
19
92

A
pJ

. 
. .

38
8.

 .
28

73
 

The Astrophysical Journal, 388:287-300,1992 April 1 
© 1992. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

EQUILIBRIUM STELLAR SYSTEMS WITH SPINDLE SINGULARITIES 

Stuart L. Shapiro1 and Saul A. Teukolsky1 

Center for Radiophysics and Space Research, Cornell University 
Received 1991 July 19; accepted 1991 September 26 

ABSTRACT 
We construct equilibrium sequences of axisymmetric Newtonian clusters that tend toward singular states. 

The distribution functions are chosen to be of the form /=/(£, Jz). The numerical method then determines 
the density and gravitational potential self-consistently to satisfy Poisson’s equation. For the prolate models, 
spindle singularities arise from the depletion of angular momentum near the symmetry axis. While the 
resulting density enhancement is confined to the region near the axis, the influence of the spindle extends 
much further out through its tidal gravitational field. Centrally condensed prolate clusters may contain strong- 
field regions even though the spindle mass is small and the mean cluster eccentricity is not extreme. 

While the calculations performed here are entirely Newtonian, the issue of singularities is an important 
topic in general relativity. Equilibrium solutions for relativistic star clusters can provide a testing ground for 
exploring this issue. The methods used in this paper for building nonspherical clusters can be extended to 
relativistic systems. 
Subject headings: celestial mechanics, stellar dynamics — galaxies: kinematics and dynamics — 

globular clusters : general — relativity 

1. INTRODUCTION 

1.1. Background 
There is considerable interest in the structure of non- 

spherical stellar systems in dynamical equilibrium. Physically, 
such systems exist as galaxies and globular star clusters. Math- 
ematically, they are self-consistent solutions to the Vlasov 
equation for the stellar distribution function / coupled to 
Poisson’s equation for the gravitational potential d>. Finding 
such solutions is difficult when the configuration is not spher- 
ical and the number of nontrivial phase-space degrees of 
freedom is large. (For a general review and discussion, see 
Fridman & Polyachenko 1984 or Binney & Tremaine 1987.) 

In this paper we are interested in sequences of nonspherical 
stellar systems that approach a singular state. Examples of 
singular systems include axisymmetric clusters with prolate 
spindles along their axis, or with oblate pancakes along their 
equator. Prolate spindles are especially interesting: their gravi- 
tational fields are more strongly singular than those of pan- 
cakes, and they cannot arise in equilibrium fluids, but only in 
collisionless systems. 

Most of the effort in constructing nonspherical clusters has 
been devoted to oblate models for elliptical galaxies. The possi- 
bility that some observed features might be explained by 
prolate structures has stimulated the construction of a few 
prolate models (see Lake 1981a, b for examples and references). 
As clusters become increasingly prolate, their gravitational 
fields become increasingly singular. Tremaine & De Zeeuw 
(1987) have considered the limiting case of strictly one- 
dimensional needles. However, a systematic procedure for 
studying the approach to singularity of multidimensional 
systems has not been previously presented. In part, this is 
because highly aspherical configurations are computationally 
challenging. 

The simplest equilibrium solutions to the Vlasov equation 

1 Departments of Astronomy and Physics, Space Sciences Building, Cornell 
University, Ithaca, NY 14853. 

with axisymmetry are of the form/=f(E, Jz), where E is the 
energy and Jz is the angular momentum about the symmetry 
axis, both per unit mass. By suitable choice of the distribution 
in Jz, one can construct models that are either prolate or 
oblate. A depletion in the Jz-distribution produces a prolate 
configuration, while an enhancement produces an oblate one. 
The easiest way to implement this procedure is to write 

/(£, Jz) = g(E)h(Jz) (1.1) 

and vary h appropriately. When h is constant, we get spherical 
models with isotropic velocity distributions. In this paper, we 
construct generalized polytropes by choosing g to be the same 
function of E that gives rise to ordinary polytropes in the 
spherical case. By varying the polytropic index, we can study 
systems that range from nearly homogeneous to highly cen- 
trally condensed. With a self-consistent solution in hand, we 
can calculate its density profile, velocity distribution, and 
gravitational tidal field strength. As h is varied, we can build 
entire sequences of nonspherical equilibria and study their 
approach to singular states. 

While the calculations in this paper are strictly Newtonian, 
they also address the important issue of singularities in general 
relativity theory. This issue is discussed in the next subsection. 
The remainder of the paper is entirely Newtonian and is 
organized as follows. In § 2 we present the key equations and 
diagnostic probes that describe equilibrium clusters. In § 3 we 
outline the numerical method. Section 4 summarizes some 
analytic results that are helpful in assessing the numerical 
models. Section 5 presents the numerical results, while the con- 
clusions are given in § 6. 

1.2. Relevance for General Relativity 
The well-known Newtonian instability discussed by Lin, 

Mestel, & Shu (1965) shows that the collapse of a nonrotating 
homogeneous spheroid of collisionless matter can lead to the 
formation of singularities. If the spheroid is slightly oblate ini- 
tially, the configuration collapses to a pancake, while if the 
spheroid is slightly prolate, it collapses to a spindle. Although 
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in both cases the density becomes infinite, the formation of a 
spindle during prolate collapse is particularly significant. The 
gravitational potential, gravitational force, tidal force, and 
kinetic and potential energies all blow up to infinity. Prolate 
evolution is forced to terminate at the singular spindle state. 
For oblate evolution, the matter simply passes through the 
pancake state, but then becomes prolate and also evolves to a 
spindle singularity. 

