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Modal decompositions such as proper orthogonal decomposition (POD), dynamic mode
decomposition (DMD) and their variants are regularly used to educe physical mechanisms
of nonlinear flow phenomena that cannot be easily understood through direct inspection.
In fluid-structure interaction (FSI) systems, fluid motion is coupled to vibration and/or
deformation of an immersed structure. Despite this coupling, data analysis is often
performed using only fluid or structure variables, rather than incorporating both. This
approach does not provide information about the manner in which fluid and structure
modes are correlated. We present a framework for performing POD and DMD where
the fluid and structure are treated together. As part of this framework, we introduce a
physically meaningful norm for FSI systems. We first use this combined fluid-structure
formulation to identify correlated flow features and structural motions in limit-cycle flag
flapping. We then investigate the transition from limit-cycle flapping to chaotic flapping,
which can be initiated by increasing the flag mass. Our modal decomposition reveals that
at the onset of chaos, the dominant flapping motion increases in amplitude and leads to
a bluff-body wake instability. This new bluff-body mode interacts triadically with the
dominant flapping motion to produce flapping at the non-integer harmonic frequencies
previously reported by Connell & Yue (2007). While our formulation is presented for
POD and DMD, there are natural extensions to other data-analysis techniques.

1. Introduction

Modal decompositions such as proper orthogonal decomposition (POD) and dynamic
mode decomposition (DMD) have been used to distill important physical mechanisms
from data, and to develop reduced-order models for turbulent wall-bounded flows
(Berkooz et al. 1993), flow past a cylinder (Chen et al. 2012; Bagheri 2013), and a jet in
cross-flow (Rowley et al. 2009; Schmid 2010), to name a few examples.

These techniques were developed for flows involving (at most) stationary immersed
surfaces, and have been applied less extensively to fluid-structure interaction (FSI)
problems, where the fluid motion is coupled to deformation and/or vibration of an
immersed structure. In this FSI setting, data analysis has, to our knowledge, only been
applied to data of either the fluid or the structure independently of the other. The
fluid-only approach has been used to study flow past a flexible membrane (Schmid
2010), a cantilevered beam (Cesur et al. 2014), and an elastically-mounted cylinder
undergoing vortex-induced vibration (Blanchard et al. 2017). The solid-only approach
has been applied to fish swimming (Bozkurttas et al. 2009; Tangorra et al. 2010) and
flag flapping (Michelin et al. 2008; Kim et al. 2013). These approaches reveal significant
flow or structure behavior, respectively, but do not yield driving mechanisms in the
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omitted quantity. This in turn leaves the correlation between fluid and structure behavior
unknown.

We propose a framework for data analysis of FSI systems where the fluid and structure
are treated together, which naturally allows correlation between the fluid and structure
to inform the resulting modes of the fully-coupled system. As part of this formulation, we
define a norm in terms of the total mechanical energy of the FSI system. This combined
fluid-structure data-analysis procedure is then demonstrated on limit-cycle flapping and
chaotic flapping of strictly two-dimensional flags. We show that the methodology is useful
in extracting the mechanisms of FSI in these various regimes.

We focus here on proper orthogonal decomposition (POD) and dynamic mode decom-
position (DMD) because of their widespread use and their expected suitability for the
problems considered here. The limit-cycle case described in section 3.1 is associated with
one dominant frequency, and thus DMD is a natural candidate because of its localized
harmonic nature (Mezić 2013). POD is also expected to be suitable because of the near-
harmonic decomposition it typically yields for limit-cycle flows (such as occurs in vortex
shedding past a cylinder near the critical Reynolds number of approximately 47; see,
e.g., Kutz et al. (2016)). For the chaotic flapping problem described in section 3.2, the
non-broadband (‘peaky’) nature of the dynamics again makes DMD a fitting technique.
However, POD and DMD are not ideal for all contexts. For example, Towne et al. (2017)
demonstrated that in statistically stationary flows with broadband frequency content
– as observed in the majority of turbulent flows – spectral POD provides an optimal
decomposition. The major goal of the current work is to demonstrate the utility of
performing data analysis in a manner that accounts for both the fluid and the structure,
rather than explore the advantages of any particular technique, a question which in
any event depends on the specific FSI problem under consideration. Future work can
readily incorporate the methodology presented here into the appropriate technique for
the intended application.

