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We identify and demonstrate a regime of operation in optical parametric oscillators (OPOs) in
which the formation of temporal simultons produces stable half-harmonic pulses. Simultons are
simultanous bright-dark solitons of a signal field at frequency ω and the pump field at 2ω which
form in a quadratic nonlinear medium. The formation of simultons in an OPO is evidenced by sech2

spectra with broad instantaneous bandwidths which increase with pump power, and large slope
efficiencies. In contrast to conventional synchronously pumped OPOs, operation in this regime is
achieved by using relatively large parametric gains, and a low finesse resonator detuned to a slightly
longer roundtrip time than the pump repetition period. In the experiment we achieve sub-50 fs sech2

pulses with a slope efficiency of 570%, and a conversion efficiency of 55% as a result of formation
of simultons in an OPO. We verify the distinct features of OPO operation in the simulton regime
analytically and numerically. These results represent a fundamental shift in the understanding and
design of OPOs, in which the nonlinear dynamics that arise during asynchronous operation can be
used to efficiently generate few-cycle long-wavelength frequency combs.

Introduction.—The formation and propagation of sta-
ble femtosecond optical pulses in nonlinear resonators has
played a key role in the development of frequency comb
sources. Modern techniques for generating femtosecond
optical pulses use nonlinear dynamics, including the for-
mation of dissipative Kerr solitons and similaritons in
mode-locked lasers and Kerr microresonators[1–4]. These
pulse formation mechanisms occur due to an interplay be-
tween gain, loss, dispersion, and χ(3) nonlinearities, and
have been successfully used to generate few-cycle pulses
and phase-stabilized frequency combs in the range from
400 nm-3.5 µm[4–7]. While considerable effort is being
invested to extend frequency combs to other wavelength
ranges[8], such operation requires overcoming the chal-
lenges associated with developing either new broadband
laser gain media or high finesse resonators.

Optical parametric oscillators (OPOs) based on the
χ(2) nonlinearity offer a compelling source of frequency
combs across infrared wavelengths. The broad band-
width tunable gain available from optical parametric am-
plification (OPA) can generate wavelengths where broad-
band laser gain media are not readily available, and
the large parametric gains available in χ(2) systems al-
low for oscillation to occur without high finesse cavi-
ties. While pulse formation mechanisms are well studied
in continuous-wave-pumped degenerate OPOs[9–12], in
which a χ(2) resonator pumped at 2ω generates a reso-
nant half-harmonic at ω, to date these systems have not
yet achieved mode-locked femtosecond pulses by using
such dynamics[13, 14]. Synchronously pumped degener-
ate OPOs have been used successfully to generate half-
harmonic combs, but their pulse formation mechanisms
are less understood. Key results include the demonstra-
tion of instantaneous octave-spanning-spectra[15], few-
cycle pulses[16], intrinsic phase and frequency locking[17]
which translates the coherence properties of the pump

source onto the half-harmonic signal, and conversion ef-
ficiencies as high as 65%[18]. Recent work suggests a
number of competing pulse formation mechanisms exist
in such OPOs[19].

In this letter we identify a regime of operation in a
near-synchronously pumped degenerate OPO in which
stable half-harmonic pulses are formed by temporal si-
multons. This letter will proceed in three parts. (i) We
develop a reduced model of simulton formation, and ex-
plain the characteristics of simultons in the context of
OPO operation. (ii) We present experimental results,
and identify signatures of simulton formation. (iii) Nu-
merical simulations are used to better understand the
underlying dynamics and are shown to capture the be-
havior exhibited by the OPO. Based on this agreement,
we are able to connect the proposed intracavity simulton
dynamics to the observed behavior of the OPO.

