster itself, and a ‘2-halo’ term resulting from correlated
structure along the line of sight.

We model the 1-halo term of each cluster using the Navarro,
Frenk, and White (NFW) (Navarro, Frenk & White 1996) density
profile:

ρ(x) = 200ρm(z)

3

[
c3(1 + c)

(1 + c) ln(1 + c) − c

]
1

x(1 + x)2
, (16)

where x = rc/R200m, c is the concentration parameter, and z is
the redshift of the cluster. We set c using the mass–concentration
relation from Diemer & Kravtsov (2015), but find that our results
are essentially unchanged if the mass–concentration relation from
Duffy et al. (2008) is used instead. The projected density along the
line of sight is then

�1h(R) =
∫ ∞

−∞
dh ρ

(
r =

√
R2 + h2

)
. (17)

Analytic formulae for �1h corresponding to the density profile of
equation (16) can be found in e.g. Bartelmann (1996).

We model the 2-halo term following Oguri & Hamana (2011).
The projected density profile due to correlated structure along the
line of sight is written as

�2h

(
θ = R

DA(z)

)
=

∫
�d�

2π
J0(�θ )

ρm(z)b(M)

(1 + z)3D2
A(z)

× Pm

(
k = �

(1 + z)DA(z)
, z

)
, (18)

where DA(z) is the angular diameter distance to the cluster, J0 is
the zeroth order Bessel function of the first kind, ρm(z) is the mean
matter density of the Universe, Pm(k, z) is the linear matter power
spectrum, and b(M) is the clustering bias of haloes with mass M.
We model the halo bias using the fitting formulae from Tinker et al.
(2010). The total projected density along the line of sight is then
�(R) = �1h(R) + �2h(R).

The lensing convergence, κ , is related to the projected density
along the line of sight via κ = �/�c, where �c is the critical
surface density,

�c = c2

4πG

DS

DLDLS
, (19)

and DS, DL, and DLS are the angular diameter distances to the
source (i.e. the last scattering surface), the lens (i.e. the cluster), and
between the lens and source.

Because our analysis uses cluster centres determined by
redMaPPer, we must also account for differences between the
redMaPPer-identified centre and the true halo centre, i.e. miscen-
tring. We follow an approach to accounting for miscentring similar
to that of M17. A cluster that is miscentred by Rmis will result in a
projected density profile given by

�mis(R|Rmis) =
∫ 2π

0

dθ

2π
�

(√
R2 + R2

mis + 2RRmis cos θ

)
(20)

where �(R) is the projected density profile without miscentring
(e.g. Yang et al. 2006).

By comparing redMaPPer centres identified in DES SV data mea-
surements in X-ray and SZ, Rykoff et al. (2016) constrained the frac-
tion of miscentred clusters in DES SV data to be fmis = 0.22 ± 0.11.
Rykoff et al. (2016) modelled the assumed cluster centre as being
a draw from a two-dimensional Gaussian with variance σ 2

R centred
on the true cluster centre. In this model, Rmis follows a Rayleigh
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distribution which peaks at σ R. Rykoff et al. (2016) further as-
sumed that σ R was proportional to the redMaPPer defined cluster
radius, Rλ = (λ/100)0.2 h−1 Mpc, and constrained σ R = cmisRλ with
ln cmis = −1.13 ± 0.22.

In this analysis, we simply assume that a fraction fmis of the
clusters are miscentred by a distance σ R = cmisRλ. The miscentred
κ profile can then be written as

κ(R; M200m, z) = (1 − fmis)�0(R) + fmis�mis(R)

�c
, (21)

where �0 is the projected NFW density profile without miscentring.
In our fiducial analysis, we take the approach of fixing fmis = 0.22
and ln cmis = −1.13, i.e. the best-fitting values from M17. We will
quantify the uncertainty on our mass–richness constraints that is
associated with the miscentring model in Section 7.3.3. The final κ

model for a cutout is obtained by convolving the miscentred κ map
with the filter described in Section 4.2.

Following several previous studies constraining the mass–
richness relation of redMaPPer clusters (e.g. Baxter et al. 2016;
M17; Simet et al. 2017), we adopt a power-law relation for the
expectation value of the mass, M, at fixed richness and redshift:

〈M|λi, zi ; pm.r.〉 = A

(
λ

λ0

)α (
1 + z

1 + z0

)β

, (22)

where we fix the pivot points at λ0 = 30 and z0 = 0.5 to match M17.
The parameters of the mass–richness relation are the amplitude, A,
the richness scaling, α, and the redshift scaling, β; we denote the
vector of these parameters with pm.r..

