Supporting Information for

“Toward a global horizontal and vertical elastic load deformation model derived from GRACE and GNSS site position time series”

Kristel Chanard¹, Luce Fleitout ², Eric Calais², Paul Rebischung¹ and Jean-Philippe Avouac³

¹LASTIG LAREG, IGN, ENSG, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
²Laboratoire de Géologie, CNRS UMR 8538, École normale Supérieure, Paris, France
³Division of Earth and Planetary Sciences, California Institute of Technology, Pasadena, USA

Contents

1. Figures S1 to S7

Figure 1. Peak-to-peak annual amplitude of monthly mean of the GAA gravity fields products, including the contribution of atmospheric surface pressure over the continents, the static contribution of atmospheric pressure to ocean bottom pressure elsewhere and the much weaker contribution of upper-air density anomalies above both continents and oceans.

Corresponding author: Kristel Chanard, kristel.chanard@ign.fr
Figure 2. Peak-to-peak annual amplitude of the ‘ocn’ component coefficients, provided as GAB gravity fields products, including the contribution of the dynamic ocean to ocean bottom pressure, and with no static contribution of the atmosphere to ocean bottom pressure.
Figure 3. Peak-to-peak surface load variations, expressed in equivalent water height (in mm), derived from GRACE for the 2002-2012 period and corrected from detectable earthquakes co- and post-seismic contributions. Red dots show location of the continuous GPS stations used in this study. Time series show equivalent water height (in mm) from the solutions of four different processing centers (Jet Propulsion Laboratory (JPL), the GeoForschungsZentrum (GFZ), the Center for Space Research at University of Texas (CSR), and Groupe de Recherche de Geodesie Spatiale at the Centre National d’Etudes Spatiales (CNES/GRGS)) at four chosen location in France, Brazil, Bangladesh and Congo.
Figure 4. Amplitude of the M9.1 December 2004 Sumatra-Andaman earthquake coseismic contribution to the gravity field expressed in mm of equivalent water height (between 24-12-2004 and 03-01-2005).
Figure 5. Formal error of the amplitude of an annual signal estimated simultaneously with draconitic signals up to the 6th harmonic for all 1220 available IGS sites part of repro2 campaign component East (a), North (b) and Vertical (c) as a function of the length of GNSS time series (number of observation days). Black solid lines show the threshold on formal error used to select sites (red dots) or discard them (blue dots). Selection criterion is correlated with the length of time series, with selected time series including at least 1000 observation days.
Figure 6. Map of the 1220 International GNSS Service (IGS) sites part of the second reprocessing campaign (repro2) used (689) and discarded (531) from our study based on the formal error of the amplitude of an annual signal estimated simultaneously with draconitic signals up to the 6th harmonic. Selected stations are those with formal errors less than 0.1 mm and 0.3 mm in the horizontal and vertical components respectively.
Figure 7. Number of GNSS stations used for the estimation of translations and rotation parameters.
Figure 8. Geocenter motion derived from our study (red) and annual fit with associated amplitude and phase estimates.
Figure 9. Geocenter motion derived from our study (red) inverted using a diagonal covariance matrix, compared with the degree-1 approach using a diagonal matrix (black) and the degree-1 approach using a full covariance matrix (blue).
a) EAST ANNUAL SIGNAL

b) EAST ANNUAL SIGNAL - NO DRACONITIC
Figure 10. Annual signals fitted to GNSS station position time series (black arrows), initial GRACE-derived displacements (with degree-1 from Swenson et al. [2008]; blue arrows) and adjusted GRACE-derived displacements (red arrows). The East, North and vertical components are presented in three different panels, with (a,c,e) corresponding to the case where no draconitic errors have been estimated and removed, and (b,d,f) corresponding to the case where draconitic errors have been estimated and removed from the GNSS station position time series. The angle of the arrows with respect to the North direction corresponds to the phase of the annual signal.
Figure 11. Annual amplitude of a) East, b) North and c) Vertical degree-1 estimated from the GNSS deformation field.
References
