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Abstract

We apply machine learning techniques in an attempt to predict and classify stellar properties from noisy and sparse
time-series data. We preprocessed over 94 GB of Kepler light curves from the Mikulski Archive for Space
Telescopes (MAST) to classify according to 10 distinct physical properties using both representation learning and
feature engineering approaches. Studies using machine learning in the field have been primarily done on simulated
data, making our study one of the first to use real light-curve data for machine learning approaches. We tuned our
data using previous work with simulated data as a template and achieved mixed results between the two
approaches. Representation learning using a long short-term memory recurrent neural network produced no
successful predictions, but our work with feature engineering was successful for both classification and regression.
In particular, we were able to achieve values for stellar density, stellar radius, and effective temperature with low
error (∼2%–4%) and good accuracy (∼75%) for classifying the number of transits for a given star. The results
show promise for improvement for both approaches upon using larger data sets with a larger minority class. This
work has the potential to provide a foundation for future tools and techniques to aid in the analysis of
astrophysical data.

Key words: methods: data analysis – planetary systems – planets and satellites: detection – stars: general –
techniques: image processing

1. Introduction

Future space-based telescopes and ground-based observa-
tories have a potential to add a large amount of unprocessed
data into the astronomy community in the coming decade. For
example, the Hubble Space Telescope produced approximately
3 GB per day, whereas the James Webb Space Telescope
(JWST) is expected to produce approximately 57.5 GB per day
(Beichman et al. 2014). Taking this to further extremes, the
Square Kilometer Array, which will be online in 2020, is
predicted to produce on the order of 109 GB per day; this is the
same amount of data the entire planet generates in a year
(Spencer 2013). Recent advances in computer science,
particularly data science, have the potential to not only allow
the astronomy community to make predictions about their data
quickly and accurately, but also to potentially aid in
discovering which features make objects distinguishable. These
features may or may not be known by the human analyst, and
the method could have the potential to discover a relationship
within the data previously unknown by the human astronomer.

There have been a number of efforts to extract meaning from
stellar light curves over the past few years. Most extract
specific features from a curve to tackle one particular physical
property or develop novel data processing techniques to
improve analysis through a reduction of noise and/or
variability. Some notable examples include work by Richards
et al. (2011), who used periodicity features to measure stellar
variability, Bastien et al. (2015), who extracted flicker to
measure stellar surface gravity, and Wang et al. (2016), who
used data-driven models with pixel-level detrending to produce
low-noise light curves while retaining important transit signals.

With the recent interest in machine learning, we decided to
approach the problem of understanding what physical proper-
ties of a star are most related to the light curve using two
complementary machine learning approaches: feature

engineering, and representation learning. Feature engineering
takes raw data and summarizes these data with features that are
deemed important by the analyst. These features are then fed
into a machine learning method. Representation learning differs
from feature engineering in that the machine learning method is
allowed to learn what attributes best distinguish the data,
removing the bias from the analyst.
There are very few examples using machine learning

techniques in astronomy, but that number is growing. One of
the first examples dates back to Bailey et al. (2007), who
reported on object classification for supernovae using the
Supernovae Factory data with synthetic supernovae as training
data. Ball & Brunner (2010) published a review paper on the
uses of machine learning methods in astronomy. More recent
examples include work by Armstrong et al. (2017) on transit
shapes and by Thompson et al. (2015) on transit metrics, both
using real Kepler data. Thompson et al. described a new metric
that uses machine learning to determine if a periodic signal
found in a photometric time series appears to be transit shaped.
Using this technique, they were able to remove 90% of the non-
transiting signals and retain over 99% of the known planet
candidates. This study was done with feature engineering and
extraction methods.
Examples from the supernovae community include work on