Given pm.r., our model for the stacked κ profile, κm
s , is then the

weighted average across all clusters of κ evaluated at the expectation
value of the mass for each cluster:

κm
s ( pm.r.) =

∑
i wiκ(〈M|λi, zi ; pm.r.〉, zi)∑

i wi

, (23)

where the wi are the inverse variance weights introduced in
Section 4.2 and κ is given by the mis-centred model of equation
(21) after application of the filter described in Section 4.2. Below,
we will fit the stacked cluster profile κ s with the three parameter
model defined in this section.

5.2 Likelihood analysis

We now describe the process of fitting the stacked κ cutout to obtain
constraints on the mass–richness relation of the redMaPPer clusters.
We begin by assuming a Gaussian likelihood for the data vector, κ s ,
given the model κm

s from equation (23):

lnL(κ s | pm.r.; {λi, zi}) = −1

2

[
κ s − κm

s

]T
C−1

[
κ s − κm

s

]
, (24)

where C is the covariance matrix of the κ s measurement estimated
using jackknife resampling.

The posterior on the mass–richness parameters can then be writ-
ten as

P( pm.r.|κ s ; {zi}) = L(κ s | pm.r.; {λi, zi})P( pm.r.), (25)

where the last term, P( pm.r.), represents the priors on the mass–
richness parameters. Given the signal to noise of our measurements,
we do not expect to be able to robustly constrain many parameters.
We therefore focus on constraining the amplitude of the mass–
richness relation, A. We impose a flat prior on A between [1012,
1016], but find that our results are quite insensitive to the form of this
prior, indicating that our constraints are dominated by information

Table 1. Constraints on the mass–richness parameters. Top-
hat distributions are indicated by brackets, while Gaussian
distributions are written in the form a ± b.

Parameter Prior Posterior

A/M� [1012, 1016] (2.14 ± 0.35) × 1014 M�
α 1.23 ± 0.30 1.25 ± 0.30
β 0.18 –

in the likelihood. We impose a Gaussian prior on α motivated by
the results of M17 and Simet et al. (2017, hereafter S17). These two
analyses found α = 1.12 ± 0.20 and 1.33 ± 0.1, respectively. For the
central value of our prior on α, we simply take the average of these
two values. For the width of the prior, we assume σα = 0.3. This
value is meant to reflect the statistical uncertainty in α along with
any uncertainty owing to differences in the definition of richness
between M17, S17, and Y1 DES data. As we will show below,
our constraint on A is not very degenerate with α, so having a
relatively loose prior on α is acceptable. To simplify the analysis,
we fix β = 0.18 (equivalent to assuming a δ-function prior on this
parameter), corresponding to the best-fitting value from M17. We
find that our analysis is almost entirely insensitive to β, so fixing
this parameter has essentially no impact on our results. These priors
are summarized in Table 1. The resultant parameter space is two-
dimensional (A and α) and can be explored using a simple grid
sampler.

Equation (25) ignores several potential sources of uncertainty
in the stacked model, κm

s . First, we have ignored scatter in the
mass–richness relation. This scatter is expected to be described by
a lognormal probability distribution function, with scatter at fixed λ

given by σ ln M|λ ∼ 0.25 (e.g. Rozo & Rykoff 2014). At low richness,
one expects increased scatter due to the Poisson uncertainty in the
number of galaxies. However, even accounting for the additional
Poisson scatter (following the prescription described in S17) we
find that the uncertainty on κm

s is much less than the uncertainty
on the measurement vector, κ s . Consequently, without introducing
any measurable bias in our results, we can ignore scatter in the
mass–richness relation.

Additionally, equation (25) ignores uncertainty in the redshift
and richness estimates for the clusters. The typical redshift uncer-
tainty for DES redMaPPer clusters is σ z/(1 + z) � 0.01 (Rykoff
et al. 2016). For this level of redshift uncertainty, the resultant
uncertainty in κm

s is much less than the uncertainty in the κ mea-
surements, so it is safe to ignore redshift uncertainty in this anal-
ysis. A similar argument holds for the uncertainty on the richness
estimates.

Finally, note that equation (25) ignores correlated scatter between
the richness and lensing mass. Such correlated scatter is expected
because clusters that are elongated along the line of sight will have
enhanced richness and lensing masses. However, the impact of such
correlated scatter is expected to be at the few percent level (Melchior
et al. 2017), well below the statistical uncertainties obtained here.
For simplicity we therefore ignore this effect.

