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Abstract

The ability to introduce different biophysical probes into defined positions in target proteins will 

provide powerful approaches for interrogating protein structure, function and dynamics. However, 

methods for site-specifically incorporating multiple distinct unnatural amino acids are hampered 

by their low efficiency. Here we provide a general solution to this challenge by developing an 

optimized orthogonal translation system that uses amber and evolved quadruplet-decoding transfer 

RNAs to encode numerous pairs of distinct unnatural amino acids into a single protein expressed 

in Escherichia coli with a substantial increase in efficiency over previous methods. We also 

provide a general strategy for labelling pairs of encoded unnatural amino acids with different 

probes via rapid and spontaneous reactions under physiological conditions. We demonstrate the 

utility of our approach by genetically directing the labelling of several pairs of sites in calmodulin 

with fluorophores and probing protein structure and dynamics by Förster resonance energy 

transfer.

Introduction

Genetically programming the efficient site-specific incorporation of multiple unnatural 

amino acids into proteins will facilitate a range of applications from Förster resonance 

energy transfer (FRET) studies1, 2 on protein conformational change and dynamics, to 

protein stapling3, 4 for improving therapeutic proteins, and ultimately, to the encoded 

cellular synthesis and evolution of unnatural polymers5.

Encoding multiple distinct unnatural amino acids in cells requires (1) mutually orthogonal 

aminoacyl-transfer RNA (tRNA) synthetase/tRNA pairs that recognize distinct amino acids 

and (2) blank codons that can be assigned to new amino acids6-8. We previously 

*Correspondence: chin@mrc-lmb.cam.ac.uk.
Author contributions: JWC and KW conceived the project. JWC, KW and AS planned and designed experiments and wrote the 
manuscript, with input from other authors. RAM provided MjTetPheRS and compound 5 for pilot experiments. All other authors 
performed experiments or provided reagents.

Europe PMC Funders Group
Author Manuscript
Nat Chem. Author manuscript; available in PMC 2015 May 14.

Published in final edited form as:
Nat Chem. 2014 May ; 6(5): 393–403. doi:10.1038/nchem.1919.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



demonstrated that the Methanococcus janaschii tyrosyl-tRNA synthetase (MjTyrRS)/

MjtRNA pair and its active site variants, and the pyrrolysyl-tRNA synthetase (PylRS)/tRNA 

pair from certain Methanosarcina species and their active site variants are mutually 

orthogonal in their aminoacylation specificity9 We created orthogonal ribosome-mRNA 

pairs in which the orthogonal ribosome is specifically directed to an orthogonal message10. 

These ribosomes, unlike natural ribosomes, are not responsible for the synthesis of the 

proteome, and can be altered to perform new functions9, 11, 12. We evolved an orthogonal 

ribosome (ribo-Q1)9 to decode quadruplet codons 13, 14 and amber codons, which are 

inefficiently decoded by natural ribosomes to provide a series of blank codons that can be 

used on orthogonal messages. By combining ribo-Q1 with an orthogonal message 

containing a quadruplet and amber codon, and AzPheRS*/tRNAUCCU (a derivative of 

MjTyrRS/tRNA) and PylRS/tRNACUA we were able to direct the incorporation of p-

azidophenylalanine (4) and N6-[(2-propynyloxy)carbonyl]-L-lysine (2), and program the 

formation of a triazole crosslink9. Although ribo-Q1 provided a large increase in quadruplet-

decoding efficiency, this increase was not exploited fully in the original system, in part 

because the MjAzPheRS*/tRNAUCCU pair has suboptimal efficiency and specificity in 

directing the incorporation of 4. Subsequent efforts to encode two distinct unnatural amino 

acids have used multiple stop codons to direct the incorporation of unnatural amino 

acids15-17. However, the efficiency of incorporation of amino acids in response to stop 

codons in natural translation is limited by competition with release factors11.

Here we evolve a series of Pyl tRNAs that provide optimal decoding of cognate quadruplet 

codons on ribo-Q1. We optimized orthogonal translation using the new tRNAs to provide a 

large increase in the efficiency of incorporating two distinct unnatural amino acids into a 

single polypeptide. We demonstrate the generality of our approach by encoding a matrix of 

unnatural amino acid pairs in proteins. Moreover, we demonstrate the first general route to 

the rapid and spontaneous labelling of proteins at genetically defined positions with two 

distinct probes under physiological conditions, and we demonstrate the utility of this 

approach for following conformational change in calmodulin (CaM) by FRET.

Results

Selection of quadruplet-decoding Pyl tRNA variants

PylRS, unlike MjTyrRS and its derivatives, does not recognize the anticodon stem loop of 

its cognate tRNA, Pyl tRNACUA
18, 19. This may allow the anticodon stem loop of Pyl tRNA 

to be optimized for ribosomal decoding on ribo-Q1 without interfering with its 

aminoacylation by PylRS. We set out to select Pyl tRNA variants that are efficiently 

decoded on ribo-Q1. Previous work explored the selection of non-orthogonal tRNAs for 

decoding quadruplet codons on the natural ribosome20, and recently the selection of a tRNA, 

derived from Pyl tRNA, that decodes the AGGA codon on the natural ribosome has been 

reported21. We were interested in discovering (1) a number of extended anticodon/

quadruplet codon pairs that are efficiently decoded on ribo-Q1 and (2) Pyl tRNA variants 

that are efficiently and specifically decoded on ribo-Q1.

We chose four quadruplet codons (AGGA, AGTA, TAGA and CTAG) as potential targets 

for decoding by evolved Pyl tRNAXXXX variants (in which the anticodon XXXX is 
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complementary to a specific codon) on ribo-Q1. AGGA was chosen because it has 

previously been used for unnatural amino acid incorporation9. The other codons were 

chosen because the two overlapping triplets embedded within the corresponding quadruplet 

anticodon are not recognition elements for natural synthetases in the cell (Supplementary 

Fig. S1), and we hypothesized that this would facilitate the selection of Pyl tRNA variants 

that are not mis-aminoacylated by endogenous synthetases.