Theory.— Temporal simultons are simultaneous
bright-dark solitons of the signal at ω and the pump at
2ω, which occur in a degenerate OPA due to group veloc-
ity mismatch and gain saturation[20, 21]. The coupled
wave equations are

∂zAω(z, t) = κA2ωA
∗
ω, (1a)

∂zA2ω(z, t) = −∆β′∂tA2ω − κA2
ω, (1b)

where we have shifted the time coordinate to be co-
moving with the group velocity of the signal wave, and
include a π/2 phase in the pump envelope to make the
equations of motion and their solutions real, assuming
perfect phasematching for OPA. Aω is the field enve-
lope, normalized such that |Aω|2 is the instantaneous
power of the ω wave, κ is the nonlinear coupling, and
∆β′ = v−1

g,2ω − v−1
g,ω is the group velocity mismatch. The
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FIG. 1: (a) Field envelopes of a simulton, showing the sech-
pulse signal (blue) and tanh pump (orange). (b) Evolution
of pump and signal fields from a linear OPA into a simul-
ton. Dotted line - the evolution of the signal field undergoing
linear temporal walkoff. (c) Schematic of the synchronously
pumped OPO cavity. Cavity length adjustments are made by
mounting M1 on a piezo stage. (d-e) Motion of intracavity
signal relative to a perfectly synchronous half-harmonic pulse
undergoing linear propagation (dotted lines) (d) After M1 the
signal acquires a small delay, ∆TRT, relative to the incoupled
pump due to the timing mismatch. (e) After optical paramet-
ric amplification the signal acquires a nonlinear group delay
shift ∆T due to simulton formation, which compensates the
timing mismatch ∆TRT.

simulton solution is given by [20]

Aω(z, t) =
a√
2τ

sech

(
t− T
τ

)
, (2a)

A2ω(z, t) = −E2ω tanh

(
t− T
τ

)
, (2b)

where a2 = 2γ(∆β′ + γτ)/κ2 is the signal pulse energy,
γ = κE2ω is the small-signal gain coefficient, τ is the
pulse width, and T = −γτz represents a shift in the
signal pulse relative to linear propagation due to gain
saturation. Simultons occur when the leading edge of
a bright sech2 signal pulse depletes a quasi-continuous
wave pump, and the trailing edge converts back to the
pump frequency through second harmonic generation
(SHG) with a π phase relative to the undepleted pump
(Fig.1(a)). The pump forms a tanh2 dark soliton coupled
to the bright sech2 signal pulse, and the pair co-propagate
with an intensity dependant velocity which exceeds that
of either wave, v−1

g,sim = v−1
g,ω − γτ .

We generalize this solution to include gain and loss
using the manifold projection method described in [19],
and obtain the evolution of the parameters a, τ , and T of
the sech-like signal pulse from Eq. 2a. When ∆β′z � τ

and ∆β′ � γτ , a(z), T (z), and τ(z) evolve as

∂za = γa

[
1− a2

a2
sim

]
, (3a)

∂zT = −γτ a2

a2
sim

, (3b)

∂zτ = 0. (3c)

Here a2
sim = 2∆β′γ/κ2 is the simulton energy, and we

have approximated the pump as a flat-top pulse, E2ω =
max(A2ω(0, t)). Eqs. (3a-3c) can be understood in two
limits. When a � asim we recover the evolution of a
degenerate OPA with an undepleted pump. The signal is
amplified as a(z) = a(0)eγz, and propagates with a linear
group velocity, i.e. ∂zT = 0. When a = asim we recover
the simulton solution (Eqs. 2a-2b) with ∆β′ � γτ . In
the limit of the approximations made here, the simulton
solution is a stable attractor. If a sech signal pulse is
seeded into a degenerate OPA such that a > asim, it
will transfer energy to the pump through SHG until a
simulton is formed. Eqs. (3a-3b) can be solved for the
full evolution of a dissipative simulton, resulting in:

a(z) =
a(0)eγz√

1 + a2(0)
a2sim

(e2γz − 1)
, (4a)

∆T (z) = τ ln

(
a(0)eγz

a(z)

)
. (4b)

∆T (z) = T (z) − T (0) is the shift in group delay accu-
mulated due to nonlinear acceleration in a single pass
through the OPA crystal. A schematic of simulton for-
mation is illustrated in Fig.1(b), showing the evolution
of the pump and signal from an undepleted OPA into a
simulton. The signal is seen to undergo linear temporal
walkoff due to group velocity mismatch and extract gain
until the pump is depleted. Once depleted, the pump
forms a co-propagating dark soliton, and the pair accel-
erate to the simulton velocity.