both real and simulated data. Cabrera-Vives et al. (2017) used a
convolutional neural network (CNN) for classifying images of
transient candidates into either artifacts or real sources. Their
training data set included both real transients and simulated
transients. They were able to distinguish between real and fake
transients with high accuracy. Both Karpenka et al. (2013) and
Charnock & Moss (2017) used deep learning approaches on
simulated supernovae light curves from the SuperNova
Photometric Classification Challenge. Karpenka et al. used a
perceptron artificial neural network (ANN) for binary
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supernovae classification. The perceptron is a supervised
learning method based on a linear predictor function. Charnock
& Moss used a long short-term memory (LSTM) recurrent
neural network (RNN) to classify the synthetic supernova with
a high rate of success. Their data set consisted of just over
21,000 synthetic supernovae light curves. This work inspired
us to use an LSTM RNN approach as our first attempt at
applying machine learning to stellar light-curve classification
for the purpose of characterizing host stars.

The work described in this paper is divided into two separate
efforts: an approach in representation learning, and an approach
in feature engineering. For our representation learning efforts,
we use a bi-directional LSTM RNN to both predict and classify
properties from Kepler light curves. For the feature engineering
approach, we use a Python library called Feature Engineering
for Time Series (FATS; Nun et al. 2015), which facilitates and
standardizes feature extraction for time-series data and was
specifically built for astronomical light curve analysis. To the
best of our knowledge, this is the first work to do a comparative
study of representation learning and feature engineering for
prediction and classification using real astronomical data of
light curves.

2. Data

In an attempt to make this study widely applicable, we
classify a large number of Kepler object light curves according
to a wide range of stellar properties. The respective sources and
formats of both the time-series measurements and property
labels are discussed below.

2.1. Light Curves

All light curves used in this study were taken from the
Mikulski Archive for Space Telescopes (MAST).4 The physical
parameters5 and their descriptions6 were obtained from the
table of stellar properties using the Kepler_stellar17.csv.gz file.
Kepler flux measurements were made over multiple quarters
for each source, where the instrument rotates by 90° from one
quarter to the next to re-orient its solar panels. The quarters are
approximately 90 days long, with a data sampling every 29.4
minutes for long-cadence observations and every 58.8 s for
short-cadence observations. Out of the 200,000 total stars, only
512 are short cadence. In order to maintain consistent data
sample structures, the short-cadence light curves are removed
from the data set. This is consistent with common practice.

We iteratively ran through the archived Kepler quarter files
and downloaded more than 234,000 files (∼94 GB). The files
are formatted as Flexible Image Transport System files (the
most commonly used digital file format in astronomy), which
contain headers that describe the observing environment and
data quality and a table of the flux measurements over time.
There are two values reported for the flux measurements:
Simple Aperture Photometry (SAP) flux and Pre-Search Data
Conditioning (PDC) SAP flux. The PDC SAP versions of the
light curves remove instrumental variations and noise in the
data while preserving both stellar and transiting exoplanet
behavior. Therefore this is the flux measurement used to
construct the light curves.

We recall that the header of the light-curve file contains
information about the quality of data. In an attempt to keep
only observations with reliable signals, we filter out all quarters
that contain either

1. contamination from neighboring stars greater than 5% of
the total measured flux, or

2. a flux yield lower than 90% of that objectʼs total flux.

Before training the remaining data, a number of preproces-
sing steps are required. These are given in order below:

1. Keep every 10th data point to make the files sparser,
cutting down on computation time. The initial Kepler
data are extremely dense. We found by visual inspection
that sampling every 10th data point still yielded
representative curves while allowing for a larger number
of targets. Using all time steps for each target was too
slow to be tractable; thinning it out allowed us to include
enough diversified targets to be an effective attempt at
machine learning.

2. Normalize the curve. Raw flux values contain relatively
little information on their own and are extremely
inconsistent across a single objectʼs multiple quarters.
(a) Divide each by the median of the curve.
(b) Subtract one from all points to shift down and center

the curve about zero.
3. Iterative 2.5σ clipping (σ=1 standard deviation) to

remove extreme outliers from the data (likely to be
remaining instrumental artifacts).

