We propose and analyze a novel realization of a solid-state quantum network, where separated silicon-vacancy centers are coupled via the phonon modes of a quasi-one-dimensional diamond waveguide. In our approach, quantum states encoded in long-lived electronic spin states can be converted into propagating phonon wave packets and be reabsorbed efficiently by a distant defect center. Our analysis shows that under realistic conditions, this approach enables the implementation of high-fidelity, scalable quantum communication protocols within chip-scale spin-qubit networks. Apart from quantum information processing, this setup constitutes a novel waveguide QED platform, where strong-coupling effects between solid-state defects and individual propagating phonons can be explored at the quantum level.

Electronic and nuclear spins associated with defects in solids comprise a promising platform for the realization of practical quantum technologies [1]. A prominent example is the nitrogen-vacancy (NV) center in diamond [2,3], for which techniques for state detection [4], coherent manipulations [5–7], and local entanglement operations [8–10] have been demonstrated and employed for various nanoscale sensing applications [11]. Despite this progress in the local control of spin qubits, integrating many spins into larger networks remains challenging. To achieve this goal, several schemes for interfacing spins via mechanical degrees of freedom have recently been discussed [12–17], and first experiments demonstrating magnetic [18–20] or strain-induced [21–25] couplings of mechanical vibrations to both long-lived spin states and electronic excited states of NV centers have been carried out. However, the weak intrinsic coupling of spins to vibrational modes and the short coherence of optically excited states make the extension of these methods into the quantum regime challenging.

In this Letter we describe the implementation of a phonon quantum network, where negatively-charged silicon-vacancy (SiV) centers are coupled via propagating phonon modes of a one-dimensional (1D) diamond waveguide [26–29]. The electronic ground state of the SiV center features both spin and orbital degrees of freedom [30–32], which makes it naturally suited for this task; quantum states can be encoded in long-lived superpositions of the two lowest spin-orbit-coupled states [33–37], while a controlled admixing of higher orbital states, which are susceptible to strain, gives rise to a strong and tunable coupling to phonons. The large spin-orbit splitting of \(\sim 46\) GHz enables coherent operations already at convenient temperatures of \(T \lesssim 1\) K, when thermal excitations at this frequency are frozen out. Our analysis shows that high-fidelity quantum state transfer protocols between distant SiV centers can be implemented under realistic conditions. Moreover, we propose a scalable operation of such phonon networks using switchable single-defect mirrors.

Model.—We consider a system as depicted in Fig. 1, where an array of SiV centers is embedded in a 1D diamond waveguide. The inset shows the level structure of the electronic ground state of the SiV center. A tunable Raman process involving the excited state \(|j_3, i\rangle\) is used to coherently convert the population of the stable state \(|j_2, i\rangle\) into a propagating phonon, which can be reabsorbed by any other selected center along the waveguide. See text for more details.
1D diamond waveguide. The electronic ground state of the SiV center is formed by an unpaired hole of spin $S = 1/2$, which occupies one of the two degenerate orbital states $|e_+\rangle$ and $|e_-\rangle$. In the presence of spin-orbit interactions and a weak Jahn-Teller effect, the four states are split into two doublets, \{1\} $\cong |e_-, \downarrow\rangle$, \{2\} $\cong |e_+, \uparrow\rangle$ and \{3\} $\cong |e_+, \downarrow\rangle$, \{4\} $\cong |e_-, \uparrow\rangle$, which are separated by $\Delta/2\pi \approx 46$ GHz \cite{31,32}. Here, $|e_\pm\rangle = (|e_+\rangle \pm i|e_-\rangle)/\sqrt{2}$ are eigenstates of the orbital angular momentum operator, i.e., $L_z |e_\pm\rangle = \pm \hbar |e_\pm\rangle$, where the z axis is along the symmetry axis of the defect. In the presence of a magnetic field $\mathbf{B} = B_0 \mathbf{e}_z$, the Hamiltonian for a single SiV center is ($\hbar = 1$)