Fig.1(c-e) show the dynamics of a simulton OPO. On
each round trip, a new pump pulse enters the cavity
through the input coupler, M1 (Fig.1(c)), and the signal
accumulates a small group delay ∆TRT, hereafter referred
to as the timing mismatch, due to an offset between the
pump repetition period and the cold-cavity round trip
time (Fig.1(d)). After passing through the OPA crystal,
labelled PPLN, the signal is amplified, and accumulates a
simulton group advance ∆T (Fig.1(e)). The signal is par-
tially out-coupled through M4, with a fraction R of the
power returning to M1. Simulton formation in an OPO
is a double balance of energy and timing in which the
gain extracted over an OPA crystal of length L balances
the cavity loss, a2(0) = Ra2(L), and the simulton accel-
eration balances the timing mismatch, ∆T (L) = ∆TRT .
When the timing condition is satisfied, the signal be-
comes synchronous with the pump and forms a half-
harmonic pulse which inherits both it’s carrier-envelope
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offset frequency and comb spacing from the pump. The
equations for steady state, with Eqs. (4a-4b) determine
the simulton pulsewidth:

τ =
2∆TRT

2γL+ ln(R)
. (5a)

The pulsewidth of a simulton OPO is seen to shrink
with increasing pump power, in contrast to the conven-
tional τ ∝

√
P “box-pulse” scaling developed in [19]. For

positive detunings (∆TRT > 0), the simulton group ad-
vance allows for the formation of half-harmonic pulses
which are synchronous with the pump at multiple cav-
ity lengths. Negatively detuned (∆TRT < 0) simultons
cannot form when ∆β′ > 0 since pump depletion only
provides a group advance for the signal pulse. Instead,
the OPO operates in a non-degenerate regime analyzed
in [19]. The timing mismatch is thus a critical design
parameter which determines both the mode of operation
and the bandwidth of the OPO.

Experimental Results.—We study the behavior of an
OPO as the timing mismatch is varied around perfect
synchronization with the pump. The OPO cavity con-
sists of a the same bowtie resonator as [18] with a tunable
round-trip delay of ∼4 ns (Fig.1(c)), a large output cou-
pling of (1−R) = 65% for the signal, and a 1/e2 beam ra-
dius of 10 µm for the pump. OPA occurs in a 1-mm-long
Brewster-cut MgO-doped periodically poled lithium nio-
bate (PPLN) crystal placed at the focus between M2 and
M3. The PPLN crystal has a poling period of 31.8 µm
to phasematch degenerate OPA of a signal at 2090 nm,
and is pumped by 70 fs pulses at 250 MHz produced by
1045-nm mode-locked Yb-fiber laser (Menlo Systems Or-
ange A) with an average power of up to 950 mW. The
OPO oscillates around cavity lengths where the signal ac-
quires a phase shift of 0 or π relative to the pump on each
round trip, leading to a discrete set of resonances whose
behavior depends strongly on the timing mismatch.

We first consider the resonance at which the OPO cav-
ity is most nearly synchronized to the pump repetition
rate, labelled Peak 0 in Fig.2(a). The synchronous peak
has the lowest threshold, 175 mW, a slope efficiency of
158%, and a peak conversion efficiency of 46%. More-
over, it exhibits a sech2 spectrum, which loses bandwidth
with increasing power (Fig.2(b-c)), in accordance with
the conventional box-pulse scaling[19]. As the cavity is
positively detuned (∆TRT > 0), two more resonances
are found, labelled Peak 1 and 2 in Fig.2(a). These
“long cavity” resonances have irregularly spaced thresh-
olds as ∆TRT becomes increasingly positive, and have
measured slope efficiencies as high as 570%, with peak
efficiencies of 55%. Peaks 1 and 2 exhibit sech2 spectra
which monotonically increase in bandwidth as the pump
power is increased (Fig.2(b,d)) in accordance with the
simulton scaling, Eq. 5a. The spectra deviate from the
exponential tails of a sech2 spectrum beyond ±10 THz
due to atmospheric absorption around 1850 nm. Peak