2. POD and DMD of fluid-structure interaction

We consider snapshot-based methods applied to discrete data. The associated data
matrices are assumed to be organized so that each column provides the state of the
system at an instance in time and each row contains the time history of a specific state
variable. For simplicity we present our formulation in a two-dimensional setting; the
extension to three dimensions is straightforward.

We assume fluid data is given on a stationary Cartesian grid, Ω, made up of nf points
(Ω ⊂ Rnf ), and let the streamwise and transverse fluid velocities at the ith time instance,
ti, be ui,vi ∈ Ω. Fluid data is often provided in this format by immersed boundary
methods and experiments; some numerical methods use moving meshes at each time
step that conform to the moving structure, and fluid data obtained from these methods
would need to be interpolated onto a single stationary grid at each time instance to use
the method we propose here. Note that for FSI problems with bodies of finite (non-
negligible) thickness, there may be points on Ω that lie within the body. In this case,
the corresponding velocities ui,vi should be set to zero to avoid spurious contributions
from these ‘fictitious-fluid’ quantities.

We consider structural data provided in a Lagrangian setting, with the structural
domain, Γ , comprised of ns points (Γ depends on time). We let χi,ηi ∈ Γ denote
the streamwise and transverse structural displacements from an undeformed reference
configuration at the ith time instance, and ξi, ζi ∈ Γ be the corresponding structural
velocities. We define the total state vector at ti as yi = [ui,vi,χi,ηi, ξi, ζi]

T ∈ R2nf+4ns ,
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and define the data matrix, Y ∈ Rn×m (n = 2nf + 4ns is the size of the state and m is
the number of snapshots), as Y = [y1, . . . ,ym].

POD modes are computed from the mean-subtracted data matrix, Ỹ, whose ith column
is defined as Ỹi = Yi − µ, where µ = 1/m

∑m
k=1 yk is the sample temporal mean of Y.

For DMD, Chen et al. (2012) found that the use of Ỹ reduces DMD to a discrete Fourier
transform in time, and that using Y allows for growth-rate information to be retained.
For this reason, DMD is performed on Y below.

2.1. Proper orthogonal decomposition

POD decomposes the data into orthogonal spatially uncorrelated modes that are
ordered such that the leading k modes (k 6 m) provide the most energetically dominant
rank-k representation of Ỹ. This optimal representation is defined with respect to a
norm, and we therefore select an inner product space whose induced norm yields the
mechanical energy of the FSI system. Defining x as an Eulerian spatial coordinate
and s as a Lagrangian variable that parameterizes the structure, and letting u(x, t) =
[u(x, t), v(x, t)]T , χ(s, t) = [χ(s, t), η(s, t)]T , and ξ(s, t) = [ξ(s, t), ζ(s, t)]T be continuous
analogues of the discrete variables defined earlier, the mechanical energy is

E(t) =
ρf
2

∫
Ω

|u(x, t)|2dx +

∫
Γ

[
κ(χ(s, t)) +

ρs
2
|ξ(s, t)|2

]
ds (2.1)

where Ω and Γ are continuous analogous of the discrete domains defined earlier. The
terms corresponding to the fluid and structural velocities represent the kinetic energy in
the system (ρf and ρs are the fluid and structure density, respectively) and κ(χ(s, t)) is
the potential energy within the structure (for deforming bodies this is the strain energy).
The potential (strain) energy for flapping flags will be defined in the next section. Note
that for bodies of finite thickness where there is fictitious fluid in Ω∩Γ , we again assume
the fluid velocity is set to zero within Γ . This can equivalently be viewed as subtracting
the fictitious fluid contribution, ρf/2