To select for Pyl tRNA variants that are able to efficiently decode the selected quadruplet 

codons on ribo-Q1 we first created saturation mutagenesis libraries, Pyl tRNA(N8)XXXX, in 

which the sequence of eight nucleotides in the anticodon stem loop was varied to all possible 

combinations (Fig. 1a and 1b). Nucleotides 30-33 and 37-40 were randomized for 

tRNA(N8)UCUA and 29-32 and 38-41 were randomized for Pyl tRNA(N8)UCCU, Pyl 

tRNA(N8)UACU, and Pyl tRNA(N8)CUAG (Fig. 1b). Each library contained at least 108 

members, ensuring greater than 99.9% coverage.

We performed a two-step selection (Fig. 1c) to discover the desired tRNAs: a negative 

selection to remove Pyl tRNA(N8)XXXX library members that are substrates for endogenous 

synthetases (because all aminoacyl-tRNA synthetases, except for AlaRS, LeuRS and SerRS, 

recognize the anticodon stem loop of their cognate tRNA in E. coli22), and a positive 

selection to select for library members that are aminoacylated with an unnatural amino acid 

by PylRS and efficiently decoded on ribo-Q1 in response to a cognate quadruplet codon in 

the orthogonal mRNA.

To remove Pyl tRNA(N8)XXXX library members that are both substrates for endogenous 

synthetase and decoded on ribo-Q1 we created four negative selection reporter constructs 

(O-barnase3XXXX+45XXXX), each of which contain a barnase gene that is specifically 

translated by ribo-Q1 (Fig. 1c). Each of the four barnase genes contains two in-frame 

quadruplet codons (XXXX), where XXXX is the Watson-Crick complementary sequence to 

the specific anticodon of a tRNA(N8)XXXX. Cells contained ribo-Q1, O-

barnase3XXXX+45XXXX, and PylRS/Pyl tRNA(N8)XXXX. If a Pyl tRNA(N8)XXXX library 

member is aminoacylated with a natural amino acid by an endogenous synthetase and can be 

efficiently decoded on O-barnase3XXXX+45XXXX by ribo-Q1, then full-length barnase will be 

produced, leading to cell death. Pyl tRNA(N8)XXXX library members that survive the 

selection are either not substrates for native synthetases and/or they are unable to decode 

their quadruplet codon on ribo-Q1.

To select for functional PylRS/Pyl tRNA(N8)XXXX pairs from the Pyl tRNA(N8)XXXX 

library members that survive the negative selection we created positive selection reporters 

that contains an orthogonal chloramphenicol acetyl transferase (cat) gene with an in-frame 

quadruplet codon (O-cat111XXXX)9, 20 (Fig. 1c). Cells contained ribo-Q1, O-cat111XXXX, and 

PylRS/Pyl tRNA(N8)XXXX. In the presence of 1, PylRS aminoacylated correctly 

transcribed, processed and folded Pyl tRNA(N8)XXXX library members with 1, and the 

quadruplet codon in cat is decoded by ribo-Q1. The two-step selection should lead to 

chloramphenicol resistance only if Pyl tRNA(N8)XXXX is efficiently and selectively 

aminoacylated with 1 by PylRS and is efficiently decoded in response to the cognate 

quadruplet codon by ribo-Q1. Importantly, unlike selections for quadruplet-decoding tRNAs 
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on natural ribosomes, selection of quadruplet-decoding tRNAs directly on ribo-Q1 provides 

the possibility of selecting quadruplet-decoding tRNAs that are specific for the decoding 

centre of ribo-Q1, such tRNAs would further enhance the specificity of orthogonal 

translation.

We sequenced and phenotyped clones from each selection (Supplementary Fig. S2 and S3). 

On the basis of these initial experiments, the PylRS/evolved Pyl tRNAXXXX pairs giving the 

highest level of chloramphenicol resistance in cells containing ribo-Q1, O-cat111XXXX, in 

presence of 1 and lowest chloramphenicol resistance in the absence of 1 were characterized 

further.

The evolved Pyl tRNAUCUA contains a G–U pair in place of the parental G30–C40 pair, a 

G–C pair in place of the A31–U39 pair, and an A38U mutation. Although this library 

randomised eight positions, nucleotides at three positions (C32, U33 and A37), are identical 

to those found in the parent Pyl tRNACUA (Fig. 2a). The evolved Pyl tRNAUCCU, contains a 

C29–G41 pair in place of the parental G29–C41 pair. G30C and C40A replace the parental 

G30–C40 pair, and the evolved sequence contains an A31U mutation. C32, A38 and U39 

are conserved between the parental Pyl tRNACUA and the evolved Pyl tRNAUCCU, these 

mutations are predicted to expand the anticodon loop and shorten the anticodon stem (Fig. 

2a). In the evolved Pyl tRNAUACU, U29 and U41 replace the parental G29–C41 pair, a 

G31–C39 pair replaces the parental A31–U39 pair and A38 is mutated to U (Fig. 2a). In the 

evolved Pyl tRNACUAG, C31 and C39 replace the A31–U39 base pair. These mutations are 

predicted to expand the anticodon loop (Fig. 2a).

Enhanced unnatural amino acids incorporation at quadruplet codons

We next demonstrated the improved quadruplet decoding efficiency and specificity of the 

evolved Pyl tRNAXXXX variants, compared to the transplant Pyl tRNAXXXX, in which an 

extended quadruplet anticodon replaces CUA. Cells containing ribo-Q1, O-cat111XXXX, 

PylRS, 1, and either evolved Pyl tRNAXXXX or transplant Pyl tRNAXXXX were plated on 

increasing concentrations of chloramphenicol (Fig. 2b) to assess the quadruplet decoding 

efficiency of each tRNA.