FIG. 2: (a) Measured conversion efficiency for each reso-
nance, with the resonances enumerated relative to perfect syn-
chronization. Positive “peak” numbers correspond to a long
cavity. Solid lines represent numerical simulations of peak 0,
1, and 2, and empty circles denote nondegenerate operation.
(b) The scaling with pump power of the transform limited
pulsewidth (3 dB) for peaks 0-2. For large powers, peak 0
shows an increase in pulsewidth in accordance with [19], while
peaks 1 and 2 show a monotonic decrease in pulsewidth which
agrees well with Eq. 5a. (c-d) (Color lines) Spectra recorded
as a function of pump power for peak 0 and 1 respectively.
Each curve is labelled with the corresponding pump power
used in the experiment. (Black lines) Sech2 fits to the exper-
imental spectra. (e) Measured signal spectrum as a function
of timing mismatch for a 550 mW pump, with the associated
peak numbers. (f) Simulated signal spectrum in dB relative
to the maximum value, as a function of timing mismatch, with
the three regimes we have identified indicated.

1 achieves a 3dB bandwidth as high as 240 nm, which
can support pulses as short as 19 fs. When the cavity is
negatively detuned (∆TRT < 0) the OPO transitions to
non-degenerate operation and the spectra split into a dis-
tiguishable signal and idler (Fig.2(e)). The peaks in the
non-degenerate regime exhibit thresholds which increase
uniformly as ∆TRT becomes increasingly negative, slope
efficiencies less than 40%, and conversion efficiencies less
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than 40% (Fig.2(a)). We therefore identify three regimes
of operation associated with the timing mismatch: syn-
chronous (∆TRT = 0), non-degenerate (∆TRT < 0), and
simulton (∆TRT > 0).
Simulation.— To better understand the dynamics

which determine the three regimes of operation observed
in the experiment and verify that the positively detuned
resonances correspond to simulton operation, we study
the OPO using numerical methods. The OPO is modeled
as an OPA followed by a linear feedback loop. On each
round trip, we solve Eqs. (1a-1b) using split-step Fourier
methods including all dispersion orders. We model the
feedback loop as a linear filter for the signal:

A(n+1)
ω (0, t) = F−1{

√
R(Ω)e−iφ(Ω)F{A(n)

ω (L, t)}}.

The phase φ(Ω) is measured relative to a half-harmonic
signal which is perfectly synchronous with the pump

φ(Ω) = φ0 + πl + ∆TRTΩ + ∆φ(Ω),

where φ0 represents an offset between the cavity res-
onances and the cavity length which synchronizes the
pump and signal, ∆φ(Ω) represents the quadratic and
higher order dispersion of the cavity mirrors, and l =
c∆TRT/λ2ω parameterizes the peak number as the cav-
ity length is varied from perfect synchronization, with
resonances centered on cavity lengths such that l ∈ Z.

The solid lines in Fig.2(a) show the simulated conver-
sion efficiency of the resonances in the synchronous and
simulton regimes, and are shown to be in good agreement
with the experimental thresholds and slope efficiencies.
Deviations which occur at higher powers are likely due
to radial variations in pump depletion not included in the
simulaton. A simulation of the spectrum as a function of
timing mismatch with parameters corresponding to the
experiment is shown in Fig. 2(f), with the three regimes
of operation indicated by the dashed boxes. The sim-
ulations show excellent agreement with the experimen-
tal data (Fig. 2(e)) in all three operating regimes. In
the case of ∆TRT > 0, stable femtosecond half-harmonic
pulses are generated through the formation of simultons.