∫
Γ
|u(x, t)|2δ(x − χ(s, t))ds, from the definition of

energy above.
While there are a variety of definitions of energy one could use (so long as it is the

induced norm of an inner-product space), the mechanical energy is a natural choice
because it is nonincreasing in time and accounts for the transfer of energy between
the fluid and structure apart from viscous dissipation in the fluid. That is, through a
straightforward computation one can show that in the absence of body forces and under
the assumption that the shear stress is negligible on the boundary of Ω (which occurs
for sufficiently large Ω),

dE(t)

dt
= −2µ

∫
Ω

(
∇u + (∇u)T

)
:
(
∇u + (∇u)T

)
dx 6 0 (2.2)

where µ is the dynamic viscosity of the fluid. Note that we assumed there is no dissipation
in the structure in arriving at (2.2). Including this term would modify (2.2) by a term
that depends on the properties of the structure but in any case is nonpositive.

In the discrete setting of interest, the norm is defined as ||(·)||W ≡ ||W(·)||2, where W
is a weighting matrix defined as

W =


√

ρf
2 I2nf 0 0

0 L 0

0 0
√

ρs
2 I2ns

 (2.3)

In this expression, In is the n × n identity matrix and L is the operator that maps the
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structural displacements to the potential energy of the structure. We assume that L
is formulated to be positive definite and symmetric so that W is positive definite and
symmetric.

The inner product associated with this weighting matrix is defined as 〈q,p〉W ≡
qTW2p = (Wq)T (Wp) ∀q,p ∈ Rn and the induced norm is ||q||W ≡

√
〈q,q〉W =√

(Wq)T (Wq) ∀q ∈ Rn, which is a discrete approximation of the square root of (2.1)
scaled by one on the length between data points, ∆x. (This assumes that the distance
between points of the fluid and structural domains is equal; unequal spacings can be
incorporated into W in the standard ways).

The energetically ordered POD modes with respect to the W-weighted norm may
be written in terms of the singular value decomposition (SVD) WỸ = UΣVT , where
Σ is a diagonal matrix containing the singular values σ1, . . . , σm ordered by decreasing
energy, and U (V) has columns uj (vj) containing the left (right) singular vectors that

correspond to σj . In this notation, the POD modes are Û ≡W−1U (note that they are
orthogonal with respect to the W-weighted inner product). These modes are written in
terms of the SVD, but may be computed more efficiently using the method of snapshots
(Sirovich & Kirby 1987). The energetically optimal rank-k (k 6 m) approximation of a
snapshot yi may be expressed through an orthogonal projection onto the POD modes as

yi ≈
k∑
j=1

ûTj (Wyi)ûj (2.4)

2.2. Dynamic mode decomposition

Whereas POD modes define an energetically optimal representation of the data, DMD
modes are obtained from a linear regression that best represents the dynamics of a
(potentially nonlinear) data set. Though there are more general variants (Tu et al. 2014),
we compute DMD modes from the matrix A that best maps the progression of the state
from one time instance to the next; i.e., the A that satisfies min

∑m−1
j=1 ||yj+1−Ayj ||2†.

This relation can often be satisfied exactly under reasonable conditions on the data (such
as linear independence of the columns of Y), and the best-fit matrix is A = Y′(Y′′)#,
where Y′ = [y2, . . . ,ym], Y′′ = [y1, . . . ,ym−1], and (Y′′)# is the pseudo-inverse of Y′′.