Cells that contained the evolved Pyl tRNAUCUA were able to survive on chloramphenicol 

concentrations of up to 450 μg ml−1, which is substantially greater than the 75 μg ml−1 

survival conferred by the transplant Pyl tRNAUCUA. This indicates that the evolved Pyl 

tRNAUCUA is more efficient at decoding the quadruplet codon TAGA than the transplant 

Pyl tRNAUCUA (Fig. 2b). Experiments in which the substrate for PylRS, 1, is omitted (Fig. 

2b) demonstrate that the evolved Pyl tRNAUCUA is specifically aminoacylated by PylRS 

and not by endogenous aminoacyl-tRNA synthetases.

The transplant Pyl tRNAUCCU and evolved Pyl tRNAUCCU both conferred chloramphenicol 

resistance up to 500 μg ml−1 when cells were grown in the presence of 1. However, the 

transplant Pyl tRNAUCCU, unlike the evolved Pyl tRNAUCCU conferred significant 

chloramphenicol resistance in the absence of 1 (Fig. 2b). This indicated that although both 

the transplant Pyl tRNAUCCU and evolved Pyl tRNAUCCU can decode the AGGA codon, 
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only the evolved Pyl tRNAUCCU is specifically recognized by PylRS and not by endogenous 

synthetases.

The transplant Pyl tRNAUACU and Pyl tRNACUAG conferred minimal chloramphenicol 

resistance; in contrast the evolved Pyl tRNAUACU and Pyl tRNACUAG were able to decode 

the quadruplet codons AGTA and CTAG and confer enhanced chloramphenicol resistance. 

Experiments in which 1 is omitted (Fig. 2b) demonstrate that the evolved Pyl tRNAUACA 

and Pyl tRNACUAG are specifically aminoacylated by PylRS and not by endogenous 

aminoacyl-tRNA synthetases.

We next demonstrated that the improved quadruplet-decoding efficiency of the evolved 

PylRS/Pyl tRNAXXXX pairs on ribo-Q1 translates into an increased production of 

recombinant protein bearing an unnatural amino acid. To provide a benchmark for the 

incorporation achieved using the evolved Pyl tRNAXXXX systems, we expressed and 

purified a fusion protein of glutathione-S-transferase and calmodulin (GST-CaM) site-

specifically incorporating 4 from cells containing ribo-Q1, O-gst-cam1AGGA (a fusion gene 

between glutathione-S-transferase (gst) and cam in which the first codon of cam is replaced 

with an AGGA codon), (Supplementary Fig. S4), and MjAzPheRS*/tRNAUCCU (a 

synthetase/tRNA pair previously developed for incorporating 4 in response to AGGA 

codons)9. This led to approximately 13% full-length protein upon addition of 4, with 

approximately 7% full-length protein produced in the absence of 4 (Supplementary Fig. S4).

To compare the incorporation achieved with the evolved Pyl tRNAXXXX and the 

corresponding transplant Pyl tRNAXXXX, we expressed GST-CaM from cells containing 

ribo-Q1, O-gst-cam1XXXX (XXXX is complementary to the tRNA anticodon used), amino 

acid 1, and either transplant Pyl tRNAXXXX or evolved Pyl tRNAXXXX (Supplementary Fig. 

S4). The evolved Pyl tRNAUCUA, evolved Pyl tRNAUACU and evolved Pyl tRNACUAG 

substantially increased the efficiency of incorporation of 1 in response to TAGA, AGTA, 

CTAG codons respectively (Supplementary Fig. S4).

Both the evolved and the transplant Pyl tRNAUCCU led to comparable read-through of the 

AGGA codon in O-gst-cam1AGGA upon addition of 1 (Supplementary Fig. S4). However, 

the transplant Pyl tRNAUCCU was substantially mis-aminoacylated in the absence of 1 
(Supplementary Fig. 4). This is consistent with the phenotypic data (Fig. 2b) and may 

demonstrate the advantage of the negative selection step in selecting synthetase/tRNA pairs 

for unnatural amino acid dependent incorporation at quadruplet codons.

To demonstrate that a range of unnatural amino acids can be incorporated in response to 

quadruplet codons using the evolved tRNAs, we compared the efficiency of incorporation 

using chemically distinct unnatural amino acids (Fig. 2c and Supplementary Fig. 4). The 

efficiencies of incorporating 1, 2 and 3 in response to quadruplet codons TAGA, AGGA, 

AGTA, and CTAG using their cognate evolved Pyl tRNAXXXX ranged from approximately 

27% to 62%, and were all substantially greater than the unnatural amino acid incorporation 

efficiency using the MjAzPhe RS*/tRNAUCCU pair9 (Supplementary Fig. S4). Control 

experiments demonstrated that the unnatural amino acid incorporation efficiency was 

improved on providing multiple copies of PylRS (Supplementary Fig. S5), and was robust in 
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different strains of E. coli (data not shown). The efficiency and specificity of incorporating 1 
in response to the quadruplet codons using our evolved quadruplet-decoding systems is 

greater than the efficiency and specificity we observe when using PylRS/tRNA anticodon 

variants and wild-type ribosome to decode the ochre (UAA), opal (UGA), or AGGA 

codons15, 17,21 at the same position in GST-CaM (Supplementary Figs. S4 & S5)

Incorporating a matrix of unnatural amino acid pairs into proteins

Next, we optimized the incorporation of two distinct unnatural amino acids into proteins via 

ribo-Q1. Our starting system contains four plasmids and used ribo-Q1, MjAzPheRS*/

tRNAUCCU, and PylRS/tRNACUA to read AGGA and amber codons on orthogonal 

messages (Fig. 3a and Supplementary Figs. S6 & S7).