$$H_{\text{SiV}} = \omega_B |2\rangle \langle 2| + \Delta |3\rangle \langle 3| + (\Delta + \omega_B) |4\rangle \langle 4| + \frac{1}{2} \{\Omega(t) e^{i(\omega_B t - \theta(t))} [\langle 2| \langle 3| + | 1\rangle \langle 4|] + \text{H.c.}, \tag{1}$$

where $\omega_B = \gamma_s B_0$ and γ_s is the spin gyromagnetic ratio. In Eq. (1), we have included a time-dependent driving field with a tunable Rabi-frequency $\Omega(t)$ and phase $\theta(t)$, which couples the lower and upper states of opposite spin. This drive can be implemented locally on individual defects either directly with a microwave field of frequency $\omega_B \sim \Delta$ \cite{38} or indirectly via an equivalent optical Raman process \cite{39}. The latter method is already used in experiments to induce transitions between the orbital states \cite{39}. For a phonon waveguide, this is not the case, and the SiV centers can be coupled to a single standing-wave mode with a strength $g_L = g_0 \sqrt{\lambda/L} \approx 2\pi \times (4-14)$ MHz, where $g_0/2\pi \approx 100$ MHz and $\lambda \approx 200$ nm is the phonon wavelength. The system dynamics is then governed by a Jaynes-Cummings interaction between phonons and orbital states \cite{39}. In the strong coupling regime, $g_L > \kappa = \Delta/\Gamma$, which is reached for moderate mechanical quality factors of $\Gamma > 10^4$, a coherent exchange of phonons and defect excitations becomes possible. For longer waveguides, the coupling to the quasicontinuum of phonon modes is characterized by the decay rate $\Gamma_j(\Delta) = \sum_n \Gamma_{j,n}(\Delta)$ for states $|3\rangle$ and $|4\rangle$, where

$$\Gamma_{j,n}(\omega) = \lim_{L \to \infty} \frac{2\pi}{L} \sum_k |g_{n,k}^j|^2 \delta(\omega - \omega_{n,k}). \tag{4}$$

For a single compression mode with $\bar{u}^\dagger(y, z) \sim \bar{x}$ and a linear dispersion $\omega_k = \nu k$, $\Gamma(\omega) = d^2 \hbar \omega / (\rho A v^3)$, which results in a characteristic emission rate of $\Gamma(\Delta)/2\pi \sim 1$ MHz \cite{46}.

Figure 2 summarizes the simulated acoustic dispersion relations and the resulting decay rates for a triangular waveguide \cite{26,44} of width $w = 130$ nm. The SiV centers couple primarily to a longitudinal (l) compression and a transverse (t) flexural mode with group velocities $v_l = 1.71 \times 10^4$ m/s and $v_t = 0.73 \times 10^4$ m/s, respectively. The coupling to the other two branches of odd symmetry can be neglected for defects near the center of the waveguide. Figures 2(c) and 2(d) show that the rates $\Gamma_{l,t}$ are quite insensitive to the exact location of the SiV center. Moreover, the fraction of phonons emitted into a specific branch, $\beta_n = \Gamma_n / \Gamma$, is significantly below unity, as emission is split between two modes. In optical waveguides \cite{47}, a value of $\beta < 1$ usually arises from the emission of photons into nonguided modes, which are irreversibly lost. For a phonon waveguide, this is not the case, and the multibranch nature of the waveguide must be taken into account. For simplicity, all examples below assume $\beta_l = \beta_t = 0.5$, corresponding to SiV defects located near the center of the beam.