6 PI PELI NE VA LI DATI ON

We use simulated SPT observations to test the κ estimation pipeline.
We generate simulated SPT maps by adding together Gaussian real-
izations of the CMB, foreground and noise. The CMB realizations
are generated from a power spectrum computed at our fiducial
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cosmological model using CAMB2 (Lewis, Challinor & Lasenby
2000).

We lens the simulated CMB maps with mock clusters described
by the NFW profile of equation (16). To perform the lensing op-
eration, we compute the deflection angles for these clusters us-
ing the formulae of Bartelmann (1996). The unlensed CMB is
then remapped to the lensed CMB with cubic spline interpola-
tion. The main purpose of the simulations is to confirm that our
lensing pipeline recovers an unbiased estimate of κ to within our
noise levels. We therefore use clusters of fixed mass and redshift
when generating the simulations. We use 100 mock galaxy clus-
ters that are roughly equally spaced across the field. Each simu-
lated cluster has M = 2.5 × 1014 M�, z = 0.4 and c = 4.8. This
mass is somewhat higher than the mean mass predicted for the
redMaPPer sample based on the mass–richness relation of M17,
which is M ∼ 2.05 × 1014 M�.

Foreground emission is generated as Gaussian random realiza-
tions of the foreground models described in Section 4.1 and added
to the lensed CMB maps. We assume that foreground emission
is unlensed by the galaxy clusters when generating the simulated
maps because this matches the assumption of our fiducial analysis;
we consider the effects of this assumption on the analysis of the
real data in Section 7.3.2. Note that for the purposes of pipeline
validation, we do not include tSZ signal in the simulated data; we
estimate the effects of tSZ contamination in Section 7.3.1.

The simulated sky maps are then convolved with the beam
and field-dependent transfer functions from G15. Finally, field-
dependent noise realizations are added to the simulated maps.
To generate the field-dependent noise realizations, we gener-
ate Gaussian random realizations of the estimated noise power
spectrum from the weight-scaled difference maps described in
Section 4.1. The noise realizations are then scaled by the inverse
square root of the weight to account for weight variations across the
field.

To build statistics, we generate 200 simulated skies using the
methods described above. Each simulated sky map is lensed with
100 clusters, bringing the total number of simulated clusters to
20 000. Each simulated sky has a different random realization of
the CMB, foregrounds and noise. The simulated skies are passed
through the same pipeline that is applied to the data to extract κ

cutouts around each of the simulated clusters. The κ cutouts are
then fit to determine constraints on the cluster mass, M200m.

Fig. 1 shows the true, azimuthally averaged κ profile (red) in the
simulations compared to the κ profile recovered using our analysis
pipeline (points with error bars). The oscillatory behaviour of κ

comes from application of the filter described in Section 4.2 to
the κ cutouts. The pipeline recovers an unbiased estimate of κ to
within the uncertainties of the mock data. Note that we have used
roughly five times as many simulated clusters as real clusters for
this test to increase our sensitivity to any possible biases in the κ

estimation.

7 R ESULTS

7.1 κ measurements around redMaPPer clusters

Fig. 2 shows the weighted average of the κ cutouts around
redMaPPer clusters, restricted to the region used in fitting. Pix-
els in the κ cutouts are 0.5 arcmin on a side and the fitted region is

2 http://camb.info

Figure 1. Azimuthally averaged κ profile recovered from analysis of sim-
ulated data. Red solid curve shows the true κ profile around mock clusters
with M = 2.5 × 1014 M� after the application of the filtering described in
Section 4.2. Blue data points with errorbars show recovered κ in the presence
of realistic noise, foreground emission, beam, and transfer function using
20 000 clusters. The measurement pipeline recovers an unbiased estimate of
the true κ profile to within the uncertainties.

Figure 2. The stacked, weighted 2D κ profile recovered from the analysis
of CMB temperature data around 3697 redMaPPer clusters. Each pixel in
the cutout is 0.5 arcmin on a side.