Can such a singular spindle form during relativistic col- 
lapse? And if so, will the singularity always be hidden inside a 
black hole? The cosmic censorship hypothesis (Penrose 1969) 
states that all singularities formed during collapse will be inside 
black holes, clothed by event horizons, and hence never visible 
from the outside (no naked singularities). The formation of a 
naked singularity would be a disaster for general relativity 
because the theory could not predict the future evolution. The 
hoop conjecture (Thorne 1972) states that a black hole will 
form if and only if collapsing matter becomes sufficiently 
compact in all directions. It is difficult to reconcile the hoop 
conjecture and cosmic censorship: a sufficiently long spindle 
could not form a black hole, so any singularity that formed 
would be naked. 

Recent advances in numerical relativity now make it pos- 
sible to address this dilemma by computer calculation. In 
particular, we have carried out numerical simulations of colli- 
sionless spheroid collapse in full general relativity (Shapiro & 
Teukolsky 1991). Our numerical results lend support to the 
hoop conjecture and provide evidence that naked singularities 
can in fact form in general relativity. One limitation of such 
simulations is that the integrations themselves are forced to 
terminate as soon as a singularity appears. Thus, while there 
was no evidence of a black hole when our simulations ended 
(no “ apparent horizon ”), there is no guarantee that outgoing 
light rays would have continued outward forever (no “event 
horizon ”). Hence our conclusion that naked singularities can 
form is not yet watertight. 

How can we probe the nature of singularities without the 
ambiguities of unpredictable future dynamical evolution? One 
way is to explore them in equilibrium configurations. (Apparent 
and event horizons coincide for stationary configurations.) We 
propose to examine prolate spindle singularities in fully rela- 
tivistic equilibrium clusters. As a first step, we examine in this 
paper their Newtonian counterparts. This preliminary study 
will provide not only valuable physical insight, but also a 
numerical approach that will generalize to the relativistic case. 
With this future generalization in mind, we restrict our atten- 
tion here to the simplest distribution functions that can give 
rise to nonspherical equilibria, functions of E and Jz alone. 
While distribution functions depending on three or more inte- 
grals of the motion can be constructed to give rise to spindles 
in Newtonian gravitation, there is no obvious way to gener- 
alize them to the relativistic case. 

The singularity that forms during nonspherical Lin-Mestel- 
Shu collapse in Newtonian theory can be prevented by any 
slight initial inhomogeneity or velocity dispersion (see Horst 
1982 for a formal proof; see Shapiro & Teukolsky 1987 for a 
numerical demonstration). However, we know from countless 
numerical simulations that small perturbations are not at all 
sufficient to prevent singularity formation during relativistic 
collapse (see Rendall 1991 for a formal proof for spherical 
collisionless collapse). The unanswered question is whether or 
not the singularity that forms during collapse can ever be 
naked. We will be able to assess the conditions leading to the 

formation of naked singularities by studying equilibrium con- 
figurations. 

2. KEY EQUATIONS 

Any phase-space distribution function f(E, Jz) is an equi- 
librium solution of the Vlasov equation in axisymmetry. The 
energy per unit mass E is given by 

E=^2(pi+pl) + m, (2.1) 

where m is the particle mass, p# is the momentum about the 
symmetry axis, p± is the momentum perpendicular to and 
is the gravitational potential. We adopt spherical polar coordi- 
nates (r, 0, </>) and choose the z-direction along the axis. Instead 
of 0, we use 

x = cos 0 , (2.2) 

so that O = <I>(r, x). The angular momentum per unit mass 
about the z-axis is 

Jz = r(l- x2)1^ . (2.3) 

The stellar density p is given by 

p = m \fd3p , (2.4) 

and must be determined self-consistently with the potential 
according to Poisson’s equation. 

We shall only consider bound systems of finite extent, for 
which E has a maximum value Emax <0. For such systems, 
equation (2.4) becomes 

p(r, x) = 4nm 
[2(£max-<I»)]l/2 

Í 

dPi.PL 

[2(£max-<l>)-p±2/m2]l/2 
dp+f{E,Jz), (2.5) 

where E and Jz are defined in equations (2.1) and (2.3). The 
solution of Poisson’s equation can be written 

oo Too j.21 
0(r, x) = —4nG £ T2,(x) dr'r'2 

1 = 0 Jo r> 

dxf P2l(x
f)p(r\ x'), (2.6) 

where Pz(x) is a Legendre polynomial and where we have 
assumed reflection symmetry about the equatorial plane. Here 
r< is the lesser of r and r', and similarly for r>. The total mass 
M of the system is 

M = 4n dxp(r, x) . (2.7) 

It will prove useful to expand p and <I> in Legendre poly- 
nomials : 

p{r, x) = Z p2i(r)p2i(x) , 
1 = 0 

00 
<I>(r, x) = X <S>2l(r)P2l(x), 

1 = 0 
where 

P2i(r) = (4/ + 1) dxp(r, x)P2l(x), 

(2.8) 

(2.9) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
92

A
pJ

. 
. .

38
8.

 .
28

73
 

EQUILIBRIUM STELLAR SYSTEMS 289 No. 2, 1992 

and similarly for <D2j(7*). In a numerical solution, we truncate 
these expansions at some large, finite value L of /. Adopting 
such a spectral representation of the angular dependence, we 
get more rapid convergence of the solution with increasing L 
compared with, for example, a standard finite-difference 
approach (see, e.g., Gottlieb & Orszag 1977 for a discussion). 