4. Pseudo-random data augmentation to fill gaps in the data,
preserving the time step information. In particular, we
identify any consecutive gap that exists in the data
(denoted in the files with NaNs=“Not a Number”) and
fill each missing time slice with a random value between
the two real values on either side of that respective gap.
To do this, we first group together sequential NaN
appearances (which is one or more NaN entries bounded
by real flux values on either side). Next, for each of these
empty values, we substitute a random value between the
left and right flux values on either side of the
corresponding gap. Since the NaN values are not
measurements that we can assume to know (i.e., missing
data), we wished to avoid imposing any interpolated
trend/behavior that may or may not be present. Ideally,
the model will learn to ignore these noisy, random
portions, as if the data were not present.

In Figure 1, we display an example light-curve quarter
before and after preprocessing has been performed,
respectively.
Finally, we concatenate all processed quarters of a single

object into one large curve. To properly format the data for
both the RNN and feature engineering approaches, all curves
must be the same length; therefore we find the longest resulting
light curve and prepend all others with −999s until they are the
same length. The −999 value is distinct and is masked out later
in the training and testing process.
This process reduced the initial 234,000 quarter files down to

just over 48,500 unique object light curves, each with a length
of ∼7000 time slices.

4 https://mast.stsci.edu
5 https://archive.stsci.edu/kepler/catalogs.html
6 http://archive.stsci.edu/search_fields.php?mission=kepler_stellar17

2

The Astronomical Journal, 156:7 (13pp), 2018 July Hinners, Tat, & Thorp

https://mast.stsci.edu
https://archive.stsci.edu/kepler/catalogs.html
http://archive.stsci.edu/search_fields.php?mission=kepler_stellar17


2.2. Labels

The stellar properties used as labels in the classification and
regression tasks were extracted from the Kepler Stellar 17 table
on MAST.7 This table includes properties for more than
200,000 Kepler targets, and of the 95 columns describing each
target,8 we use the 10 properties given in Table 1 to generate
labels for 10 distinct prediction tasks.

3. Method

As stated in the introduction, we approach the problem of
extracting and identifying physical properties of the star
through two methods: representation learning, and feature
engineering. In the sections below, we describe how each
method was implemented. Results and discussion for each
approach follow in subsequent sections.

3.1. Machine Learning Introduction

Machine learning attempts to automate the data analysis
process. Much of this is done by exploiting the tools of

probability theory. There are many different flavors of machine
learning, but it is usually divided into two main types. In
predictive or supervised learning, the goal is to learn a mapping
from inputs to outputs given a labeled set of input-output pairs
(the training set). The second main type is descriptive or
unsupervised learning, where we are only given inputs and the
goal is to find interesting patterns in the data. Within this space,
one can perform either classification (pattern recognition) when
the problem is categorical, or regression to find a specific value
(Murphy 2012). There are a large variety of algorithm
approaches to machine learning. These include (as a few
examples) Bayesian, clustering, ensemble, instance based,
ANNs, regularization, and feature engineering.
ANNs are a much-lauded tool of machine learning, popular

for their flexibility and power. ANNs can be thought of
mathematically as a form of function approximation and are
used for tasks such as regression and classification. ANNs have
a large number of tunable parameters, all of which fall into two
categories. The weights and biases are internal parameters,
selected via an optimization routine (e.g., stochastic gradient
descent) over a chosen metric (e.g., mean squared error;
Bottou 2010). The hyperparameters include width, which is the
number of nodes per layer, and depth, which is the number of
layers stacked to form the network. Increasing the depth leads

Figure 1. Demonstration of before (a) and after (b) light-curve preprocessing on a single quarter.

Table 1
Ten Stellar Properties Used to Generate Labels for Corresponding Object Light Curves in Prediction Tasks

Parameter Name Description Units Minimum Maximum Prediction Task

teff Effective Temperature K 2500 27730 Regression
logg Surface Gravity log10(cm s−2) 0.016 5.52 Regression
feh Metallicity dex −2.5 1 Regression
mass Mass Me 0.09 3.74 Regression
radius Radius Re 0.104 300.749 Regression
dens Density g cm−3 0 124 Regression
kepmag Kepler-band Magnitude mag −0.419 17.394 Regression
nconfp Number of confirmed Planets L 0 7 Classification
nkoi Number of Associated KOIsa L 0 7 Classification
ntce Number of Associated TCEsb L 0 8 Classification

Notes.
a Kepler objects of interest.
b Threshold crossing events, e.g., exoplanet transits.