Coherent spin-phonon interface.—We are interested in the transfer of a qubit state, encoded into the stable states

$$g_{n,k}^j = d \sqrt{\frac{\hbar k^2}{2pA}} \xi_{n,k}(y_j, z_j), \tag{3}$$

where $d/2\pi \sim 1$ PHz is the strain sensitivity \cite{44,45}, ρ the density, and A the transverse area of the waveguide. The dimensionless coupling profile $\xi_{n,k}(y, z)$ accounts for the specific strain distribution and $\xi(y, z) = 1$ for a homogeneous compression mode.
as shown in Fig. 1, this can be achieved by inducing a Raman transition via state [3]r to convert the population of state [2]e into a propagating phonon and by reverting the process at the receiving center. For temperatures $T/\hbar \Delta/k_B \approx 2.2$ K, such that all phonon modes are initially in the vacuum state, this scenario is described by the wave function $|\psi(t)\rangle = |\alpha\rangle + \beta |\gamma\rangle$, where $\langle 0 | 0 \rangle$ is the ground state with all SiV centers in state $|1\rangle$ and $C(t) = \sum_{\ell=\text{e,r}} \langle \ell| (t) e^{-i\omega_\ell t} |\ell\rangle (t) (|1\rangle_{\text{e}} + |2\rangle_{\text{r}})$ creates a single excitation distributed between the SiV centers and the phonon modes. The central phonon frequency $\omega_0 = \Delta_j + \delta_j$ is assumed to be fixed by compensating inhomogeneities in the Δ_j by the detunings $\delta_j = \omega_{d,j} - (\Delta_j - \omega_{0,j})$.

By adiabatically eliminating the fast decaying amplitudes b_j, we derive equations of motion for the slowly varying amplitudes $c_j(t)$ [39], leading to

$$\dot{c}_j(t) = -\frac{\gamma_j(t)}{2} c_j(t) - \sum_n \sqrt{\gamma_{jn}(t)} e^{-i\phi_{jn}(t)} \Phi_{jn}(t),$$

where $\gamma_j(t) = \sum_n \gamma_{jn}(t)$ is the effective decay rate of state $|2\rangle_j$ and

$$\gamma_{jn}(t) = \frac{\Omega_j^2(t)}{4\gamma_j(t)} \Gamma_j(t).$$

Assuming $0 \leq \Omega(t)/2\pi < 70$ MHz and $\delta/2\pi = 100$ MHz, this rate can be tuned between $\gamma_0 = 0$ and a maximal value of $\gamma_{\text{max}}/2\pi \approx 250$ kHz, which is still fast compared to the expected bare dephasing times $T_2 = 10-100$ μs of the qubit state [36]. The large detuning $\delta \gg \Gamma(t)$ ensures that any residual scattering of phonons from an undriven defect is strongly suppressed, since the local drive field $\Omega(t)$ is essential to establish a resonant Raman process. (see Fig. 1 and [39]).

The last term in Eq. (6), where $\Phi_{jn} = \Phi_{jn,L} + \Phi_{jn,R}$, describes the coupling of an SiV center to the right (R) and left (L) incoming fields $\Phi_{jn,L/R}$, which themselves are related to the corresponding outgoing fields by [48]

$$\Phi_{jn}^{\text{out,L/R}}(t) = \Phi_{jn}^{L/R}(t) + \frac{\gamma_{jn}(t)}{2} c_j(t) e^{i\phi_j(t)}.$$
the expense of a slower transfer by detuning the SiV centers reflections at the boundaries can be partially suppressed at a general framework. The losses from multiple imperfect [39], and it is recovered here as a limiting case of our expected from a single-mode description of the waveguide.

\[\Phi = \pi \]

The transfer fidelity scales approximately as

\[t_p \approx \frac{\gamma_{\text{max}}}{\Delta \omega} \]

for the case of a single resonant mode (red dashed line; \(\phi_1 = 0, \phi_2 = \pi \)) compared to the off-resonant case (dot-dashed black line; \(\phi_1 = \phi_2 = \pi \)) for \(L \sim 100 \mu m \) (\(\Delta \omega/\gamma_{\text{max}} = 140 \)). The full green line represents the long-waveguide counterpart of the off-resonant scenario, where \(L \sim 1 \text{ mm} \) (\(\Delta \omega/\gamma_{\text{max}} = 14 \)). The dashed blue line corresponds to the long waveguide counter part of the dashed red line.