DMD modes are the eigenvectors of A, denoted as Φ = [φ1, . . . ,φm−1]. These
modes may be computed efficiently without forming A explicitly (Tu et al. 2014). The
corresponding eigenvalues, γ̂1, . . . , γ̂m−1, are structured such that γ̂j = e2πγj∆t, where
∆t is the time step between two snapshots and γj is a complex number whose real
and imaginary parts give the growth rate and frequency, respectively, of mode j. Note
that γj may be computed from γ̂j via γj = log(γ̂j)/(2π∆t). A kth order (k 6 m − 1)
representation of the system at the ith time instance ti may be written in terms of the
DMD modes as

yi ≈
k∑
j=1

cje
2πγjtiφj (2.5)

where cj = (Φ#y1)j represents the initial condition in terms of the jth DMD mode.
The above describes the DMD formulation derived for flows without bodies or flows

involving stationary bodies, and may be used without modification for FSI problems to
obtain the coupled flow-structure behavior that best represents the full system dynamics.

† The minimization can also be performed with respect to the W-weighted norm, but we
retain the use of the standard 2-norm for consistency with most approaches in the literature.
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Figure 1: Transverse displacement (left) and spectral density (right) of the trailing edge
of a flag in limit-cycle flapping with Re = 500, Mρ = 0.18, and KB = 0.0001.

3. Application to flag flapping

The dynamics of flag flapping are governed by the Reynolds number (Re) and the
dimensionless mass (Mρ) and bending stiffness (KB), defined as

Re =
ρfUL

µ
, Mρ =

ρsh

ρfL
, KB =

EI

ρfU2L3
(3.1)

where ρf (ρs) is the fluid (structure) density, U is the freestream velocity, L is the flag
length, µ is the dynamic viscosity of the fluid, h is the flag thickness, and EI is the
bending stiffness.

The potential (strain) energy in the flag is given by the flag displacement in the
direction normal to the flag, χn(s, t), as κ(χn(s, t)) = KB∂

2χn/∂s
2 (note that for

flags only one Lagrangian variable is required to parametrize the body, so the scalar
s is used in place of s). In the case of inextensible flags considered here, the strain
energy may be written in terms of the streamwise and transverse displacements as
κ(χ(s, t)) = KB(∂2χ/∂s2 + ∂2η/∂s2). We therefore define the L-submatrix of W using
the standard second-order central difference formula for the χ and η sub-blocks, which
results in a symmetric positive definite weighting matrix.

The data for this analysis was obtained using the immersed-boundary method of
Goza & Colonius (2017). The method allows for arbitrarily large flag displacements and
rotations, and is strongly-coupled to account for the nonlinear coupling between the flag
and the fluid. The method was validated on several flapping flag problems. The physical
parameters for each run are described in the subsequent subsections; see Goza & Colonius
(2017) for details about the simulation parameters such as the grid spacing and time step
that were used for the different simulations.

3.1. Limit-cycle flapping

We consider a POD and DMD analysis of flapping with Re = 500,Mρ = 0.1, and
KB = 0.0001, for which the system enters limit-cycle behavior (Connell & Yue 2007).
Figure 1 shows the transverse displacement of the trailing edge of the flag as a function
of time along with the corresponding power spectral density. Our analysis is performed
after the transient region, once the system enters periodic behavior of fixed amplitude
and frequency (beginning at t ≈ 20 in figure 1). Figure 2 shows contours of vorticity at
four snapshots in time during a period of flapping in the limit cycle regime. Snapshots
were obtained over the range t ∈ [20, 40] in increments of ∆t = 0.05.

Figure 3 shows the singular values σ from POD along with the DMD eigenvalues
γ of largest growth rate (real part). The four leading POD modes (which represent
approximately 66% of the total system energy) are shown in the top row of figure 4.
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Figure 2: Snapshots of a flapping period for a flag in limit-cycle flapping with Re =
500,Mρ = 0.18,KB = 0.0001. Contours are of vorticity, in 18 increments from -5 to 5.
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Figure 3: POD singular values σ normalized by σ1 (left) and DMD eigenvalues γ (right)
for limit-cycle flapping of a conventional flag with Re = 500,Mρ = 0.1,KB = 0.0001.