20 pixels by 20 pixels. Because the centres of the redMaPPer clus-
ters do not lie at exactly the same position in each map pixel, Fig. 2
incorporates some smearing due to pixelization effects. However,
when fitting for the parameters of the mass–richness relation we
use the full coordinate information for each pixel relative to the true
cluster centres on a cluster-by-cluster basis.3

Fig. 3 shows the azimuthally averaged one-dimensional κ profile
extracted from the analysis of redMaPPer clusters. To determine the
error bars shown in this plot we use a jackknife resampling approach,
where the jackknife subsamples are determined by dividing survey
area into 100 regions of approximately equal area. The data exhibit

3 A small offset in the peak of the recovered convergence map relative to the
origin may be observed in Fig. 2, which we attribute to noise. A similar effect
is seen when applying the quadratic estimator to the simulations described in
Section 6; such an offset was also observed in Madhavacheril et al. (2015).
Averaged over many realizations, though, we correctly recover the input
convergence maps in the simulations.
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Figure 3. The azimuthally averaged κ profile recovered from measurement of CMB lensing around 3697 redMaPPer clusters detected in DES Y1 data (blue
points with errorbars). The errorbars shown are the diagonal elements of the full covariance determined from a jackknife resampling of the cluster sample;
there is significant covariance between adjacent data points. The orange region indicates the allowed range of model predictions (68 per cent confidence region)
given the results of the fit for parameters of the cluster mass–richness relation.

a strong preference for increasing κ towards the centre of the cluster,
as expected. We note, though, that adjacent measurements in Fig. 3
are highly correlated. While we show the 1D κ profile here for the
purposes of visualization, our analysis to extract mass constraints
on the clusters uses the full 2D κ information, rather than the 1D
azimuthally averaged profile.

7.2 Fit results

The 2D and marginalized posteriors on the mass–richness pa-
rameters A and α recovered from our analysis are shown
in Fig. 4; numerical results are given in Table 1. We find
A/M� = (2.14 ± 0.35) × 1014, a roughly 17 per cent constraint
on the amplitude of the mass–richness relation. The posterior on
α is entirely dominated by the prior (shown as the blue curve).
This is not surprising given the fairly low signal to noise of our
measurement and the fact that the richness range of the sample is
restricted to 20 < λ < 40. There appears to be minimal degeneracy
between A and α over the range of α allowed by the constraints
of M17 and S17. If we fix α to the best-fitting value from M17,
we find that the best-fitting A changes by only 1 per cent and the
error on A decreases by only 2 per cent. Because our prior on α

is quite wide, our results are therefore very robust to assumptions
about α.

We find � lnL = 33.3 between the peak of the likelihood and
A = 0; a likelihood ratio test therefore allows us to reject the null
hypothesis that A = 0 at 8.1σ significance. The significance of
this detection can be compared to the 3.1σ detection obtained in
B15 from 513 clusters. Those clusters were approximately twice
as massive as the ones considered here, so we would expect that
despite the increase in sample size our current measurement would
yield a ∼4.0σ detection. The higher detection significance reported
here is the result of the switch from the tSZ-free maps used in B15
to the lower noise 150 GHz SPT maps that we are able to use with
the quadratic estimator in the current analysis.

Figure 4. Constraints on the amplitude, A, and richness scaling, α, of
the redMaPPer mass–richness relation obtained from fits to CMB lensing
measurements. Contours represent 1σ and 2σ levels. The blue curve in
the panel at right shows the prior on α, which dominates our constraint.
Numerical results are summarized in Table 1.

7.3 Systematic errors

7.3.1 tSZ

The tSZ effect is caused by inverse Compton scattering of CMB pho-
tons with energetic electrons. The effect is especially pronounced
in the direction of massive galaxy clusters, as these objects are
reservoirs of hot gas. At 150 GHz – the frequency of observation
for the CMB maps used in this analysis – the tSZ effect leads to a
decrement in the observed CMB temperature near the cluster (for a
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review see Birkinshaw 1999). We do not attempt to model the tSZ
in this analysis; consequently, its presence acts as a potential source
of bias to our measurement of κ . Somewhat worryingly, the mag-
nitude of the tSZ decrement for a massive cluster can be ∼100 µK,
significantly larger than the magnitude of the CMB cluster lensing-
induced distortion, which has amplitudes �10 µK. However, the
situation is not so bad as it might first appear: unlike the CMB
cluster lensing signal, the tSZ effect is not correlated with the CMB
gradient behind the cluster. Because the quadratic estimator used to
measure the lensing distortion is effectively picking out correlations
between small-scale CMB distortions and the larger scale gradient
field, it is expected to be fairly robust to tSZ contamination. Further-
more, the low-pass filtering imposed on the CMB maps to estimate
the gradient field (Section 2) effectively filters out the small-scale
tSZ decrements, reducing their contamination of the κ estimator.
Finally, as noted in Section 3.2, we restrict our analysis to clusters
with λ < 40 to reduce the amplitude of tSZ contamination.