7 Found at:https://archive.stsci.edu/pub/kepler/catalogs/.
8 Parameter information further discussed athttp://archive.stsci.edu/kepler/
stellar17/help/columns.html.
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to deep learning, where the definition of deep learning tends to
change with advances in computation. In general, increasing
depth and width enables better performance, where depth is
thought to have a greater payoff. Note that as depth and width
increase, so does computation time.

Every ANN consists of nodes and edges, with an example
ANN shown in Figure 2. The nodes of the input layer
correspond to the input data; the number of input nodes
corresponds to the dimensionality of that data. For example, if
we are interested in 8×8 pixel grayscale images, the number
of input nodes will be 64. The nodes of the output layer depend
on the task for which the ANN was designed. If the network
was designed to predict a single number, then there will be a
single output node. If the intent is to classify an input image
among k categories, one would choose k output nodes, each
corresponding to the probability that the input data belong to a
particular category. The nodes of the hidden layer correspond
to intermediate data transformations, which are governed by
both the learned weights and biases, and the hyperparameters.
The arrows in Figure 2 denote the flow of data between nodes;
the example is a densely connected feed-forward network,
where data are allowed to flow between all nodes (densely
connected), but only in one direction (feed-forward).

The details of each individual node are shown in Figure 2 in
the diagram on the right. Each node takes some number of
inputs, combines them, feeds them through an activation
function, and the result is then passed on to some other number
of nodes. The combination of inputs is usually scaled by
individual weights, then added along with a bias term. The
weights and biases are chosen via optimization, but the
activation function is chosen a priori. The choice of activation
function is a topic of active research, but a current popular
choice is the rectifier (Glorot et al. 2011).

There are several flavors of ANNs, but two of the most
popular are RNNs and CNNs. An RNN is an ANN with
internal memory. What this means is that information is
allowed to pass between nodes in the same layer. If both
forward and backward propagation are allowed, then the RNN
becomes bi-directional. A popular form of RNNs is the LSTM
RNN, which provides facilities for memory management,
including the ability to forget or reset an internal state (Sak
et al. 2014). A CNN is an ANN that assumes some invariance
structure of the input data, and therefore enforces invariance in

the structure of the ANN (Zhang et al. 1990). The network is
invariant in the sense that it applies the same small set of
weights and biases to different portions of the input data. More
specifically, the network performs convolution of learned
kernels against the input data. This design choice reduces the
number of internal parameters, decreasing the expense of
training. Convolving against a kernel can be thought of as
searching for patterns. Mishkin et al. (2016) details an
investigation of different CNN design choices and their relative
performance.
A more thorough discussion about machine learning in

general can be found in Murphy (2012), and neural networks in
particular are discussed in the review article by Schmidhu-
ber (2015).

3.2. Representation Learning

In an effort to understand which properties we can obtain
from stellar light curves, we turn to representation learning
techniques. Representation learning allows the model to extract
the “features” that it finds to be important in characterizing
objects according to one physical property at a time. While this
may initially limit model interpretability, it provides an
opportunity for hidden features of the light curve to surface
and help in classifying an object by various stellar properties.
While feature engineering can be extensive, representation
learning has the opportunity to remove human-based pre-
conceived notions about what may or may not affect a starʼs
classification.
In line with more common natural language processing

tasks, we treat each set of 48,500 light curves as a corpus, with
each light curve simulating a sentence and each normalized flux
measurement simulating a word. By implementing an LSTM
RNN, we hope that the model will learn both semantic relations
between flux values in a sequence and the more general pattern
meanings throughout the “corpus” of objects, allowing the
model to make accurate stellar predictions. A similar approach
of treating a light curve as a sentence was done by Charnock &
Moss (2017) in their analysis of supernovae light curves.