Having shown agreement between the numerical model
and experiment, we now use the model to better un-
derstand the femtosecond pulse formation dynamics in
the OPO. The evolution of the signal pulse is shown
in Fig.3(a-c) for each of the three regimes of operation.
Each round trip is recorded at the output of the OPA and
normalized to its peak amplitude to visualize the pulse
motion. The dashed white lines show the expected trajec-
tory of a linearly propagating half-harmonic signal pulse,
which acquires a delay ∆TRT on every round trip. In
these figures, the time coordinates have been shifted such
that a signal peaked at t = 0 corresponds to a pulse walk-
ing symmetrically from the tail of the pump at ∆β′L/2
to the leading edge of the pump −∆β′L/2. For a nega-
tively detuned peak (Fig.2(a)), the pulse envelope shows

FIG. 3: (a) Simulated evolution of the intracavity pulse
intensity over many round trips for ∆TRT =-3.5 fs showing
the interference of a distinct signal and idler. The dotted line
denotes the trajectory of linearly propagating half-harmonic
signal pulse. (b) Pulse evolution for ∆TRT = 0 fs showing the
formation of a half-harmonic pulse synchronized to the pump
repetiton rate. (c) Simulated pulse evolution for ∆TRT =7 fs
showing the formation of a half-harmonic pulse which, upon
depleting the pump, is able to accelerate forward in time and
synchronize to the pump repetition rate.

a 10 THz modulation in time (vertical fringes), resulting
from interference of a signal and idler split from degen-
eracy by ±10 THz. The interference fringes are seen to
shift on each round trip, corresponding to a ±10 MHz
offset of the signal and idler carrier-envelope-offset fre-
quency fceo from that of a half-harmonic signal (hori-
zontal fringes). When the cavity length is tuned into
synchronization (Fig.2(b)), the signal builds up without
any motion relative to the pump until the pump sat-
urates, shifting the signal forward in time until a new
steady state is found on the leading edge of the pump.
The evolution for a positively detuned cavity is shown
in Fig.2(c). The signal initially tracks the trajectory of
a linearly propagating pulse, shifting towards the tail of
the pump. Once the signal is intense enough to deplete
the pump, it accelerates, becoming faster than would be
possible under linear propagation, and thereby reaches a
steady state, synchronous with the pump repetition rate.

The surprising behavior exhibited by the long cavity
resonances, namely a nonlinear acceleration of the signal
pulses, verifies that the OPO dynamics in this regime
correspond to simulton formation. Furthermore, the full
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numerical model facilitates an intuitive picture of the be-
havior of the simulton peaks. The large thresholds and
slope efficiencies of the simulton peaks are due to the
pulsewidth of the pump. When a� asim the signal pulse
will accumulate many successive group delays due to the
timing mismatch, and experience a decrease in gain due
to a reduction in the temporal overlap with the pump.
Since simulton operation requires the signal to be bright
enough to deplete the pump, threshold then corresponds
to the condition that the signal builds up from quantum
noise to the simulton energy before the gain seen by the
signal pulse becomes less than the cavity loss. Once this
condition is satisfied, the signal accelerates back into the
pump and depletes it, leading to large slope efficiencies.

Conclusion.—We have demonstrated the formation of
simultons in a near-synchronously pumped OPO when
the round trip delay of the cavity is longer than the repe-
tition period of the pump. Simultons are observed to gen-
erate stable phase-locked sech2 pulses with large instanta-
neous bandwidths, suggesting them as a promising source
of mode-locked femtosecond pulses and frequency combs
at previously inaccessible wavelengths. The scaling of
pulsewidth with pump power in Eq. 5a suggests that si-
multons might be used to realize single-cycle pulses, and
the numerical methods detailed above confirm that in
principle sub 2-cycle pulses are possible with conversion
efficiencies > 80%. Design rules for the cavity dispersion
and finesse based on the reduced model discussed here
will be the subject of future publications.
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