The entire problem can be greatly simplified by using the 
scale freedom to remove G, m, M, and £max from all the equa- 
tions. This is accomplished by defining nondimensional vari- 
ables as follows: 

p_ E _ Jz * ° 
Uwl’ 2 GM/\EmJ

112 ’ |£maxr 

P r _ =   
m|£mJ

1/2’ r GM/I£max| ’ P M[GM/|£max|]-
3’ 

/= 
 /  
(M/m)[GMm/|£mJ

1/2r3 ‘ 
(2.10) 

We now drop all the tildes, so that henceforth all equations are 
written in terms of these nondimensional quantities. This is 
equivalent to setting G=l=m = M= — £max in all of our 
equations. In particular, equations (2.5)-(2.7) become 

J*|2(l+<I>)|l/2 p2(l+<I>) + pj.2ll/2 
dPLPi 

0 Jo 

X dptfliipl + pi) + 0>, K1 - x2)1/2I>2l >(2.11) 

—An 
4/ + 1 

pit'), 

1 = 47T 
^ 00 

Jo 
drr2p0(r). 

(2.12) 

(2.13) 

These are the fundamental equations that must be solved self- 
consistently. We discuss our numerical method for solving 
these equations by iteration in § 3. 

2.1. Diagnostics 
Once the fundamental equations (2.11)-(2.13) have been 

solved, we can probe the structure of the cluster by calculating 
a number of physically important diagnostics. First, the mean 
squared velocities are given by 

vl(r, x) = - 
P 

v$(r, x) = - 
P 

dp^f, 

dp+plf, 

(2.14) 

where the limits of integration are the same as in equation 
(2.11). For any f=f(E, J2), the velocity vector is isotropically 
distributed in a plane orthogonal to the ^-direction and so no 
information is gained by decomposing v\ into two orthogonal 
components. The structure of the cluster does not depend on 
what fraction of the particles are moving in the + ^-direction 
versus the — ^-direction. If equal numbers are moving in each 
direction, the net angular momentum of the cluster is in fact 
zero. We will let / denote the fraction of the particles moving in 
the + (^-direction, where 0 < / < 1. 

The net rotational energy of the cluster is 

Trot = 2n(2% - l)2 j drr2 j dxp(r, x)t^(r, x) . 
Jo Jo 

(2.15) 

The total kinetic energy is 

-2„ ("*,•> f‘ 
Jo Jo 

dxp(r, x)[vl(r, x) + v2
L(r, x)] . (2.16) 

The total potential energy is 

W dx p(r, x)0(r, x) = 2n ["drr2 i\ 
Jo Jo 

oo 1 f* oo 
= 2n T, 77TT drr2p2lr)<S>2ir). (2.17) 

1 = 0 -T 1 Jo 

Hence the total energy is 

£tot = T + W = W/2 , (2.18) 

where the last equality follows from the virial theorem 

2T + W = 0 . (2.19) 

When expressed nondimensionally, these energies are all in 
units of M|£max|. For a spherical polytrope of radius R and 
poly tropic index n, | Emax| = GM/R and 

Etnt = - - (2.20) 
2(5 - n) 

in our nondimensional units. 
We use the quadrupole moments of the mass distribution to 

define a global eccentricity e of the cluster. The principal 
moments of inertia are 

IXX = lyy = [p{y2 + Z2)d3X , 

Izz = j*£(*2 + y2)d2x . 

Substituting from equation (2.8), we find 

hx = y Jo 
dr ^ />2(r)J > 

(2.21) 

£ = yjo árr4^0(r)-i/?2(r)J . (2.22) 

We then define the eccentricity by 

Ixx Izz , IXX > Izz (prolate). 
Ixx - Izzß 
2(1 XX - Ixx) 

(2.23) 

£ 
> Ixx < Izz (oblate). 

For a homogeneous spheroid with equatorial semiaxis a and 
polar semiaxis c, this definition reduces to the standard expres- 
sion for eccentricity. 

e 2 

a 
1 — ^ (prolate), 

c 
c2 

1 (oblate) . 
a 

(2.24) 

Centrally condensed clusters with very nonspherical structures 
in the core may still yield small values of the eccentricity (2.23). 
For such systems the nonspherical structures show up in diag- 
nostics that depend only on local properties, such as density 
contour plots, and not on global averages that weight the outer 
regions. 
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Consider now how we might diagnose the presence of a 
singularity in a cluster. The gravitational force at a point is not 
a satisfactory diagnostic because its influence on a particle 
there can be removed simply by comoving with the particle in 
free fall. A singular tidal force, by contrast, causes the relative 
acceleration of neighboring particles to become infinite. There 
is no global reference frame that can simultaneously comove 
with all the particles in free fall. Hence the blowup of the tidal 
force is a better criterion for a singularity in the gravitational 
field. For a nonspherical star cluster, such a region can occur 
both inside and outside the cluster. 

Another criterion for a singularity is whether trajectories are 
forced to terminate because of infinities arising in the equations 
of motion. Points where this occurs then define the singular 
region. 

These two criteria for singularity are not always equivalent. 
We shall see an example of this for oblate pancakes in § 4.1. 

As a measure of the gravitational tidal field, consider the 
tidal tensor 

O 
_ d2<D 

lj dxi dxj 
(2.25) 

in Cartesian coordinates. From this quantity, we construct a 
simple scalar function: 

/ = 80)^0^, (2.26) 

where summation over repeated indices is implied.2 Blowing 
up of / signals the presence of a singularity. In axisymmetry, 

+ (2.27) 

where a comma denotes a partial derivative. 

2.2. Adopted Distribution Function 
For the generalized polytropes that we consider, we choose g 

in equation (1.1) to be of the form 

g(E) = 
Kt-(E+ l)]n"3/2 , £< -1 , 
0, E > —1 . 