3.2.1. Network Architecture

We referred to related literature when determining the model
architecture—primarily Charnock & Moss (2017), which

Figure 2. Left: Schematic for a simple artificial neural network with a depth of two and unspecified width. Right: Schematic for a simple, generic node. Here three
inputs xi are scaled by weights wi, summed, and biased b before being fed through an activation function f (y).
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optimized an LSTM RNN in classifying supernovae light
curves. In addition to similar data structures, Charnock & Moss
had a comparable data set size (although simulated) and
analogous prediction tasks, leading us to use a similar model
structure and complexity. Our LSTM RNN was built in python
using the Keras neural network library.9 The ideal architecture
was found to be an RNN with two LSTM hidden layers of 16
nodes each (and an initial masking layer to filter out prepended
−999s), although we initially ran tests on just a single hidden
layer to reduce computation time. An example of a generic
RNN with two LSTM hidden layers can be seen in Figure 3.

In building the LSTM RNN, we wished to perform two types
of predictive tasks: binary classification (does an object belong
to one class or another?), and regression (what is the
numerical value of this star’s physical property?). For both
LSTM layers we used a softmax activation function for
classification tasks and a softsign activation function for
regression tasks. The dense layer was always assigned a linear
activation function. In network compilation, a categorical
cross-entropy loss was used for classification tasks and a mean
squared error loss for regression tasks. We applied the
RMSProp10 optimizer with default learning rate. When fitting,
a batch size of 20 was used and in both classification and
regression tasks, and we surveyed the reported loss values
between epochs to determine when performance had plateaued
(namely, when loss values seemed to converge). Weights were
balanced using scikit-learnʼs class_weight utility function
specifying “balanced” weights. This process effectively returns
the frequency of each class, or more specifically, each class
weight = (number of samples)/(number of classes ∗ number of
samples belonging to that class). Once a list of class weights
were obtained, we fed the list into the neural network when
fitting. All other parameters not specified here were Keras layer
defaults. More specifics on these modifications for the two
tasks are discussed below.

3.2.2. Modifications

We decided to perform classification tasks on the parameters
with discrete values within a limited set (i.e., number of
confirmed planets, number of associated Kepler objects of
interest (KOIs), and number of associated threshold crossing
events (TCEs)). However, while the sets of possible values for
each of these properties are already quite limited, each of these
three parameters is heavily dominated by negative signals (i.e.,
a value of zero). Thus, we decided to simplify the tasks further
by making each binary classification task either equal to or
greater than zero. However, despite the classification simpli-
fication, the data still consisted of a skewed population for each
of the three relevant properties. To combat heavy bias, we
instantiated the model with balanced weights, such that the
model would weight the importance of positive labels more
highly than negative labels to avoid converging as a simple
majority class predictor.
The key to creating a classification model versus a model

that performs regression tasks is primarily in the structure of the
output layer. We implemented one node for each class of the
classification task (two for binary classification) in the output
layer. Additionally, the loss function (a metric over which each
model is optimized) varies slightly between classification and
regression tasks. Since we wish to correctly categorize the
target, we apply a categorical cross-entropy loss function,
provided below:

å= - ( )L t plog .i
j

i j i j, ,

The loss function is applied to each prediction target i and each
of the j possible classes (e.g., j=2 in our binary predictions),
where t is the target or actual probability that an object belongs
to that class, and p is the corresponding predicted probability.
This function is minimized by the neural network to optimize
prediction tasks.
Rather than creating multiple nodes in the output layer as

was done for the classification tasks, regression tasks require
just a single node. This means that the output will be the
estimated property value, rather than a set of weights

Figure 3. Example of the data and label inputs and architecture of a recurrent neural network with LSTM nodes to predict and classify stellar properties.

9 The Keras deep learning library is an open source library developed by
Francois Chollet at the MIT in 2015. More information can be found
athttps://keras.io/.
10 https://keras.io/optimizers/
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corresponding to the modelʼs confidence in each respective
class.

