CaltechAUTHORS
  A Caltech Library Service

Constraints on Cosmological Parameters from the Angular Power Spectrum of a Combined 2500 deg^2 SPT-SZ and Planck Gravitational Lensing Map

Simard, G. and Crites, A. T. (2018) Constraints on Cosmological Parameters from the Angular Power Spectrum of a Combined 2500 deg^2 SPT-SZ and Planck Gravitational Lensing Map. Astrophysical Journal, 860 (2). Art. No. 137. ISSN 1538-4357. http://resolver.caltech.edu/CaltechAUTHORS:20180620-133335250

[img] PDF - Published Version
See Usage Policy.

935Kb
[img] PDF - Submitted Version
See Usage Policy.

1173Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20180620-133335250

Abstract

We report constraints on cosmological parameters from the angular power spectrum of a cosmic microwave background (CMB) gravitational lensing potential map created using temperature data from 2500 deg2 of South Pole Telescope (SPT) data supplemented with data from Planck in the same sky region, with the statistical power in the combined map primarily from the SPT data. We fit the lensing power spectrum to a model including cold dark matter and a cosmological constant (ΛCDM), and to models with single-parameter extensions to ΛCDM. We find constraints that are comparable to and consistent with those found using the full-sky Planck CMB lensing data, e.g., σ_8 Ω^(0.25)_m = 0.598 ± 0.024 from the lensing data alone with weak priors placed on other parameters. Combining with primary CMB data, we explore single-parameter extensions to ΛCDM. We find Ω_k = -0.012^(+0.021)_(-0.023) or M_ν < 0.70 eV at 95% confidence, in good agreement with results including the lensing potential as measured by Planck. We include two parameters that scale the effect of lensing on the CMB: A_L, which scales the lensing power spectrum in both the lens reconstruction power and in the smearing of the acoustic peaks, and A^(øø), which scales only the amplitude of the lensing reconstruction power spectrum. We find A^(øø) x A_L = 1.01 ± 0.08 for the lensing map made from combined SPT and Planck data, indicating that the amount of lensing is in excellent agreement with expectations from the observed CMB angular power spectrum when not including the information from smearing of the acoustic peaks.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.3847/1538-4357/aac264DOIArticle
https://arxiv.org/abs/1712.07541arXivDiscussion Paper
ORCID:
AuthorORCID
Simard, G.0000-0001-5800-3990
Additional Information:© 2018 The American Astronomical Society. Received 2017 December 28; revised 2018 April 19; accepted 2018 May 1; published 2018 June 20. G.S. wishes to thank Elisa GM Ferreira, Joachim Harnois-Déraps and Alexander van Engelen for useful discussions and Jack Holder for digitization of the foreground model. We acknowledge the use of Alexander van Engelen's implementation of the analytical N^((1))_L bias in the flat-sky approximation. The South Pole Telescope program is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation through Grant GBMF#947 to the University of Chicago. This work has made use of computations performed on Guillimin, managed by Calcul Quebec and Compute Canada (funded by CFI, MESI, and FRQNT), and the Blue Waters sustained-petascale computing project (supported by NSF awards OCI-0725070 and ACI-1238993 and the state of Illinois). The McGill authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, and Canada Research Chairs program. G.S. acknowledges support from the Fonds de recherche du Québec—Nature et technologies. B.B. has been supported by the Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. C.R. acknowledges support from Australian Research Councils Discovery Projects scheme (DP150103208). Work at Argonne National Laboratory was supported under U.S. Department of Energy contract DE-AC02-06CH11357.
Funders:
Funding AgencyGrant Number
NSFPLR-1248097
NSFPHY-0114422
Kavli FoundationUNSPECIFIED
Gordon and Betty Moore FoundationGBMF947
Canada Foundation for InnovationUNSPECIFIED
Ministère de l'Économie, de la Science et de l'InnovationUNSPECIFIED
Fonds de recherche du Québec - Nature et technologies (FRQNT)UNSPECIFIED
NSFOCI-0725070
NSFACI-1238993
State of IllinoisUNSPECIFIED
Natural Sciences and Engineering Research Council of Canada (NSERC)UNSPECIFIED
Canadian Institute for Advanced Research (CIFAR)UNSPECIFIED
Canada Research Chairs ProgramUNSPECIFIED
Department of Energy (DOE)DE-AC02-07CH11359
Australian Research CouncilDP150103208
Department of Energy (DOE)DE-AC02-06CH11357
Subject Keywords:cosmic background radiation – cosmological parameters – gravitational lensing: weak
Record Number:CaltechAUTHORS:20180620-133335250
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20180620-133335250
Official Citation:G. Simard et al 2018 ApJ 860 137
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:87268
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:20 Jun 2018 20:57
Last Modified:20 Jun 2018 20:57

Repository Staff Only: item control page