(2.28) 

Here n is the polytropic index, which ranges over the allowed 
values j to 5. The factor K is an overall normalization constant 
whose value is determined by fixing the total mass. For the 
angular momentum function h in equation (1.1), we choose a 
Gaussian, 

(129) 

where the upper sign gives prolate configurations and the 
lower sign oblate. In the limit J0-> cc,h becomes independent 
of J2, and/reduces to the usual distribution function for spher- 
ical polytropes. In the limit Jo^0 for prolate clusters, 

2 With the factor of 8, this quantity is the Newtonian limit of a relativistic 
measure of the tidal field, the Riemann invariant R^R*^0, evaluated in 
vacuum. 

h^ö(Jz) (cf. Lake 1981b). This limit is interesting because it 
produces prolate spindles along the axis. 

3. NUMERICAL METHOD 

The heart of the procedure consists of solving equations 
(2.11)-(2.13) self-consistently. We begin with an initial guess for 
Ö and then integrate equation (2.11) to determine p up to the 
factor K appearing in equation (2.28). Integrating equation 
(2.9) gives the Legendre coefficients p2i- The unknown factor K 
is then found by requiring that equation (2.13) for the total 
mass be satisfied. Next we integrate equation (2.12) to deter- 
mine 02z from p2i- Finally, we reconstruct the updated value of 
O from equation (2.8). The whole procedure is iterated until 
convergence. A similar scheme was used by Prendergast & 
Tomer (1970) and Wilson (1975) for distribution functions 
based on distorted Maxwellians. 

To carry out the quadratures in r and x, we construct a fixed 
grid in both variables. The radial grid extends from the origin 
into the vacuum, with successive radial intervals in a fixed 
ratio. The first zone is chosen to lie well inside the quasi- 
homogeneous core, which is sometimes at quite small radius 
for very condensed clusters with large values of n or with 
appreciable prolateness. By adopting the Green’s function rep- 
resentation for O via equation (2.6), we can place the outer 
radius just outside the matter surface if we make the cutoff L 
large enough. For spherical clusters the surface is at r = 1. For 
nonspherical systems the surface typically lies inside r = 1.5, 
which we choose as our outer boundary. Given a fixed total 
number of radial grid points, the grid spacing can now be 
determined by summing a geometric series. 

The angular integrations are all performed by Gaussian 
quadrature. We do this not only for the high efficiency of 
Gaussian quadrature for smooth functions. Gaussian quadra- 
ture also guarantees the required orthogonality of the terms in 
Legendre expansions such as equation (2.9). This avoids spu- 
rious contributions to the high modes. The choice of Gaussian 
quadrature dictates that the angular grid points be the L + 1 
positive zeros of P2l+2M- 

Since we can evaluate the integrands in equations (2.11) and 
(2.14) at any values of p± and p#, we carry out the quadrature 
over each variable by Romberg integration. For 1/2 < n < 3/2 
the integrands have an integrable singularity and require 
special treatment (see Appendix A). 

Radial quadratures, such as in equations (2.12) and (2.13), 
are performed by the trapezoidal rule. For high accuracy, it 
is crucial that the integrands be regularized; for example, 
r2 dr -► dr3/3. 

To evaluate the tidal invariant / in equation (2.27), we calcu- 
late the radial derivatives by simple finite differencing and the 
angular derivatives by using the Legendre expansion (see 
Appendix B). 

For a convergent solution, we require the maximum frac- 
tional change in the potential on successive iterations to be less 
than 10-4. This typically takes 10 to 20 iterations when we 
start with crude initial guesses for the potential. A significant 
number of iterations can be saved during a sequence of calcu- 
lations in which J0 is varied by using the last solution as the 
initial guess for the next value of J0. Once a convergent solu- 
tion is obtained, we assess its overall accuracy in a number of 
ways. We require that p2l(r) for / close to L be small compared 
with p0(r), thereby ensuring that we have chosen L large 
enough. We also check that the virial equation (2.19) is satis- 
fied. Typically it is satisfied to better than 0.1%. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
92

A
pJ

. 
. .

38
8.

 .
28

73
 

EQUILIBRIUM STELLAR SYSTEMS 291 No. 2, 1992 

For nearly spherical clusters, 80 radial zones and 10 angular 
zones are adequate. (For spherical systems we can set L = 0 
and reproduce the Lane-Emden functions for polytropes to 
very high accuracy.) For extremely distorted clusters, we use 
320 radial zones and 30 angular zones. Such a high resolution 
run requires about 1 CPU hour on an IBM RS-6000 work- 
station. 

4. ANALYTIC PRELIMINARIES 

There are a number of straightforward analytic results that 
help us assess the physical content of the numerical computa- 
tions. 

4.1. Homogeneous Spheroids 
Homogeneous spheroids provide convenient analytic 

models for understanding the structure of nonspherical solu- 
tions. It is well-known that nonnegative distribution functions 
of the form /=/(£, Jz) cannot produce homogeneous clusters 
(see, e.g., Hunter 1975). The required/must depend on at least 
a third integral of the motion. Such solutions have been inde- 
pendently given by Freeman (1966) and Bisnovatyi-Kogan & 
Zel’dovich (1970; see Fridman & Polyachenko 1984 and 
Shapiro & Teukolsky 1987 for an extensive discussion). While 
the numerical solutions obtained in this paper are for clusters 
described by just two integrals of the motion, it is still useful to 
compare their properties with simple homogeneous spheroids. 