To improve the system, we first created a three-plasmid system using the same elements 

(Fig. 3b, c and Supplementary Fig S6, & S7). This increased the fraction of full-length 

protein produced, but also resulted in a high level of unnatural amino acid independent read-

through of the AGGA codon. To increase the fidelity and efficiency of the system for 

incorporating two distinct unnatural amino acids we used the evolved Pyl tRNAUACU, 

developed in this work, in combination with MjAzPheRS/tRNACUA
23. This led to a further 

substantial increase in the efficiency and specificity of the system, and double incorporation 

efficiencies in excess of 20% (Figure 3d, and Supplementary Fig. S6, & S7). The efficiency 

of double incorporation using evolved Pyl tRNAUCCU or evolved Pyl tRNACUAG was 

comparable to the efficiency in experiments using evolved Pyl tRNAUACU (Supplementary 

Fig. S7). By combining the MjAzPheRS*/tRNAUCCU pair and the PylRS/tRNAUACU pair 

with ribo-Q1, we directed the cellular incorporation of multiple distinct unnatural amino 

acids in response to multiple distinct quadruplet codons (Fig. 3e and Supplementary Fig. 

S7).

To demonstrate the generality of the approach for incorporating chemically diverse pairs of 

unnatural amino acids into proteins, we incorporated every combination of three distinct 

unnatural PylRS substrates and four distinct substrates for MjTyrRS variants (Figure 4 and 

Supplementary Fig. S8) using the orthogonal translation system described in Fig. 3d. The 

resulting matrix of 12 distinct pairs of unnatural amino acids, including unique chemical 

handles (azides23, alkenes24, alkynes25, 26, tetrazines27) and a photocrosslinker 

(benzophenone28) were efficiently and specifically incorporated into GST-CaM, with full 

length protein yields from 1.5-2 mg L−1 of culture (for comparison the yield of wild-type 

GST-CaM was approximately 4 mg L−1 of culture). There is some read-through of the 

codons used to direct unnatural amino acid incorporation in the absence of unnatural amino 

acid, as previously described9, 11. However, electrospray ionization mass spectrometry (ESI-

MS) and matrix-assisted laser desorption mass spectrometry (MALDI-MS) (Supplementary 

Fig. S8) conclusively demonstrated the genetically programmed incorporation of both added 

unnatural amino acids, without measureable mis-incorporation of natural amino acids.

We compared the efficiency of incorporating 1 and 4 in response to two stop codons on the 

natural ribosome15, 17 and to (using an MjTyrRS variant specific for 4 (ref. 23) PylRS/

tRNAUUA and PylRS/tRNAUCA to direct the incorporation of 1 in response the ochre or 

opal codon) to our system. Double incorporation in response to two stop codons was not 
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detectable in GST-CaM (Supplementary Fig. S7), consistent with the low efficiency with 

which both PylRS/tRNAUUA and PylRS/tRNAUCA decode their cognate stop codons 

(Supplementary Fig. S5). Comparison of the experiments using two stop codons with the 

experiments using our optimized system with amber and quadruplet codons decoded on the 

evolved orthogonal ribosome (Supplementary Fig. S7) reveals the advantages of the 

approach reported herein in GST-CaM.

Programming mutually orthogonal chemical handles into proteins

The ability to program multiple unnatural amino acids into proteins raises the possibility of 

programming pairs of mutually orthogonal functional groups into proteins that can be 

specifically and quantitatively labelled with a range of probes under conditions that maintain 

the native fold of proteins (physiological pH, temperature and pressure). This would 

facilitate a range of applications, including FRET to study protein structure, conformation 

and dynamics1. Efforts to double-label proteins at genetically encoded unnatural amino 

acids have relied on encoding ketones to react with alpha-effect nucleophiles, and encoding 

azides to react with strained alkynes16, 17. Unfortunately, ketone labelling is very slow (with 

rate constants (r) of approximately 10−4 M−1s−1) and commonly requires low pH, which 

makes it incompatible with the folding and stability of many proteins. Moreover genetically 

encoded azides are succeptible to in vivo reduction (Figure 4)29, which makes their 

quantitative labelling problematic.

Inverse electron-demand Diels-Alder reactions allow the spontaneous and rapid coupling of 

a number of strained alkenes or alkynes and tetrazines30, 31, and provide a promising route 

to rapid and quantitative labelling of proteins 27, 32-36. The rates of these reactions depend on 

the tetrazine substituents and the strain/sterics of the alkene or alkyne37, 38. We reasoned 

that it may be possible to tune the reactivity of tetrazines and strained alkenes in encoded 

amino acids such that they do not react with each other in the protein, but can be specifically 

and rapidly labelled with added probes.

As a model for reaction between 5 and 8, we investigated the rate of reaction between 5-

norbornene-2-ol (8a) and the t-butyloxycarbonyl (Boc) protected amino acid containing a 

tetrazine (5a) that is deactivated in inverse electron-demand Diels-Alder reactions by virtue 

of electron donation from the aniline moiety (Supplementary Fig. S9). The reaction is very 

slow, and we estimate that the rate constant for this reaction is approximately 10−5 M−1s−1 

(Supplementary Fig. S9). To demonstrate that we can genetically encode 5 and 8 in a single 

polypeptide, we grew cells containing O-gst-cam1TAG+149AGTA, ribo-Q1, MjTetPheRS (an 

MjTyrRS variant specific for 5)/tRNACUA, NorKRS (a PylRS variant39 for the 

incorporation of 8)/evolved Pyl tRNAUACU in the presence of 5 and 8. The production of 

full-length protein (CaM51-8149) was dependent on the addition of both 5 and 8 (Fig. 5a).