3.2.3. Evaluation Metrics

In determining the success of a predictive model, various
evaluation metrics are used to measure results. These are not
used in the training process, but are helpful when considering
how well the model performed on a certain task. The metrics
come from entries in a confusion matrix (Kohavi &
Provost 1998) that contains information about the actual and
predicted classifications done by a classification system.
Performance of the system, in our case, our machine learning
methods, is evaluated using the data contained in the confusion
matrix.

For a binary classifier we utse a two-class matrix, also
known as a truth table, as seen in Table 2.

Traditional or “raw” accuracy is simply defined as the ratio
between the number of correct predictions and the total number
of predictions. For two classes, raw accuracy is calculated as

= + +( ) ( )Accuracy TP TN P N ,

where TP is the number of true positives, TN is the number of
true negatives, P is the total number of positives, and N is the
total number of negatives.

Therefore, a random binary classifier would have an
accuracy of 1/2 and a random classifier with three classes
would have an accuracy of 1/3. Each of our classification tasks
contained extremely imbalanced data, where the number of
“positive” samples (i.e., a confirmed transit) was lower than
10% of the total data set for each parameter. Therefore raw
accuracy returned misleadingly high values even for a simple
majority class predictor and was not an appropriate metric to
evaluate prediction performance.

Therefore we turned to balanced accuracy using a confusion
matrix of predictions. For binary classification problems, the
confusion matrix splits predictions into true positives (TP),
false positives (FP), false negatives (FNs), and true negatives
(TNs). Balanced accuracy is then defined as

= +( )Balanced Accuracy TP P TN N 2.

Additionally we can calculate the recall of a model, which tells
us how many positive cases were correctly identified, and the
precision, which tells us how many of those predicted positive
cases were correctly identified. Recall is defined as

= +( )Recall TP TP FN ,

and precision is defined as

= +( )Precision TP TP FP .

From recall and precision, we can calculate the F1 score, which
can be used to measure the accuracy of the model. It uses both
recall and precision (which are obtained from the truth table).
The F1 score provides a harmonic average of the precision and
recall, where the best value for F1 is 1 and the worst is 0. F1 is
described as

= *
*
+

F 2
Precision Recall

Precision Recall
.1

3.2.4. Representation Learning (LSTM RNN) Results

We found that both the classification and regression results
resulted in approximately guessing accuracy. For classification,
the balanced accuracy was approximately 52% for all three
tasks, and for regression, the RNN was only finding the average
of all of the values instead of predicting the individual value.
Previous successful work had centered on simulated data
(Charnock & Moss) or other types of representation learning
(self-organizing map (SOM) in the case of Armstrong et al.
(2017)) and it is possible that the variation in the light-curve
data, the relatively small sample set of 48,500 light curves, or
the ratio of positive samples to negative was too low for the
RNN to predict values.
Upon these results, we were driven to explore another

machine learning method with more human knowledge in the
loop—namely feature engineering.

3.3. Feature Engineering

To attempt to improve our ability to perform prediction
tasks, we turned to feature extraction to construct feature
representations of the light curves. This strategy is commonly
referred to as feature engineering. Feature engineering is the
process of determining, calculating, and extracting features
from raw data. These features are typically properties of the
raw data that are human interpretable and believed to provide
insight on the prediction task at hand. While this process can be
arduous (feature engineering often takes quite long and may be
computationally intensive), it also provides useful intuition into
our understanding of certain properties and patterns of the raw
data. Furthermore, the fact that feature engineering typically
uses human-crafted properties allows us to perform a more in-
depth data analysis on why certain features predict certain
physical properties. While representation learning is able to
extract “features” from raw data for unexpected insight, it does
not offer the depth of insight that feature engineering can
provide.
In order to extract features from light curves, we turned to

FATS, the feature analysis of time series (Nun et al. 2015).
Since there is extensive documentation for FATS on its Github
repository11 and within Nun et al. (2015), here we only
summarize how we extracted features from our preprocessed
light curves. FATS takes time-series data, and depending on
the target, extracts mathematical properties and statistical
information (Nun et al. 2015). While FATS can be applied to
a variety of time-series data, we focus on using it to extract
features from light curves. Specifically, we extract 46 features
from 6038 light curves and train them on the following models:
naïve Bayesian, K-nearest neighbors, support vector machine,
decision tree, random forest, L1-norm regression, L2-norm

Table 2
Truth Table where TN is the Number of True Negatives, FN is the Number
False Negatives, FP is the Number of False Positives, and TP is the Number of

True Positives

Predicted Value Actual Value

0 1
0 TN FN
1 FP TP

Note. These values are used in calculating the metrics used to evaluate model
performance.