\[\Phi_1 = \pi \quad \Phi_2 = 0 \]

For (b)-(d), the two defects are equally coupled to both modes, \(\phi_2 = \phi_2^0 = \pi \) and \(\beta_2^0 = \beta_2^0 = 0.5 \). (c) Fidelity for varying positions of the receiving SiV center assuming \(\Phi_2 = \phi_1^0 = \pi \) and a maximal transfer time of \(12 \gamma_{\text{max}} \). In all plots, we considered defects near the boundaries (\(\tau_e = \tau_e \approx 0 \)) with a reflectivity of \(R = 0.92 \), which corresponds to \(Q \approx 5 \times 10^4 \) in the cavity limit.

The frequency \(\tilde{g} = \sqrt{\gamma_{\text{max}} \Delta \omega_i / 2 \pi} \approx 2 \pi \times 1.2 \text{ MHz} \) and decay rate \(\kappa = - (\Delta \omega / \pi) \log R \approx 2 \pi \times 0.93 \text{ MHz} \). This result is expected from a single-mode description of the waveguide [39], and it is recovered here as a limiting case of our general framework. The losses from multiple imperfect reflections at the boundaries can be partially suppressed at a general framework. The losses from multiple imperfect reflections at the boundaries can be partially suppressed at a general framework. The losses from multiple imperfect reflections at the boundaries can be partially suppressed at a general framework. The losses from multiple imperfect reflections at the boundaries can be partially suppressed at a general framework. The losses from multiple imperfect reflections at the boundaries can be partially suppressed at a general framework. The losses from multiple imperfect reflections at the boundaries can be partially suppressed at a general framework.

As illustrated by the solid line in Fig. 3(b), the cavity picture fails for longer waveguides, where multimode and propagation effects become non-negligible. In Fig. 3(c), we illustrate a more general protocol, where the phonons ideally travel the waveguide only once. Here, the emission is gradually turned on with a fixed pulse \(\gamma_c(t)/\gamma_{\text{max}} = \min \{1, e^{-(t-t_p)/\tau_c} \} \), while \(\gamma_c(t) \) and \(\theta_c(t) \) are constructed numerically by minimizing at every time step the back-reflected transverse field \(\Phi_{\text{out},R}^\text{out} \). For slow pulses, \(\gamma_{\text{max}}t_p \gg 1 \), a perfect destructive interference between the field reflected from the boundary and the field emitted by the receiving center can be achieved, i.e., \(\Phi_{\text{out},R}^\text{out}^\text{out}(t) + \sqrt{\gamma_c(t)/2} c_\text{r}(t) e^{i\Delta \theta_c(t)} = 0 \). For a single branch (\(\beta_2 = 1 \)), this results in a complete suppression of the signal traveling back to the emitting center so that for \(R = 1 \) and negligible retardation effects, an approximated perfect state transfer can be implemented [13,51–53]. Figure 3(c) shows that this approach also leads to high fidelities under more general conditions, where all propagation effects are taken into account and multiple independent channels participate in the transfer. Since there are no resonances building up, this strategy is independent of \(L \), and it can be applied for short and long waveguides equally well.

In the examples shown in Figs. 3(b)–3(d), the SiV centers are placed at positions near the ends of the waveguide, where the effective emission rate \(\gamma_{\text{out},R}^\text{out}(t) = 2 \gamma_{\text{out},R}^\text{out}(t) \sin^2(\phi_2^0 / 2) [54] \) into both modes is maximal. Figure 3(e) shows the achievable fidelities when the position of the receiving center is varied. We observe plateaus of high fidelity extending over \(\sim 100 \text{ nm} \), interrupted by a few sharp dips arising from a complete destructive interference, i.e., \(\phi_2 \approx \pi \). This position insensitivity in a multichannel scenario can be understood from a more detailed inspection of the outgoing fields \(\Phi_{\text{out},R}^\text{out} \) [39], and it makes the protocol consistent with uncertainties of \(\delta x < 50 \text{ nm} \) achieved with state-of-the-art implantation techniques [55].