CaM51-8149 migrated as the linear protein in SDS-PAGE (Fig. 5a) suggesting that 5 and 8 
do not react, even when they are placed in proximity by the protein structure. The 

incorporation of 5 and 8 in the protein without cyclization was further confirmed by ESI-MS 

(Supplementary Fig. S10). These results demonstrate that 5 and 8 do not react even when 

placed at positions in a protein that facilitate the proximity-accelerated Cu (I) catalysed 

azide-alkyne cycloaddition between encoded amino acids (Fig. 5a), which is consistent with 
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the rate of reaction between 5 and 8 being orders of magnitude slower than rates reported for 

Cu(I)-catalysed azide-alkyne cycloadditions40.

To demonstrate that amino acid 5a can be conjugated efficiently to bicyclononyne probes, 

we investigated the rate of the reaction between 5a and 10a (Fig. 5b). This reaction 

proceeded with a rate constant of 0.314 ± 0.010 M−1s−1 in MeOH/H2O (55/45) at room 

temperature (Fig. 5b and Supplementary Fig. S9). Previously we have demonstrated that the 

rate constant for the reaction of 8a with the activated tetrazine 9a (Fig. 5b) is 0.94 ± 0.008 

M−1s−1 in MeOH/H2O (5/95) at room temperature (for comparison this rate constant is 0.47 

± 0.070 M−1s−1 in MeOH/H2O (55/45))33. These experiments demonstrate that the tetrazine 

and norbornene functionalities embedded in 5 and 8 can be labelled with strained alkynes 

and appropriately activated tetrazines, respectively.

We next synthesized BODIPY-TMR-X bicyclononyne conjugate 10 and demonstrated that 

it can be used to label 5- bearing CaM. The on-protein rate constant for this reaction is 1.00 

± 0.13 M−1s−1. ESI-MS demonstrates the quantitative single labelling of the protein (Fig. 

5c). Similarly, we synthesized BODIPY-FL tetrazine conjugate 9 and demonstrated that it 

can be used to rapidly label 8- bearing CaM. The on-protein rate constant for this reaction is 

1.22 ± 0.28 M−1s−1. ESI-MS demonstrated the quantitative single labelling of the protein 

(Fig. 5d). Control experiments demonstrate that bearing 8-CaM is not labelled with 10, and 

bearing 5-CaM is not labelled with 9. These experiments demonstrate that the rate constants 

measured for small-molecule labelling translate into efficient protein labelling and that the 

labelling reagents are specific for their targeted unnatural amino acid in proteins. The rate 

constants for the reaction between 5 and 10, and between 8 and 9 are two to four orders of 

magnitude faster than ketone labelling reactions, label metabolically stable unnatural amino 

acids at physiological pH, do not use transition-metal catalysis, and generate nitrogen gas as 

the only by-product, making them compatible with most proteins.

Site-specific dual labelling of proteins under physiological conditions

FRET probes have been introduced via in vitro translation2, which allows access to small 

amounts of protein labelled with particular fluorophores. Native chemical ligation has been 

used to introduce FRET probes into proteins 41, and this has been combined with unnatural 

amino acid mutagenesis to introduce a limited range of short-wavelength probes42. These 

approaches generally limit the introduction of at least one of the probes to the termini of 

proteins.

We demonstrated that the reactions we have characterized can be used to rapidly and 

spontaneously label proteins with two distinct fluorophores for FRET studies (Fig. 6). We 

chose BODIPY-FL (donor) and BODIPY-TMR-X (acceptor) as FRET probes because of the 

significant overlap between their emission and excitation spectra. We labelled 8 at position 

149 in CaM51-8149 with a BODIPY-FL activated tetrazine conjugate 9, and labelled 5 at 

position 1 in CaM51-8149 with a BODIPY-TMR-X bicyclononyne conjugate 10, to create a 

doubly labelled protein (CaM5-101-8-9149). The labelling with each fluorophore was 

quantitative as judged by SDS-PAGE, fluorescence gel imaging and ESI-MS 

(Supplementary Fig. S10).
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The fluorescence emission spectra of CaM5-101-8-9149 shows two distinct peaks when the 

sample is excited at 485 nm: one peak corresponds to emission from BODIPY-FL (donor, 

515 nm), and the other peak corresponds to emission from BODIPY-TMR-X (acceptor, 570 

nm) (Supplementary Fig. S10). In contrast, the fluorescence spectra of singly labelled 

protein with either BODIPY-FL (donor) at position 149 (CaM51-8-9149) or BODIPY-TMR-

X (acceptor) at position 1 (CaM5-101-8149) shows minimal emission at 570 nm when the 

samples are excited at 485 nm (Supplementary Fig. S10). These data are consistent with 

FRET between the donor and acceptor fluorophores in CaM5-101-8-9149.

Using FRET to follow protein conformational change

The observed FRET signal for CaM5-101-8-9149 is sensitive to increasing concentrations of 

urea (Fig. 6c and Supplementary Fig. S10); the donor fluorescence signal increases and the 

acceptor fluorescence signal decreases as the urea concentration is increased. The observed 

decrease in FRET is consistent with the fluorophores moving further apart in the denatured 

state and this experiment demonstrates that protein conformational changes can be followed 

with our protein-labelling strategy.

CaM senses calcium in the cell and modifies its interactions with protein-binding partners43. 

CaM mediates many important processes, including short- and long-term memory, and the 

immune response44. CaM contains four EF-hand motifs, each of which binds one calcium 

ion45, 46. There are two EF-hand motifs in the N-terminal domain and two EF- hand motifs 

in the C-terminal domain45, 46. The two EF-hands within each domain bind calcium ions 

cooperatively, although the N- and C-terminal domains bind calcium independently47.

