Search for the $X(5568)$ state decaying into $B_{s}^{0}\pi^{\pm}$ in proton-proton collisions at $\sqrt{s} = 8$ TeV

— Supplemental Material —

The CMS Collaboration
CERN
(Dated: February 19, 2018)

EFFECT OF $\Delta R(B_{s}^{0},\pi^{\pm})$ REQUIREMENT ON THE $M^{\Delta}(B_{s}^{0}\pi^{\pm})$ DISTRIBUTION

The D0 Collaboration obtains a significance above five standard deviations for the $X(5568)$ state only when an upper limit on $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ is imposed, namely, $\Delta R < 0.3$. Here, $\Delta \eta$ and $\Delta \phi$ are the pseudorapidity and azimuthal angle (in radians) differences between the directions of the B_{s}^{0} and π^{\pm}. As shown in Fig. 1, a requirement on this variable significantly changes the $M^{\Delta}(B_{s}^{0}\pi^{\pm})$ distribution and can even produce a peaking shape; therefore, it is not used in this analysis.

FIG. 1. The $M^{\Delta}(B_{s}^{0}\pi^{\pm})$ distributions for events in the B_{s}^{0} (a) signal and (b) sideband regions for different ΔR requirements. The uncertainties are not shown for the sake of clarity. The vertical band indicates the region $m_{X} \pm \Gamma_{X}$.