To constrain the level of systematic error introduced to our κ

estimates by the tSZ we rely on simulations. We introduce mock
tSZ signals into the simulations described in Section 6 and re-
analyse these simulations to determine how much the κ estimation
is biased. The mock tSZ signals used for this purpose are taken
from the hydrodynamical simulations of Le Brun et al. (2014).
These simulations represent an extension of the OverWhelmingly
Large Simulations project (Schaye et al. 2010), and are designed
with applications to cluster cosmology in mind. To this end, the
simulations are large volume (400 h−1 Mpc on a side) and include
computation of maps of the Compton y parameter. We use their
AGN 8.0 model in this analysis.

To introduce tSZ into our simulations, we extract tSZ
cutouts measuring 256 arcmin on a side from the Le Brun
et al. (2014) Compton y maps at the locations of mas-
sive haloes. We restrict the cutouts to those haloes with
1.75 × 1014 M� < M < 3.25 × 1014 M� and 0.24 < z < 0.56, as
these should be well matched to the real clusters.4 A cluster with
mass M200m ∼ 3.25 × 1014 M� corresponds roughly to a richness
of λ ∼ 40 assuming the mass–richness relation of M17. While some
clusters with λ ∼ 40 in our sample may have masses larger than
3.25 × 1014 M� owing to scatter in the mass–richness relation, we
expect the constraint to be dominated by clusters below this mass.
Comptonization maps are converted to temperature units assum-
ing an observation frequency of 150 GHz. This process yields 135
simulated tSZ cutouts.

The simulated tSZ cutouts are added to simulated temperature
maps at the locations of the mock clusters. We perform the κ esti-
mation process on 2700 mock clusters with added mock tSZ signal.
For each cluster, the tSZ signal is rotated by a random angle. With
the mock tSZ profiles added to the simulations, the application of
the beam, transfer function and noise then proceeds as before and
the cutouts are processed through the κ estimation pipeline. The
results of this analysis are then compared to a set of simulations
that are identical in every way (i.e. the same realizations of CMB,
noise, and foregrounds) except they do not have the added tSZ
component.

Analysing the simulated cutouts with the mock tSZ signal reveals
that the recovered mass in the presence of tSZ is biased low relative
to the mass in the absence of tSZ by a few percent. This level of bias

4 Halo masses in M500c are converted to M200m assuming that the mass
follows an NFW profile and using the mass-concentration relation from
Duffy et al. (2008).

is significantly smaller than the statistical errors associated with our
κ estimates.

There is some systematic uncertainty in the simulated tSZ pro-
files resulting from differences between the Le Brun et al. (2014)
simulations and real galaxy clusters. Le Brun et al. (2014) showed
that their simulations were able to accurately reproduce the re-
lation between integrated Compton parameter and mass for a set
of nearby galaxy clusters observed by Planck Collaboration XI
(2011) and Planck Collaboration IV (2013). However, there is sig-
nificant scatter between the different ‘sub-grid’ physics models con-
sidered by Le Brun et al. (2014). To account for this, we repeat the
process of introducing the simulated tSZ profiles into the mock
data after increasing the amplitude of the simulated tSZ profiles by
30 per cent. With this increased tSZ amplitude, we find that the bias
in the recovered mass estimate increases to roughly 11 per cent.
Again, this level of bias is smaller than our statistical error bar,
but is certainly non-negligible. We emphasize that this bias is one-
sided: it acts to reduce the inferred amplitude of the recovered κ

estimate.
We have also repeated the above analysis using a more aggressive

gradient filter scale of lG = 2000. This choice yields a higher signal
to noise reconstruction of the cluster profile in the absence of tSZ.
However, in the presence of tSZ (with amplitude fixed to that of
the Le Brun et al. 2014 simulations), choosing lG = 2000 results
in recovered mass estimates that are biased low by as much as
30 per cent. Our fiducial choice of lG therefore has the effect of
significantly reducing the bias due to tSZ at the cost of increasing
our error bars somewhat.

As a further test of tSZ contamination, we also consider the
effect of varying the maximum richness threshold imposed in our
analysis of the redMaPPer clusters. Because the amplitude of the
tSZ signal for a cluster of mass M scales roughly as M5/3 while the
lensing signal is roughly proportional to M, we expect high-richness
clusters to be more impacted by tSZ bias. Indeed, we find that very
high-richness clusters (λ > 100) tend to exhibit a preference for low
masses. One cluster with richness λ ∼ 180 in particular exhibits a
fairly significant preference for negative mass. As a result, if we
include all the clusters in the analysis, the preference for A > 0
actually decreases slightly. However, when varying the richness
threshold between 40 < λ � 50, the preference for A > 0 tends
to increase with increasing richness threshold. This suggests that
tSZ contamination is fairly minimal for clusters in this richness
range.