Structures of CaM have been solved in the presence of four calcium ions and in the absence 

of calcium ions46, 48, 49. Two distinct structures have been reported in the presence of four 

calcium ions45, 46, and single molecule solution measurements demonstrate that the protein 

is highly dynamic50. Moreover, much less is known about the structure of CaM with one, 

two or three calcium ions bound, though intermediate states of calcium binding are 

physiologically relevant in modulating the selectivity of CaM’s interactions with binding 

partners and signal propagation as a function of cellular calcium.

Although cellular calcium sensors based on FRET between fluorescent protein fusions, such 

as Chameleon, take advantage of global structural transitions in CaM that result from 

binding four calcium ions and movements of whole domains with respect to each other, it 

has been challenging to observe directly the local conformational change within domains as 

a function of calcium binding at individual sites because it is challenging to quantitatively 

install pairs of small molecule fluorophores at defined sites in the protein. These local 

changes are important because they provide the molecular basis for understanding 

cooperative binding of calcium to CaM and because of their biological significance.

To investigate local conformational changes in the N-terminal domain of CaM as a function 

of calcium concentration, we labelled CaM51-840 (Fig. 6b & Supplementary Fig. S11) with 

9 and 10. Quantitative labelling of CaM was confirmed by fluorescence gel imaging and 

ESI-MS (Fig. 6b & Supplementary Fig. S11). The fluorescence spectra of the doubly 

labelled protein (CaM5-101-8-940) and singly labelled proteins (CaM5-101-840 and 

Wang et al. Page 9

Nat Chem. Author manuscript; available in PMC 2015 May 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



CaM51-8-940) are consistent with FRET between the donor and acceptor fluorophores in 

CaM5-101-8-940 (Supplementary Fig. S11).

We observe two discrete transitions of comparable magnitude in the FRET spectra of 

CaM5-101-8-940 as a function of calcium concentration (Fig. 6d, and Supplementary Fig. 

S11). The first transition (K1= 1.125 ± 0.34 ×10−6 M) is close to the binding constants 

reported for the first three calcium ions binding to CaM in recent isothermal titration 

calorimetry (ITC) measurements51 (KD1=3.69 ± 0.53 X 10−6 M, KD2= 7.09 ± 1.206 ×10−5, 

KD3= 5.21 ± 0.841 ×10−6) and within the range reported in the literature52-54. As calcium 

binding at each EF-hand motif within the N- or C-terminal domain of CaM is cooperative, 

but binding of calcium to the distinct domains of CaM is thermodynamically independent47, 

it seems probable that the first transition we observe with probes in the N-terminal domain 

results from the binding of the third calcium ion to CaM: the first binding event in the N-

terminal domain. However, we cannot rule out contributions to the FRET change we 

observe from conformational changes in the N-terminal domain that result from calcium 

binding to the C-terminal EF hand motifs of CaM (KD1 and KD2). The first conformational 

change of the N-terminal domain may set up the protein to bind the fourth calcium ion.

The second transition (K2 = 1.711 ± 0.659 × 10−3 M) is close to binding constants reported 

recently for binding the fourth calcium ion to CaM (ITC study, KD4 = 0.44 ± 0.0465 ×10−3 

M), and the range of literature values for KD4
52-54, which suggests that this conformational 

change may result from binding the fourth and final calcium ion51.

Our data report on local conformational changes within a domain as a result of calcium-

binding events at distinct sites, and allow us to observe discrete structural transitions as a 

result of sequential ligand-binding events at distinct sites. The FRET changes we observe 

are reproducibly small (Supplementary Fig. S11), consistent with one of the two X-ray 

structures of four calcium ions bound to CaM45, 46. However, FRET measurements depend 

on both probe separation and assumptions about probe orientation, our data do not 

distinguish unambiguously between the divergent structures of CaM bound to four calcium 

ions, which single-molecule studies demonstrate from part of an ensemble of structures in 

solution50.

Discussion

We evolved a series of quadruplet decoding Pyl tRNAXXXX that efficiently and specifically 

read their cognate quadruplet codons on messages decoded by ribo-Q1. In combination with 

PylRS or its evolved variants, these tRNAs direct the efficient and specific incorporation of 

diverse unnatural amino acids into proteins. We created an optimized orthogonal translation 

system that takes advantage of the new quadruplet-decoding tRNAs and directs the efficient 

incorporation of a matrix of pairs of unnatural amino acids in E. coli. By carefully 

characterizing the kinetics of inverse electron-demand Diels-Alder reactions we designed a 

strategy for encoding a tetrazine and a norbornene that do not react with each other in 

proteins, but can be labelled rapidly with complementary bicyclononynes and electron-

deficient tetrazines. This provides the first modular route to install diverse pairs of probes 

into proteins at essentially any genetically controlled pair of sites in proteins at physiological 
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temperature, pressure and pH. The reactions proceed spontaneously without generating toxic 

side products or using toxic catalysts. We demonstrate the utility of our strategy by site-

specifically labelling CaM with FRET probes and reveal that this allows local 

conformational changes within a domain that result from sequential ligand-binding events at 

distinct sites to be observed. The modular approach we have developed will find utility in 

labelling proteins with a range of fluorophores, both for ensemble and single-molecule 

FRET experiments and for other biophysical measurements. Future work will focus on 

further extending and applying the approaches we have developed to address outstanding 

challenges in defining the molecular changes that underpin ligand binding, cooperativity, 

allostery and catalysis.

Methods

Protocols for chemical synthesis of amino acids, and fluorescent labelling probes as well as 

protocols for cloning, protein expression, protein labelling, mass spectrometry, 

determination of rate constants, and fluorescence measurements are provided in the 

Supplementary material along with detailed descriptions of all experimental procedures. The 

PylRS/tRNA pairs are derived from M.barkeri unless otherwise stated.