11 https://github.com/isadoranun/FATS
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regression, and support vector regression (SVR). This analysis
was performed on the same data prepared in the LSTM RNN
experiment. Hyperparameters were determined by a simple
script that trained from 1 to N classifiers and chose the value
that minimized out of sample error. The main data set was split
into a testing and training set such that the training set was 80%
of the data and the testing set was 20% of the data. Each model
used for classification utilized a function to calculate out of
sample error, and each model used for regression utilized a
function that provided RMSE as an output.

3.3.1. Feature Selection and Extraction

To accurately simulate the type of information we will be
receiving from future synoptic surveys, we use only magnitude
and time measurements from the light curve as inputs to FATS.
Given magnitude and time, there are a total of 53 features that
can be calculated. Out of these 53, we exclude 7 features.
FluxPercentileRatioMid20, FluxPercentileRatioMid35, Flux-
PercentileRatioMid50, FluxPercentileRatioMid65, and Flux-
PercentileRatioMid80 were excluded because they produce
values of infinity during feature generation. This issue is a
product of the preprocessing done on the light curves, which
centered each time series around 0. FluxPercentileRatio* was
calculated using the formula

* *= F

F
FluxPercentileRatio ,50 2

5,95

where F5,95 is the difference between 95% and 5% of the flux.
This difference was occasionally truncated to zero by Python if
it was too small. This led to values of infinity that were
removed from the list of features as they do not provide reliable
information. We also discarded percent amplitude and percent
difference flux percentile. Percent amplitude is calculated as

=
⎛
⎝⎜

⎞
⎠⎟

F

F

F

F
Percent Amplitude max ,min

median

max

median

and percent difference flux percentile from

=
F

F
Percent Difference Flux Percentile .5,95

median

Both of these values rely on the median flux value, which on
occasion is equal to zero as the data were normalized to be
centered around zero. Again, during feature generation, some
of the light curves held values of infinity for these two
properties, and so we discarded them with the same reasoning
as for the FluxPercentileRatio* values. Therefore we were left
with 46 features, which are listed in Table 3.

3.3.2. Feature Engineering Regression Results

We ran three different regression models to predict values
for stellar surface gravity (log(g)), stellar mass (in units of Me),
density, stellar radius (in units of Re), and the stellar effective
temperature. The first two models are linear regression models.
The benefits of linear regression is its simplicity in both
implementation and interpretability. Its drawback comes when
the relationship between the inputs and outputs cannot be
approximated by a linear relationship, in which case the model
will give poor predictions. The two linear methods we used are
the least absolute shrinkage and selection operator (LASSO;
Tibshirani 1996) and ridge regression (Rasmussen &

Williams 2006), which we have denoted L1 regression and
L2 regression, respectively. L1 regression is “robust”, meaning
that it does not overly fit to outliers, it is “unstable” such that
small adjustments in the data have the potential to move the
regression fit, and it has multiple solutions. L2 regression is
“not robust”, so it could have a tendency to overfit; it is stable,
so the regression line is not affected by small data adjustments;
and it has a unique solution.
The third method is a nonlinear method called SVR. It was

originally developed for classification problems and later
extended to regression. It is useful when the relationship
between the inputs and outputs are not best fit by a linear
relationship. For a full description of the methods, we refer to
Rasmussen & Williams (2006) and Murphy (2012). The results
obtained for regression are described in terms of root mean
squared error (RMSE) and are shown in Table 4. We recall that
RMSE is calculated within each of the regression models.
Where the range in values for each stellar property is listed in

Table 5.
To enable a better comparison for the performance of each

model in predicting these values, we then normalized the
RMSE, which can be seen in Table 6.
Feature engineering for regression proved to give good

predictions for stellar surface gravity and stellar mass, and very
good predictions for stellar density, stellar radius, and effective
stellar temperature with both of the linear models performing
slightly better than SVR. SVR is only better for predicting the
stellar mass and is pretty even with the linear models for
predicting stellar surface gravity, but overall, the differences
between the models are minor. This technique could be used
with confidence to classify the large database of unclassified
stars without immediate need for follow-up observations.