Another way to constrain the presence of tSZ bias in our analysis
is to look at the posterior on α. Because high-richness clusters are
expected to have their κ estimates biased low by the presence of tSZ,
if such bias were significant in our measurement, we would expect
the recovered posterior on α to prefer low values. Fig. 4 shows both
the prior and posterior on α. The posterior on α is entirely consistent
with the prior, suggesting that α is not being driven low by tSZ
bias.

In addition to the tSZ effect, galaxy clusters are also expected
to distort the CMB via the kinematic SZ effect (kSZ), caused by
inverse Compton scattering of CMB photons with electrons that
have large bulk velocities relative to the CMB frame. The kSZ is
expected to be significantly smaller than the tSZ in most cases, and
like the tSZ it is uncorrelated with the CMB gradient behind the
cluster. Furthermore, since the sign of the kSZ signal depends on
the direction of the cluster peculiar velocity relative to the line-of-
sight direction, its effects should be suppressed in an average across
many clusters. Consequently, the impact of kSZ on our analysis is
expected to be negligible.

MNRAS 476, 2674–2688 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/476/2/2674/4848275
by California Institute of Technology user
on 09 May 2018



2684 E. J. Baxter et al.

7.3.2 Foreground lensing

Our fiducial analysis assumes that all foreground emission is un-
lensed by the galaxy clusters. However, as described in Section 4.1,
some foreground emission may be sourced from behind the cluster
and will therefore be gravitationally lensed by the cluster. To de-
termine the bias introduced into our analysis by the assumption of
unlensed foreground, we repeat the analysis of the data assuming
instead that all foreground emission originates from the surface of
last scattering, and is therefore maximally lensed. In that case, the
power spectrum of the foreground emission can be simply added to
the CMB power spectrum when computing the quadratic estimator.
These two extreme assumptions – no foreground lensing or maxi-
mal foreground lensing – bracket the possible levels of foreground
lensing, and the difference between the two resultant κ estimates
provides an (over)estimate of the systematic error introduced into
our analysis by our foreground lensing assumption.

When we repeat the analysis of the data with the alternate fore-
ground lensing assumption, we find that the change to the resultant
mass constraints is less than 1 per cent, well below our statistical
uncertainty.

7.3.3 Miscentring

Our analysis assumes the best-fitting values for the miscentring pa-
rameters from Rykoff et al. (2016): fmis = 0.22 and ln cmis = −1.13.
However, the Rykoff et al. (2016) constraints on the miscentring
parameters carry non-negligible uncertainty. To quantify the impact
of this uncertainty on our mass–richness constraints, we repeat our
analysis with the miscentring parameters increased an amount equal
to the 1σ uncertainties from Rykoff et al. (2016): σ (fmis) = 0.11
and σ (ln cmis) = 0.22.

We find that perturbing fmis and ln cmis by these uncertainties
results in changes to A of 3 per cent and 4 per cent, respectively.
Adding these uncertainties in quadrature, we therefore introduce a
5 per cent systematic uncertainty to our mass constraints to account
for uncertainty on redMaPPer miscentring. This level of uncertainty
is roughly 29 per cent of our statistical uncertainty.

It may be surprising that uncertainty on the miscentring parame-
ters introduces such a large systematic error on our mass constraints.
Using cluster-galaxy lensing and a similar miscentring model, M17
found that miscentring introduced less than a 1 per cent error on
the normalization of the mass–richness relation. This difference in
amplitude can be understood as resulting from the different angular
scales that contribute to the two constraints. As seen in Fig. 3, the
inner most data points exclude M = 0 with high significance, sug-
gesting that most of our constraining power is coming from small
angular scales where miscentring can have a large impact. The con-
straint from M17, on the other hand, receives a large contribution
from larger scales at which miscentring is unimportant. Indeed,
fig. 11 of M17 shows that most of their signal comes from
R > 1 Mpc, where the effects of miscentring are essentially negli-
gible.