Selection of Pyl tRNA(N8)XXXX for enhanced quadruplet decoding in the ribo-Q1 
orthogonal mRNA system

We transformed each PyltRNA(N8)XXXX library into GeneHogs E. coli cells bearing the 

matching O-barnase3XXXX+45XXXX plasmid and RSF ribo-Q1 plasmid. The transformed cells 

were recovered in 1 ml SOB medium containing 2% glucose for 1 hour at 37°C. The 

transformation was used to inoculate 200 ml of LB-GKST (LB media with 2% glucose, 12.5 

μg ml−1 kanamycin, 18.8 μg ml−1 spectinomycin, and 6.25 μg ml−1 tetracycline) and 

incubated overnight (37°C, 250 rpm, 16 h). The overnight culture (2ml) was pelleted by 

centrifugation (3,000g) and washed with LB to remove glucose, prior to diluting to 

OD600=0.1 in LB-KST (LB media with 12.5 μg ml−1 kanamycin, 18.8 μg ml−1 

spectinomycin, and 6.25 μg ml−1 tetracycline), and incubated (37°C, 250 rpm, 2-3 h) until 

OD600 reached 0.5. Isopropyl β-D-1thiogalactopyranoside (IPTG (1 mM final 

concentration)) was added to induce the expression of ribo-Q1 ribosomal RNA (rRNA) at 

OD600≈0.5. The culture was incubated (37°C, 250 rpm) until the OD600 reached 

approximately 2. Aliquots (500 μl) of the culture were serial diluted and plated on LB-KST 

agar plate supplemented with 1 mM IPTG. The plates were incubated at 37°C for 16 hours. 

Surviving colonies were scraped from the plate and plasmid DNA was extracted by Qiagen 

Miniprep Kit to make the post-negative selection pool.

The negative selection was followed by a positive selection. The post negative selection Pyl 

tRNA(N8)XXXX pools were cleansed of non pCDF PylRS/tRNAXXXX plasmids by digestion 

with SacII to remove the O-barnase3XXXX+45XXXX and pRSF ribo-Q1 plasmid. The cleansed 

post-negative selection Pyl tRNA(N8)XXXX pools were electroporated into GeneHog cells 

bearing the matching O-cat111XXXX and pRSF ribo-Q1 plasmids. The transformed cells were 

recovered in 1 ml SOB medium containing 2% glucose for one hour at 37°C. The 

transformation was used to inoculate 200 ml of LB-GKST and incubated overnight (37°C, 
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250 rpm, 16 h). The overnight culture (2 ml) was pelleted by centrifugation (3,000g) and 

washed with LB to remove glucose, prior to diluting to OD600=0.1 in LB-KST, and 

incubated (37°C, 250 rpm, 2-3 h) until OD600 reached 0.5. IPTG (1 mM final concentration) 

and 1 (8 mM final concentration) were added to induce the expression of ribo-Q1 rRNA and 

facilitate aminoacylation of Pyl tRNA(N8)XXXX library members by PylRS at OD600≈0.5. 

The culture was incubated (37°C, 250 rpm) until the OD600 reached approximately 2. 

Aliquots (500 μl) of the culture were serial diluted and plated on LB-KST agar plates 

supplemented with 1mM IPTG, 8mM 1, and chloramphenicol of different concentrations 

(100 μg ml−1, 150 μg ml−1, 200 μg ml−1). The plates were incubated at 37°C for 40 hours.

To separate the selected pCDF PylRS/tRNA(N8)XXXX plasmid from the O-cat111XXXX and 

pRSF ribo-Q1 plasmids, total plasmid DNA from selected clones was purified, digested with 

SacII, transformed into DH10B cells and plated on LB agar supplemented with 

spectinomycin (75 μg ml−1). Individual colonies from the spectinomycin plates were 

incubated overnight in LB media supplemented with spectinomycin (75 μg ml−1) and replica 

plated onto three sets of LB agar plates supplemented with spectinomycin (75 μg ml−1), or 

tetracycline (25 μg ml−1), or kanamycin (50 μg ml−1). After 16 h, colonies were observed 

only on spectinomycin plates but not on tetracycline or kanamycin plates. The DNA from 

separated pCDF PylRS/tRNA(N8)XXXX clones was purified, confirmed by restriction 

digestion and DNA sequencing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Optimizing Pyl tRNA(N8)XXXX for incorporating unnatural amino acids in response 
to quadruplet codons decoded by ribo-Q1
a. Nucleotides that are targeted for mutagenesis in the anticodon stem loop of Pyl 

tRNA(N8)XXXX are represented in orange on tRNA bound to the ribosome , and the rest of 

the tRNA is in yellow. rRNA in pale green with ribo-Q1 mutation sites in red, and mRNA in 

purple. The structural image is based on PDB ID 2J00, created with Pymol 

(www.pymol.org). b. The anticodon stem loop of Pyl tRNA(N8)XXXX. The nucleotides in 

orange are randomized in each library. Codon sequences and mRNAs are in purple, and 

anticodons in grey. c. Two-step selection procedure for identifying specific and efficient Pyl 

tRNA(N8)XXXX library members in orthogonal translation. A negative O-barnase selection 

followed by a positive O-cat selection. Negative selection in the absence of unnatural amino 

acids eliminates Pyl tRNA(N8)XXXX library members that are mis-aminoacylated with 

natural amino acids by endogenous aminoacyl synthetases. Subsequent positive selection 

enriches evolved Pyl tRNA(N8)XXXX library members that are aminoacylated with the 

added unnatural amino acid by PylRS and efficiently decoded at quadruplet codons by ribo-