Apart from the mode corresponding to the temporal mean, DMD modes typically come in
complex conjugate pairs (e.g., the two leading modes are φ1, φ̄1). We show in the bottom
row of figure 4 the real and imaginary parts of φ1 and φ2 (the mode corresponding to the
temporal mean is not pictured). The POD and DMD modes are nearly identical since this
system is characterized by a specific frequency (c.f., figure 1). The energetically optimal
modes are therefore driving behavior at this dominant frequency and its harmonics.
The flag behavior is conveyed through the leading two POD modes (leading complex-
conjugate pair of DMD modes): these modes represent phase-shifted flapping at the
dominant frequency to create the traveling-wave behavior of high spatial frequency that
the flag undergoes for these parameters (Connell & Yue 2007). The two leading POD
modes (leading complex-conjugate pair of DMD modes) also demonstrate the creation
and advection of vortices associated with flapping. Subsequent modes are not associated
with flag flapping (the flag mode in the insert is undeformed), and instead describe the
higher-harmonic response of the fluid to this dominant flapping motion.

3.2. Chaotic flapping

Chaotic flapping of conventional flags can be triggered for flags of low stiffness (KB)
by increasing the flag mass (Mρ). For flows at moderate Reynolds numbers of O(1000),
the system transitions with increasing mass from a stable equilibrium to limit-cycle
flapping of increasing amplitude, then to chaotic flapping (Connell & Yue 2007). Similar
transitions occur in inviscid fluids (Alben & Shelley 2008). We focus here on the case
of moderate Reynolds number; establishing similarities in the driving mechanisms is an
avenue of future work.

We investigate the route to chaotic flapping here by choosing Mρ = 0.25, which is near
the critical value where the system transitions from limit-cycle flapping. The trailing-edge



Modal decomposition of fluid-structure interaction 7

Figure 4: Leading POD (top row) and DMD (bottom row) modes for the limit-cycle
conventional-flag problem.
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Figure 5: Transverse displacement (left) and spectral density (right) of the trailing edge
of a flag in chaotic flapping for Re = 500, Mρ = 0.25, and KB = 0.0001.

displacement and corresponding spectral density for this regime are shown in figure 5.
We also show in figure 6 snapshots of the system over t ∈ [28.6, 30.2]. Note the increase
in flapping amplitude compared with the Mρ = 0.18 case described above (c.f., figure
1). Moreover, in chaotic flapping there are multiple frequencies present at non-integer
harmonics of the dominant frequency. These non-integer frequencies were first observed
by Connell & Yue (2007), and the mechanism that introduces them remains unexplained.

Using DMD within our FSI framework, we propose a mechanism in which chaotic
flapping is instigated by the increase in flapping amplitude associated with the increased
mass ratio. This increase in amplitude leads the flag to become sufficiently bluff to the flow
at its peak deflection that a bluff-body wake instability arises and interacts triadically
with the dominant flapping behavior to produce the subdominant flapping frequencies
observed in figure 5. DMD is selected here to isolate behavior at distinct frequencies.
This can be done in a POD context using spectral POD (SPOD) (Towne et al. 2017),
and future work could compare the results between DMD and SPOD.

The DMD eigenvalues γ and four leading modes φ (omitting the mode associated with
the mean) for the chaotic case of Mρ = 0.25 are shown in figures 7 and 8. The dominant
and non-integer harmonic frequencies from the spectral density plot of figure 5 manifest
themselves in DMD modes φ1, φ3, and φ4 (see the corresponding eigenvalues in figure
7). Note that despite the significant change in behavior from the limit-cycle regime, φ1

remains largely unchanged. Yet, due to the increased system complexity, flapping is no
longer conveyed entirely through the first mode, and both φ3 and φ4 are associated with
flapping motion and a correlated set of flow features.