In this paper, the feature we are most concerned with is the 
tidal invariant /. For a homogeneous cluster with non- 
dimensional density 

P* 
3 

4na2c 
(4.1) 

we find 

l92(npJ2Ai 

' 7>2[npif)X{A1+ Atf + A\ + Aï] 

32(npJ2(2Al + A2) 

where for prolate clusters 

(pole, exterior) 

(equator, exterior) 

(interior) (4.2) 

^3 

1 1 — e2 1 + e 
nr^5 

-In 1±£ 
1 — e 

-2- 
(prolate) (4.3) 

while for oblate clusters 

v4i — 
(1 - e2)112 

sin * e — 

1_ 2(1 - e2)m 

„2 

(oblate) (4.4) 
A2) = — — — ^— sin 1 e . 

Note that for these homogeneous clusters, / is discontinuous at 
the matter surface. 

For a homogeneous sphere, where the nondimensional 
radius is one, we have 

Í48 , I — (exterior, r > 1) 

(24 (interior, r < 1) ’ 
(4.5) 

In the spherical limit e -► 0, the spheroidal expressions (4.2) 
reduce correctly to equation (4.5). 

In the more interesting highly eccentric limit e -► 1, the tidal 
invariant for a homogeneous prolate spindle has the singular 
limiting behavior 

108 1 
pole c6 (1 - e2)2 ’ 

Anterior * Aq * 3^pole * 
The corresponding limit for an oblate pancake is 

(4.6) 

144 1 
eq_> a6 (1-e2) 

1 V. ir j ^ interior 2Aeq ’ *pole (4.7) 

Note that in the prolate case the peak value of / occurs in the 
exterior at the pole of the spindle. In the oblate case, the 
maximum occurs in the equator just outside the matter. More 
significantly, the singularity is much weaker in the oblate case. 
In fact, the equations of motion allow all particle trajectories to 
be integrated right through the singular pancake region. By 
contrast, particle trajectories are forced to terminate at a 
prolate spindle singularity. 

For spherical systems, the exterior tidal field can never be 
singular: equation (4.5) is always valid in the exterior indepen- 
dent of the interior density distribution. For nonspherical clus- 
ters, however, this need not be true. Homogeneous clusters 
with e -► 1 provide one example. Below we employ numerical 
computations to search for further examples. 

The occurrence of the maximum value of / in the exterior is 
a feature of homogeneous clusters. For example, in a spherical 
polytrope, the central value of / is 

/ center (4.8) 

where pc is the central density and p is the mean density. The 
exterior values are still given by equation (4.5). Hence, even for 
small central concentration, the central value exceeds the 
exterior values. Two key questions we wish to answer for 
highly prolate, inhomogeneous clusters are therefore: does I 
blow up as the spindle becomes more pronounced, and if so, 
does the singularity extend out into the exterior, or is it con- 
fined to the core? To address these questions, we have to rely 
on numerical simulations. 

4.2. Inhomogeneous Spindles 

In general, whenever h(Jz) S(JZ), a prolate spindle singu- 
larity is generated along the axis. An easy way to see this is to 
work in cylindrical coordinates (R, z) and to recast equation 
(2.5) in the form of an integral over E and Jz : 

p(R,z) = ^m\dE\ dJJ(E,Jz) (4.9) 
K J® Jjz2<2(-<D + E)R2 

(see, e.g., Binney & Tremaine 1987). Employing equation (1.1) 
with h equal to a ¿-function, we find 

2nm CE- 
p(R,z) = —dE g(E). (4.10) 

Thus if g(E) is a smooth function, the integral in equation (4.10) 
is regular, and the density spikes up on the axis. Note however 
that the total mass in the singularity is finite because pa: 1/R. 
By Poisson’s equation, the second derivatives of <I> blow up on 
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TABLE 1 
Properties of Prolate Sequences'1 

-Etn TTJ\W\h 
f< Pc 

0.6. 

1.5. 

2.5. 

3.5. 

oo 
1 
0.1 
0.01 

oo 
1 
0.1 
0.01 

oo 
1 
0.1 
0.01 
0.0001 

oo 
1 
0.1 
0.01 

0 
0.258 
0.820 
0.887 
0 
0.231 
0.775 
0.861 
0 
0.199 
0.719 
0.815 
0.815 
0 
0.160 
0.644 
0.739 

15/44 
0.341 
0.344 
0.345 

3/7 
0.431 
0.469 
0.497 

3/5 
0.606 
0.762 
0.951 
0.997 
1 
1.01 
1.64 
5.19 

1/6 
0.161 
0.0575 
0.0049 

1/6 
0.162 
0.065 
0.0077 

1/6 
0.162 
0.078 
0.013 
0.00053 

1/6 
0.164 
0.100 
0.032 

0.69 
0.64 
0.095 
0.004 
0.44 
0.39 
0.092 
0.008 
0.24 
0.23 
0.099 
0.014 
0.0007 
0.19 
0.18 
0.11 
0.034 

0.495 
0.523 
1.67 

15.0 
1.43 
1.53 
5.36 

55.1 
5.57 
5.93 

27.4 
438. 

5.47 (3) 
36.4 
38.6 

298. 
5.65 ( + 4) 

1.04 ( + 2) 
1.16 ( + 2) 
1.61 ( + 3) 
1.40 ( + 5) 
8.76 ( + 2) 
9.85 ( + 2) 
1.53 ( + 4) 
1.89 ( + 6) 
1.34 ( + 4) 
1.51 ( + 4) 
3.72 ( + 5) 
1.17 ( + 8) 
1.88(4-10) 
5.70(4 5) 
6.43 ( 4 5) 
4.03 ( 47) 
1.78(412) 

a The distribution function/(£, Jz) is defined by eqs. (1.1), (2.28), and (2.29). The quantity J0 is in units 
of GM/\EmJ

112, Etot is in units of M|£max|, pc is in units of M(GM/\EmJ) 3, and Jmax is in units of 
\EmJ

6/(GM)\ iaxl /\KJ1VI) * 3 This is the maximal value; in general it should be multiplied by (2/ - l)2. 
c The central density pc is also the maximum density for the clusters listed here. 
d The quantity Jmax is the maximum value of the tidal invariant and occurs at the center of all clusters 

listed here. 

the axis in the same way as p. We thus expect that / should be 
singular in the region of the matter spindle. Does the singu- 
larity in / extend further out? Our numerical calculations will 
address this question below. 