8 D ISCUSSION

8.1 Cluster mass constraint from CMB cluster lensing

We have presented a 8.1σ detection of CMB cluster lensing around
redMaPPer clusters. Our analysis relied on CMB temperature maps
from the SPT-SZ survey and a sample of optically selected galaxy
clusters identified in Y1 DES imaging. By fitting the CMB-κ

Figure 5. Comparison of constraints obtained on the redMaPPer mass–
richness relation from CMB cluster lensing (this work) and cluster-galaxy
lensing (Melchior et al. 2017; Simet et al. 2017). The solid band and lines
illustrate the 1σ ranges allowed by the different constraints. Note that unlike
the Melchior et al. (2017) and Simet et al. (2017) analyses, this work imposes
an informative prior on the slope of the mass–richness relation.

measurements around the redMaPPer clusters, we constrained the
amplitude of the mass–richness relation to roughly 17 per cent sta-
tistical precision.

Our systematics analysis suggests that the dominant systematics
affecting our constraints on the redMaPPer mass–richness relation
are cluster miscentring and the presence of tSZ. Cluster miscentring
contributes a roughly 5 per cent systematic error to our mass con-
straints. Our analysis attempts to minimize bias due to the tSZ by
restricting the cluster sample to λ < 40 and applying a conserva-
tive filter when estimating the CMB temperature gradient field. To
estimate residual bias due to the presence of tSZ we analyse sim-
ulated data with tSZ profiles taken from the AGN 8.0 simulations
of Le Brun et al. (2014) and also employ a data-only consistency
test. Both of these tests suggest that there is negligible bias in our
analysis due to the tSZ. However, after adjusting the simulations to
(conservatively) account for uncertainty in the mock tSZ profiles,
we find that the tSZ-caused bias increases to 11 per cent. Note that
this bias acts to reduce the inferred amplitude of the mass–richness
relation, and so should not be thought of as a two-sided uncertainty.

8.2 Comparison to other redMaPPer lensing measurements

The results presented in this work represent the first weak lensing
mass calibration of the DES Y1 redMaPPer clusters, and therefore
a direct comparison of these results to other weak lensing measure-
ments with the same cluster sample is not yet possible. However,
given that the redMaPPer mass–richness relation is expected to
be survey-independent to a good approximation, it is possible to
compare our results to other recent redMaPPer weak lensing mass
constraints.

Fig. 5 compares the constraint obtained here on the cluster mass–
richness relation to other constraints obtained from cluster-galaxy
lensing. We evaluate all of the various mass–richness relations at
z = 0.5, the pivot redshift of this analysis and that of M17. The
most direct comparison to this work is with the weak lensing mass
calibration of DES SV clusters by M17, since that work used the
same telescope and similar modelling assumptions. Our constraint
on the redMaPPer mass–richness relation is in good agreement with
the constraint from M17 over the richness range considered in this
work. We prefer a slightly lower normalization of the mass–richness
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relation, but this difference is not statistically significant. Note that
our analysis uses ∼3700 clusters, while the M17 analysis used only
∼1600 clusters. Our constraint on the mass–richness relation is
also in good agreement with recent constraints on the mass–richness
relation of redMaPPer clusters in SDSS by S17, shown as the yellow
band in Fig. 5. To translate the S17 constraint from the mean redshift
of the SDSS sample to z = 0.5, we have assumed the redshift scaling
and uncertainty from the M17 analysis, i.e. β = 0.18 ± 0.75. Were
we to instead evaluate the S17 mass–richness relation at the mean
redshift of the clusters in that work, the uncertainty on the mass–
richness relation would be significantly reduced. Finally, we note
that unlike the analyses of M17 and S17, we have imposed an
informative prior on α in our analysis (see Table 1). However, as
shown in Fig. 4, α is not significantly degenerate with A, given the
prior used on α.

8.3 Future prospects

As noted in Section 1, CMB cluster lensing can be used to provide
constraints on systematic errors associated with other weak lens-
ing cluster mass constraints. This is possible because the dominant
systematics associated with CMB cluster lensing are expected to be
essentially uncorrelated with those of galaxy lensing measurements
(with miscentring being a notable exception). The weak lensing
mass calibration of redMaPPer clusters in M17 obtained a system-
atic uncertainty of roughly 5 per cent. Their systematic error budget
was dominated by photometric redshift uncertainty and shear cal-
ibration uncertainty, neither of which affect CMB cluster lensing.
Reaching a 5 per cent mass calibration with CMB cluster lensing
would require a factor of four improvement in the statistical uncer-
tainties presented here (ignoring, for a moment, the contributions
of systematic errors). As we discuss below, such improvements are
certainly possible with future data.