By contrast, φ2 is not associated with flapping (the flag mode in the insert is unde-
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Figure 6: Snapshots for a flag in chaotic flapping with Re = 500,Mρ = 0.25,KB = 0.0001.
Contours are of vorticity, in 18 increments from -5 to 5.
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Figure 7: DMD eigenvalues γ for chaotic flapping of a conventional flag with Re =
500,Mρ = 0.25,KB = 0.0001.

Figure 8: Leading DMD modes for chaotic flapping of a conventional flag with Re =
500,Mρ = 0.25,KB = 0.0001.

formed). This is consistent with the absence of the γ2 frequency in the spectral density
plot of figure 5. Thus, the mode represents a response of the fluid to the dominant
flapping motion. The pronounced shear layers at the top and bottom peak displacement
and the corresponding wake vortices are reflective of a bluff-body vortex-shedding mode
that appears because of the increased flapping amplitude compared with the limit-cycle
case. This is further evidenced by the modal frequency, which agrees with the classical 0.2
Strouhal scaling (Roshko 1954) when normalized by the projected length of the maximum
peak-to-peak-amplitude (0.35 × 0.5 ≈ 0.18). Note also that γ2 is not a sub-harmonic
of the dominant flapping frequency γ1, and thus this bluff-body mode is reflective of
the appearance of a new physical mechanism rather than of resonance or harmonic
interactions.
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This bluff-body mode is key to understanding the sub-dominant flapping behavior of
the flag: the sub-dominant frequencies seen in figure 5 arise as triadic combinations of the
frequencies of the dominant flapping mode and the bluff-body mode; i.e., γ3 = γ1 + γ2
and γ4 = γ1−γ2. These triadic interactions are necessitated by the quadratic nonlinearity
of the advective term in the Navier-Stokes equations.

4. Conclusions

We presented a formulation for performing data analysis on FSI problems that accounts
for both the fluid and the structure. We designed this formulation to be compatible with
the manner in which data is typically obtained for experiments and nonconforming mesh
simulations. As part of this framework, we defined a physically meaningful norm for FSI
systems. We considered POD and DMD because of their widespread use, but extensions
to other methods are straightforward.

Our formulation was first applied to limit-cycle flag flapping. Because of the dominant
frequency associated with this limit-cycle behavior, both POD and DMD give similar
decompositions. The leading two POD modes (leading complex-conjugate pair of DMD
modes) convey both the flapping information of the flag and the dominant vortical
structures associated with this motion. Subsequent modes describe harmonic responses
in the fluid to the flapping described in the leading modes.

Next, the physical mechanism driving chaotic flapping was clarified. Connell & Yue
(2007) identified that the transition from limit-cycle flapping to chaotic flapping coincides
with the appearance of a new flapping frequency near the 3/2 harmonic of the domi-
nant flapping frequency. We identified the mechanism driving this non-integer harmonic
through a DMD analysis. We first demonstrated that at the onset of chaos, the flag
becomes sufficiently bluff at its peak deflection to initiate a bluff-body wake instability.
This is in contrast to limit-cycle flapping, where flapping amplitudes are smaller and this
bluff-body instability is not instigated. The associated shedding frequency of this new
behavior coincides with the Strouhal scaling of 0.2 common to bluff-body flows (Roshko
1954). Moreover, we demonstrated that this bluff-body mode combines triadically with
the dominant flapping behavior to produce the observed flapping near the 3/2 harmonic
(and the other sub-dominant flapping frequencies).

Finally, we note that data analysis is often used to develop reduced-order models of
complex flow. For FSI systems, these models are typically derived by performing a data-
driven decomposition of the fluid and coupling this to the full governing equations for the
structure (see Dowell & Hall (2001) for a review). This approach may require more modes
than those derived from a combined fluid-structure treatment, and there are avenues for
future work in evaluating the efficiency of our proposed data-analysis technique in the
context of reduced-order models.
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