A spindle singularity may be present in a cluster even when 
the global eccentricity defined by equation (2.23) has only a 
moderate value. For example, set g{E) = d(E — £max) in equa- 

tion (4.10), which would have given an n = ^ spherical poly- 
trope for h constant. Then p = \/R everywhere, up to a 
constant factor. The corresponding Legendre coefficients are 

P°(r) = ^, p2{r) = ^, (4.11) 

so by equations (2.22) and (2.23) the eccentricity is exactly 1/2. 

TABLE 2 
Properties of Oblate Sequences3 

TJ\W\h 
/< Pc 

0.6. 

1.5. 

2.5. 

3.5. 

00 
1 
0.5 
0.4 

OO 
1 
0.5 
0.4 

OO 
1 
0.5 
0.4 
0.33 

00 
1 
0.5 
0.4 
0.3 

0 
0.269 
0.577 
0.758 
0 
0.248 
0.523 
0.688 
0 
0.210 
0.447 
0.588 
0.781 
0 
0.168 
0.356 
0.468 
0.726 

15/44 
0.341 
0.340 
0.339 

3/7 
0.426 
0.417 
0.407 

3/5 
0.592 
0.567 
0.542 
0.492 
1 
0.981 
0.920 
0.864 
0.688 

1/6 
0.175 
0.205 
0.243 

1/6 
0.174 
0.199 
0.229 

1/6 
0.171 
0.190 
0.211 
0.257 

1/6 
0.170 
0.181 
0.193 
0.242 

0.69 
0.74 
0.73 
0.52 
0.44 
0.40 
0.55 
0.61 
0.24 
0.25 
0.31 
0.38 
0.58 
0.19 
0.19 
0.20 
0.21 
0.34 

0.495 
0.465 
0.361* 
0.259* 
1.43 
1.34 
1.03 
0.757* 
5.57 
5.19 
3.99 
3.01 
1.53* 

36.4 
33.8 
25.8 
19.9 
7.07 

1.04 ( + 2) 
9.25 (+1) 
9.99 ( + 1)* 
2.08 ( + 2)* 
8.76 ( + 2) 
7.70 ( + 2) 
4.92 ( + 2) 
4.05 ( + 2)* 
1.34 ( + 4) 
1.16 ( + 4) 
7.04 ( + 3) 
4.44 ( + 3) 
1.71 ( + 3)* 
5.70 ( + 5) 
4.91 ( + 5) 
2.88 ( + 5) 
1.72 ( + 5) 
2.45 ( + 4) 

a The distribution function /(£, J2) is defined by equations (1.1), (2.28), and (2.29). The 
quantity J0 is in units of GM/| £max|

1/2, Etot is in units of M|£max|, pc is in units of 
M(GM/| £max|)~

3, and /max is in units of | EmJ
6l{GMf. 

b This is the maximal value; in general it should be multiplied by (2/ — l)2. 
c The central density pc is also the maximum density for all the clusters except where 

indicated by an asterisk, when it occurs on an equatorial ring. 
d The quantity /max is the maximum value of the tidal invariant, and occurs at the center of all 

the clusters except where indicated by an asterisk, when it occurs on an equatorial ring. 
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We will see more realistic examples of this behavior in the 
numerical cases below. 

5. NUMERICAL RESULTS 

We have constructed numerical models for the distribution 
function defined in equations (2.28) and (2.29). We have sur- 
veyed a range of polytropic indicies including n = 0.6, 1.5, 2.5, 
and 3.5. Results are summarized in Tables 1 and 2. The case of 
n = 0.6 is the closest to a homogeneous cluster, while the case 
of n = 3.5 is the most centrally condensed. 

In Figure 1 we plot density contours for selected prolate 
clusters with n = 0.6 along a sequence of decreasing J0. As J0 
decreases and the depletion of angular momentum increases, 
the density spikes up along the axis. The corresponding plot of 
particle positions projected into a plane through the axis is 
given in Figure 2. We see little evidence in the particle plot for a 
spindle singularity, and indeed the mean eccentricity of even 
the lowest J0 clusters is less than 0.9. However the tidal invari- 
ant / is growing rapidly along the sequence (Table 1). The 
fraction of particles (i.e., mass) inside the singular region 
decreases as the spindle becomes more pronounced. Move out 
along the axis from the center until the density has fallen to 
half its central value. Define /< to be the fraction of particles 
inside a sphere out to this radius. As shown in Table 1,/< 

decreases sharply along the sequence, in agreement with the 
analytic discussion in § 4.2. 

Figure 3 shows density contours for a sequence of oblate 
clusters with n = 0.6. As J0 decreases and the angular momen- 
tum distribution for Jz is now enhanced, the configuration 
becomes increasingly flattened. Eventually the location of the 
maximum density moves out from the origin, and a condensed 
equatorial ring appears. Once again, as shown in Figure 4, 
projected particle plots do not reveal much of this structure. 
For J0 < 0.3, the density along the axis falls to zero, and the 
configuration becomes toroidal. We have not studied these 
configurations in detail. 