Q1. a.a, amino acid; O-mRNA, orthogonal mRNA; cat, chloramphenicol acetyl transferase.
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Figure 2. Evolved Pyl tRNA(N8)XXXX direct the efficient unnatural amino acids incorporation 
in response to quadruplet codons decoded by ribo-Q1
a. The selected anticodon stem-loop sequences of evolved Pyl tRNAXXXX, and the 

corresponding transplant sequences. The anticodons are in gray, and the nucleotides mutated 

in the library are shown in colour. Positions where parental sequence is selected are in 

orange, and positions where new nucleotides are selected are in red. b, Evolved Pyl 

tRNAXXXX substantially enhance the incorporation of unnatural amino acids by ribo-Q1 in 

response to quadruplet codons when compared to the corresponding transplant Pyl 

tRNAXXXX. The unnatural amino acid-dependent decoding of quadruplet codons in the O-

cat111XXXX was measured by survival on increasing concentrations of chloramphenicol 

(Cm). c. Diverse unnatural amino acids are efficiently incorporated in recombinant proteins 

in response to quadruplet codons using PylRS/Pyl tRNAXXXX with orthogonal translation. 

Full gels are given in Supplementary Fig. S4.
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Figure 3. Efficient incorporation of multiple distinct unnatural amino acids into a single 
polypeptide
a. Site-specific incorporation of 1 and 4. AGGA replaces the 1st codon and UAG replaces 

the 40th codon in the cam open reading frame of O-gst-cam to make O-gst-

cam1AGGA+40TAG. Decoding of both the AGGA and TAG codons by ribo-Q1 produces full 

length Gst-CaM, and failure to decode these codons leads to premature termination of the 

polypeptide. b. and c. The site-specific incorporation efficiency of 1 and 4 is improved by 

reducing the number of plasmids. d. The newly evolved PylRS/tRNAUACU pair 

substantially increases the efficiency of double incorporation e. Incorporating two distinct 

unnatural amino acids using two distinct quadruplet codons. Full gels are given in 

Supplementary Fig. S7.
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Figure 4. Efficient incorporation of a matrix of pairs of unnatural amino acids, including 
photocrosslinkers and chemical handles (azides, alkenes, alkynes, tetrazines) demonstrates 
generality
Cells contained O-gst-cam1TAG+40AGTA and ribo-Q1 expressed from an RSF plasmid, the 

pSUP MjAzPheRS/tRNACUA plasmid (or a variant specific for the relevant substrate) and 

the pCDF PylRS/evolved tRNAUACU plasmid. All combinations of PylRS substrates (1-3) 

and MjTyrRS active site variant substrates (4-7) were incorporated in 3×4 matrix. We 

further confirmed the incorporation of distinct unnatural amino acids by ESI and MALDI 

mass spectrometry (Supplementary Fig. S8). Full gels are given in Supplementary Fig. S8. 

We observed an additional peak for protein samples with 4 corresponding to the reduction of 

the azide to an amine.
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Figure 5. 5 and 8 do not react with each other in a protein, but can be efficiently labelled with 10 
and 9
a. 5 and 8 do not react when placed in proximity within a protein. CaM51-8149 was purified 

from cells bearing pRSF ribo-Q1 O-gst-cam1TAG+149AGTA, pSUP MjTetPheRS/tRNACUA, 

pCDF NorKRS×3/evolved tRNAUACU. CaM41-2149 undergoes a Cu(I) catalyzed click 

reaction to cyclize the protein (right gel panel). CaM51-8149 does not cyclize, as judged by 

mobility shift (compare left and right panels) and ESI-MS (Supplementary Fig. S10). b. 
Rate constants for the indicated reactions. c. CaM51 and CaM840 were incubated with 100 

molar equivalents of 10 at 25°C. Only CaM51 was labelled with 10, yielding CaM5-101. 
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Labelling was visualized using a Typhoon Imager and the resulting time-dependent 

fluorescence was used to calculate the on-protein labelling rate constant. All measurements 

were repeated twice and the error bars represent the standard deviation. ESI-MS confirmed 

that protein labelling is quantitative. d. CaM51 and CaM840 were incubated with 100 molar 

equivalents of 9 at 25°C. Only CaM840 was labelled with 9, which yielded CaM8-940. The 

labelling reaction was analysed as described in c. ESI-MS confirmed that labelling was 

quantitative.
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Figure 6. Site-specific double-labelling of CaM with a FRET pair to follow changes in protein 
conformation
a. Strategy for protein double-labelling via inverse electron-demand Diels-Alder reactions. 

b. Quantitative and site-specific double labelling of CaM51-840. Purified CaM51-840 (Lane 
1) was labelled with 100 equivalents (200μM) of 10, which yielded CaM5-101-840 (Lane 2) 

or 100 equivalents 9, which yielded CaM51-8-940 (Lane 3). CaM51-8-940 was labelled with 

100 equivalents of 10, which yielded CaM5-101-8-940 (Lane 4). Labelling was visualised by 

fluorescence imaging and led to a mobility shift. All labelling reactions were quantitative, as 

confirmed by ESI-MS. CaM51-840 (blue peak; calculated Mass=18081 Da, observed 

Mass=18079 Da), CaM51-8-940 (green peak; calculated Mass=18635, observed 

Mass=18632), CaM5-101-8-940 (orange peak; calculated Mass=19336, observed 

Mass=19330). c. Fluorescence spectra of CaM5-101-8-9149 (following donor excitation at 

485 nm) in the presence of increasing concentrations of urea. d. The relative donor-

fluorescence intensity from doubly labelled CaM5-101-8-940 as a function of Ca2+ 

concentration. All measurements were repeated at least six times and the error bars represent 

the standard deviation. K1, K2 are for the observed transitions. R2= 0.9005. KD1, KD2, KD3 

and KD4 are the reported KD (dissociation constants) values for sequential Ca2+ binding 51.
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