Scalability.—In Fig. 4(a), we consider a waveguide of length \(L = 500 \mu m \) containing 49 SiV centers. The defects are spaced by \(\Delta x = 10 \mu m \) to allow individual addressing.

Our strategy is independent of \(L \), and it can be applied for short and long waveguides equally well.

In the examples shown in Figs. 3(b)–3(d), the SiV centers are placed at positions near the ends of the waveguide, where the effective emission rate \(\gamma_{\text{out},R}^\text{out}(t) = 2 \gamma_{\text{out},R}^\text{out}(t) \sin^2(\phi_2^0 / 2) [54] \) into both modes is maximal. Figure 3(e) shows the achievable fidelities when the position of the receiving center is varied. We observe plateaus of high fidelity extending over \(\sim 100 \text{ nm} \), interrupted by a few sharp dips arising from a complete destructive interference, i.e., \(\phi_2 \approx \pi \). This position insensitivity in a multichannel scenario can be understood from a more detailed inspection of the outgoing fields \(\Phi_{\text{out},R}^\text{out} \) [39], and it makes the protocol consistent with uncertainties of \(\delta x < 50 \text{ nm} \) achieved with state-of-the-art implantation techniques [55].

Scalability.—In Fig. 4(a), we consider a waveguide of length \(L = 500 \mu m \) containing 49 SiV centers. The defects are spaced by \(\Delta x = 10 \mu m \) to allow individual addressing.
by focused laser beams or microwave near fields [38,39]. The resulting quantum connectivity matrix, i.e., the achievable state transfer fidelity between each pair, shows that most centers can be connected efficiently, making the operation of large scale networks possible. By using phononic band structure engineering [50,56], single mode [57] or chiral phononic waveguides [58], the fidelities can be further increased beyond the basic scenario considered here. In practice, propagation losses and elastic phonon scattering will set additional limitations for larger networks. In Fig. 4(b), we show a general strategy to overcome these limitations by separating the whole waveguide into smaller segments using additional “mirror centers.” The two outermost SiV centers reflect the phonon wave packet [59] and create an effective cavity within the waveguide [60,61]. In Fig. 4(c), we plot the resulting fidelity for two SiV centers localized inside this effective cavity. For transfer pulses that are long compared to γ_{\max}, the outmost centers act as almost perfect mirrors, such that even in an infinite waveguide state transfer protocols within reconfigurable sections can be implemented.

Conclusion.—We have shown how an efficient coupling between SiV centers and propagating phonons in a diamond waveguide can be realized and used for quantum networking applications. By employing direct spin-phonon couplings in the presence of a transverse magnetic field [62] or a defect in other materials [63–65], the described techniques could also be adapted for lower phonon frequencies \sim5–10 GHz, where many advanced phononic engineering methods are already available. When combined with local quantum registers of adjacent nuclear spins [66] as quantum memories [67,68] and for quantum error correction [10], the described protocol for communicating between many of such local nodes provides a realistic approach for a scalable quantum information processing platform with spins in solids.

This work was supported by the Austrian Science Fund (FWF) through the SFB FoQuS (Grant No. F40) and the START Grant No. Y591-N16. We also acknowledge support from the ONR MURI on Quantum Optomechanics (Grant No. N00014-15-1-2761), the NSF (Grant No. PHY-1506284), the STC Center for Integrated Quantum Materials (NSF Grant No. DMR-1231319), the NSF project EFRI ACQUIRE (Grant No. 5710004174), the Center for Ultracold Atoms (Grant No. PHY-1734011) and the Vannevar Bush Fellowship. M. J. A. S. would like to thank the Humboldt foundation for financial support.

[39] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.120.213603 for additional details about the model and the state transfer protocols, which includes Refs. [40–43].