Density contours for the more centrally condensed case of 
n = 2.5 are shown in Figure 5 for prolate clusters. As the 
spindle emerges on the axis with decreasing J0, the low-density 
outer regions are hardly affected. The accumulation of stars on 
the axis is now evident in the particle plot in Figure 6d. 
However, once again the mean eccentricity is not very extreme, 
e ~ 0.8. By contrast with the mean eccentricity, the tidal invari- 
ant grows dramatically as the core becomes increasingly 
prolate. In Figure 7 we plot the tidal invariant in a quadrant of 
the x-z plane for an extreme J0 = 0.01 configuration. The plot 
clearly shows the dramatic spike in / along the axis. The 
maximum occurs at the center in this centrally condensed 
example. 

Fig. 1.—Density contours in a meridional plane for a sequence of prolate clusters with n = 0.6. The angular momentum parameter J0 is in units of GM/\ £max|
1/2 

and has the values oo (a), 1 (b), 0.1 (c), and 0.01 (d). The density falls by a factor of 1.7 on successive contour lines. The surface is shown by a dashed line. The 
coordinates are in units of GM/\ £max|. The density profile for this value of n is fairly homogeneous. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
92

A
pJ

. 
. .

38
8.

 .
28

73
 

.5 1.5 O 
Y 

Fig. 2.—Snapshots of the particle positions projected onto a meridional plane for the prolate sequence shown in Fig. 1. The growth of the spindle along the 
sequence, which is evident in Fig. 1, is less discernible in these particle plots. 

Fig. 3.—Density contours in a meridional plane for a sequence of oblate clusters with n = 0.6. The angular momentum parameter J0 has the values go {a), 1 (b), 
0.5 (c), and 0.4 (d). The labeling is as in Fig. 1. The density profile for this value of n is fairly homogeneous. Note the appearance of an equatorial ring in cases (c) and 
(d). 
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Fig. 4.—Snapshots of the particle positions projected onto a meridional plane for the oblate sequence shown in Fig. 3. The growth of the equatorial ring along the 

sequence, which is evident in Fig. 3, is less discernible in these particle plots. 
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Fig 5—Density contours in a meridional plane for a sequence of prolate clusters with n = 2.5. The values of the angular momentum parameter and the labeling 

are the same as in Fig. 1. The density profile for this value of n is quite centrally condensed. The spindle that forms in the extreme cases is confined to the central 
region. 
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Z 

0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1 

Y Y 
Fig. 6.—Snapshots of the particle positions projected onto a meridional plane for the prolate sequence shown in Fig. 5. The growth of the spindle along the 

sequence, which is evident in Fig. 5, is less pronounced in these particle plots. 

Fig. 7.—Profile of the tidal invariant / in a quadrant of the x-z plane for 
n = 2.5 and J0 = 0.01, the extreme prolate case shown in Figs. Id and 2d. The 
coordinates are in units of GM/\Emax\. The peak value of I is 1.17 x 108 in 
units of |£maxl6/(GM)4- The extremely steep tidal field along the axis fore- 
shadows the ultimate appearance of a singularity as J0 -> 0 along the sequence. 

In Figure 8 we compare the tidal invariant profiles along the 
axis for the prolate n = 0.6 and n = 2.5 cases. The more homo- 
geneous n = 0.6 models are reminiscent of the homogenous 
spheroids discussed in § 4.1 : the interior values of / are roughly 
constant; they are comparable in magnitude to the exterior 
surface values; and there is an abrupt change in the value at the 
surface. It is most significant that as and h -► S(JZ), I 
blows up to infinity along the axis. The singularity in I is not 
confined to the interior, but clearly extends to the region just 
outside the surface. This feature is most easily discernible in the 
plot for n = 0.6, but is also true for n = 2.5. Such vacuum 
singularities do not arise for spherical systems, where the 
exterior value of / is always given by equation (4.5). 

Figure 9 shows density contours for the oblate sequence 
with n = 2.5. Again the flattening with decreasing J0 is most 
pronounced in the central regions. As with the n = 0.6 
sequence, extreme cases show the formation of equatorial 
rings. These rings appear before the mean eccentricity is appre- 
ciable (Table 2). Particle plots for these oblate configurations 
are shown in Figure 10. 

The tidal invariant for the J0 = 0.5 oblate cluster with 
n = 2.5 is plotted in Figure 11. The profile rises abruptly in the 
equatorial plane, but is not nearly as extreme as the prolate 
case. This typifies the behavior of oblate systems. 

Insight into the effect of varying the parameter J0 to deplete 
or enhance the Jz-distribution is provided in Figure 12. There 
we plot the profile of 2^/t?i along a radius in the equatorial 
plane. This ratio is identically equal to one for an isotropic 
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Fig. 8.—Comparison of the tidal invariant profiles along the axis for two 
prolate sequences. The solid lines show the n = 2.5 sequence, while the dashed 
lines show the n = 0.6 sequence. Each curve is labeled by the value of J0, in 
units of GM/I £max|

1/2. The quantity / is in units of | £max|
6/(GM)4, while the 

radial coordinate R is in units of GM/| £maJ. 

distribution function, h = constant. For prolate clusters, where 
angular momentum is depleted, we see that the ratio dips 
below unity, while for oblate clusters the ratio rises above 
unity. At the origin and everywhere along the axis, the ratio is 

always unity when/=f{E, Jz). The ratio also returns to unity 
at the surface for smooth distribution functions of this form. 
However the rise to unity is increasingly abrupt at the surface 
as J0 decreases and vanishes altogether when J0 = 0. In 
making the plot for the most extreme prolate clusters, the ratio 
does not return all the way to one at the surface because of 
insufficient radial grid resolution there. 