One source of systematic uncertainty that is potentially worrying
for CMB cluster lensing analyses is the presence of tSZ. Our analy-
sis has shown that if one considers only clusters with masses below
about 3.3 × 1014 M�, the bias introduced into the cluster mass
constraints by the tSZ signal – after adopting conservative filtering
choices – is at most ∼10 per cent. This is an acceptable level of
bias for the analysis presented here given our large statistical error
bars. However, with the expected increase in the size of the cluster
catalogues from upcoming DES observations, it will be necessary
to constrain tSZ biases to better than 10 per cent. There are several
possible ways to achieve this goal. First, one can restrict the clus-
ter sample to even lower mass clusters, although this comes at the
cost of less signal to noise and reduced cosmological utility. One
can also apply more aggressive filtering to remove the tSZ signal,
although this will also reduce the signal to noise. Another option
is to attempt to model the tSZ signal or apply estimators which are
robust to its presence. Finally, one can use the known frequency
dependence of the tSZ to construct multifrequency combinations
of CMB maps for which the tSZ signal is minimized. It is likely
that this last approach will prove essential for future CMB cluster
lensing analyses.

Some potential sources of contamination, however, cannot be
eliminated with multifrequency information. In particular, the kine-
matic SZ (kSZ) signal imprinted on the CMB by clusters has the
same frequency dependence as the primordial CMB. Because kSZ
signal appears as a monopole-like signal on the sky while the lens-
ing signal is dipole-like, it may be possible to effectively fit out the
kSZ. Alternatively, one may use polarization information to recon-
struct the lensing signal. Because the polarized SZ signals are ex-
pected to be much smaller than their temperature-only counterparts,

polarization-sensitive measurements (see below) offer a promising
route to obtaining unbiased estimates of the CMB cluster lensing
signal (e.g. Raghunathan et al. 2017).

To date, two methods have been applied to measure CMB lens-
ing in the one-halo regime: quadratic estimators (i.e. Madhavacheril
et al. 2015; Planck Collaboration XXIV 2016, and this work) and
a maximum likelihood approach (i.e. B15). While the maximum
likelihood approach in principle offers higher signal to noise, the
quadratic estimator has the advantage that it is quite robust to sources
of contamination (such as tSZ) in the CMB temperature maps.5 In-
deed, the quadratic estimator approach was employed here because
it enabled the use of the 150 GHz SPT-SZ maps despite the fact
that these maps also have significant tSZ signal. The 150 GHz
maps have significantly higher signal to noise than the tSZ-free
linear combination of 90, 150, and 220 GHz maps generated for
the maximum likelihood analysis of B15. Furthermore, as shown
in Raghunathan et al. (2017), the increased statistical power of the
maximum likelihood estimator relative to the quadratic estimator is
small for SPT-SZ noise levels.

The reduced noise levels of future CMB experiments, however,
make the maximum likelihood estimator approach worth pursuing.
If low-noise levels can be achieved in tSZ-cleaned maps then max-
imum likelihood cluster mass estimation may prove more powerful
than the quadratic estimator-based approach. It may also be possible
to modify the maximum likelihood technique to increase its robust-
ness to various contaminants by e.g. applying additional filtering to
the maps before the estimator is applied.

The future of CMB cluster lensing with DES and SPT is excit-
ing. For the Y1 cluster sample considered here, CMB cluster lensing
is useful primarily as a consistency check on the galaxy-lensing-
inferred cluster masses. However, five-year DES observations will
cover more area and be significantly deeper than DES Y1 observa-
tions, resulting in significantly expanded cluster samples, especially
at high redshifts. As pointed out in Section 1, it is at high redshifts
that CMB cluster lensing has the potential to be competitive with
galaxy lensing. Furthermore, new low-noise CMB experiments like
SPT-3G (Benson et al. 2014), Advanced ACTpol (Henderson et al.
2016), Simons Array (Suzuki et al. 2016), Simons Observatory,
and CMB-S4 (Abazajian et al. 2016) are coming online soon that
will significantly improve the signal to noise of CMB cluster lens-
ing measurements (e.g. Louis & Alonso 2017; Raghunathan et al.
2017). These new experiments will also provide low-noise measure-
ments of the CMB polarization signal, which as discussed above,
will be useful for constraining biases introduced by the SZ effect.
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the Ministério da Ciência, Tecnologia e Inovação, the Deutsche
Forschungsgemeinschaft, and the Collaborating Institutions in the
Dark Energy Survey.

The Collaborating Institutions are Argonne National Labora-
tory, the University of California at Santa Cruz, the University
of Cambridge, Centro de Investigaciones Energéticas, Medioambi-
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