6. CONCLUSION 

We have constructed sequences of nonspherical equilibrium 
clusters that tend toward prolate singular states. The forma- 
tion of spindle singularities in the Newtonian examples con- 
sidered here is due to the depletion of angular momentum near 
the symmetry axis. This depletion allows stars to accumulate 
there, although the total mass involved is small. While the 
resulting density enhancement is confined to the region near 
the axis, the influence of the spindle is felt much further out 
through its tidal gravitational field. It is interesting that cen- 
trally condensed prolate clusters may contain strong-field 
regions even though their mean eccentricity is not extreme. 

The formation and properties of singularities is an impor- 
tant topical issue in general relativity. The cosmic censorship 
hypothesis, which underpins the use of general relativity to 
describe gravitational collapse, is still unproven after more 
than 20 years. Equilibrium solutions for relativistic star clus- 
ters can provide a testing ground for exploring this issue. The 

Fig. 9.—Density contours in a meridional plane for a sequence of oblate clusters with n = 2.5. The angular momentum parameter J0 has the values oo (a), 0.5 (b), 
0.4 (c), and 0.33 (d). The labeling is as in Fig. 1. This sequence is quite centrally condensed. Note the appearance of an equatorial ring in (d). 
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Fig. 10.—Snapshots of the particle positions projected onto a meridional plane for the oblate sequence shown in Fig. 9. 

Fig. 11.—Profile of the tidal invariant / in a quadrant of the x-z plane for 
n = 2.5 and J0 = 0.5, the oblate case shown in Figs. 9b and 10b. Labeling is the 
same as in Fig. 8. The peak value of / is 7.04 x 103. The tidal invariant is steep 
along the equatorial plane. 

Fig. 12.—Profile of the velocity dispersion ratio along an equatorial radius 
for n = 2.5 sequences. The solid lines show prolate clusters, the dashed lines 
oblate clusters. Curves are labeled by the value of the angular momentum 
parameter J0, in units of GM/\ Fmax|

1/2. The radial coordinate R is in units of 
GM/I Fmax|. 
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methods used in this paper for constructing equilibrium clus- 
ters can be generalized straightforwardly for relativistic 
systems, and we plan to do so. 

This work has been supported in part by National Science 
Foundation grants AST 90-15451 and PHY 90-07834, and 
NASA grant NAGW-2364 at Cornell University. 

APPENDIX A 

REGULARIZING EQUATION (2.11) FOR 1/2 < n < 3/2 

To deal with the integrable singularity in equation (2.11) when 1/2 < n < 3/2, we make a change of variable in the integrands. 
(A similar transformation is used in equation 2.14.) To motivate this change, rewrite equation (2.11) in the form 

where 
-1' 

dp± Pi fi(P±) > 

dPtf^P*) ■. 

(A.1) 

(A.2) 

and where 

Mp*) = g{E)h(Jz) 

= K[-(l + <D + |pi + 

= Kti(p%n2 - ÍPÍT~3,2h(Jz). (A.3) 

It is clear that the integrand in equation (A3) blows up at the upper limit of integration for n < 3/2. We can regularize the integrand 
by changing the variable of integration via 

‘-(-IT' (A4) 

This gives 

/lV“3/2 1 f1 

fiiPi) = (2) (PD2”-2 Jo *(2 - t^~^r^KJz), (A.5) 

where the integral in equation (A5) is now regular. However, since 

(pn2”“2 = Kprax)2 - p±Y~i, (A.6) 
p± still blows up at the upper limit of integration in equation (Al) when n < 1. We can regularize this singularity by the change of 
variable 

s = (A.7) 

In practice, rather than carrying out the substitutions (A4) and (A7) analytically, we implement them numerically in the Romberg 
quadrature routine (see Press et al. 1986 § 4.4). Even with these substitutions, the quadrature for 1/2 < n < 3/2 is substantially 
slower than for 5 > n > 3/2. 

APPENDIX B 

EVALUATION OF / IN EQUATION (2.27) 

From the Legendre expansion (2.8) for O, we can get the Legendre expansion of <5> x : 
oo 

<!>,* = I xi,2Àr)P2Àx) , 
1 = 0 

where the expansion coefficients *¥21 can be obtained from the downward recurrence relation 

^+1=0 

(B.l) 

(B.2) 
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This recurrence relation follows from the relation 

(21 + l)P,(x) = p;+1(x) - Pi-iix) (B.3) 

for Legendre polynomials. 
Using Legendre’s equation, the term involving second derivatives in x in equation (2.27) can be rewritten as follows : 

00 
(1 - x2)<i>'XX = X <h2^)[2xP2i(x) - 21(21 + l)P2I(x)] 

1 = 0 

= 2x<S> x - £ 21(21 + l)<I>2i(x)P2I(x). (B.4) 
1 = 0 

The radial derivatives in equation (2.27) are computed using second-order accurate finite differences regularized at the origin : 

1 
1>, 

where 

D, = 2 

— 20r2 —fiD¡+1 +./Í+ ¡Di, (B.5) 

r2 —r2 ri '1-1 
(S>i = (DW . 

fi = 
r, - r.. A = ri+1 -ri_i , (B.6) 

and 

<t>. = (2r1>,r2),r i 

= gi+iDi+1 -giD¡. 

where 

gt = 
ri + 

(B.7) 

(B.8) 

These equations are used at all zones except the origin. The value of / at the origin is found by extrapolation from the neighboring 
two zones. 
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