3.3.3. Feature Engineering Classification Results

Classification was performed on three separate types of
events: number of TCEs, number of confirmed planets, and
number of KOIs.

3.3.3.1. Feature Importance

Using FATS for each of these classification events, we
calculated the importance of each of the features from Table 3.
Our first look was the number of KOIs in a given light curve.
As we see in Figure 4, mean, skew, and freq1HarmonicsRel.
Phase1 are all features that contribute greatly to understanding
if an object of interest is contained within the light curve for a
model using a random forest classifier.
Figure 5 shows the relative feature importance for the

number of TCEs. Here different features, namely the Period
Lomb–Scargle and Etae, are the two most dominant features,
but the freqN HarmonicsRel.Phase terms are not important at
all to the classification.
Finally, Figure 6 shows the relative feature importance for

the number of confirmed planets. Here we see that the
freq1_harmonics_rel_phase_1 is the dominant feature followed
by skew, with the features not contributing to the classification
being the different freq_harmonics_rel_phase0 terms. This
analysis shows us that even for seemingly fairly related events,
the feature importance can vary greatly when it comes to
classification.
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Table 3
Features Generated from FATS Used in Machine Learning Methods

Feature Input Data (in addition to magnitude) Parameters Default Reference

Amplitude L L L Richards et al. (2011)
AndersonDarling test L L L Kim et al. (2009)
Autocor length L Number of lags 100 Kim et al. (2011)
Con L Consecutive Stars 3 Kim et al. (2011)
Etae Time L L Kim et al. (2014)
Freq1HarmonicsAmp0 Time L L Richards et al. (2011)
Freq1HarmonicsAmpi Time L L Richards et al. (2011)
Freq1HarmonicsRelPhase0 Time L L Richards et al. (2011)
Freq1HarmonicsRelPhasei Time L L Richards et al. (2011)
Freq2HarmonicsAmp0 Time L L Richards et al. (2011)
Freq2HarmonicsAmpi Time L L Richards et al. (2011)
Freq2HarmonicsRelPhase0 Time L L Richards et al. (2011)
Freq2HarmonicsRelPhasei Time L L Richards et al. (2011)
Freq3HarmonicsAmp0 Time L L Richards et al. (2011)
Freq3HarmonicsAmpi Time L L Richards et al. (2011)
Freq3HarmonicsRelPhase0 Time L L Richards et al. (2011)
Freq3HarmonicsRelPhasei Time L L Richards et al. (2011)
Linear Trend Time L L Richards et al. (2011)
Max Slope Time L L Richards et al. (2011)
Mean L L L Kim et al. (2014)
Mean Variance L L L Kim et al. (2011)
Mean Absolute Deviation L L L Richards et al. (2011)
Median BRP L L L Richards et al. (2011)
PairSlopeTrend L L L Richards et al. (2011)
Period Lomb–Scargle Time Oversampling Factor 6 Kim et al. (2011)
Period Fit Time L L Kim et al. (2011)
ψcs Time L L Kim et al. (2014)
ψη Time L L Kim et al. (2014)

-Q3 1 L L L Kim et al. (2014)
RCS L L L Kim et al. (2011)
Skew L L L Richards et al. (2011)
Slotted AutoCor Length Time Slot Size T (days) 4 Protopapas et al. (2015)
Small Kurtosis L L L Richards et al. (2011)
Standard Deviation L L L Richards et al. (2011)

Note. In the “freqN Harmonics” Terms, i=1–3.

Table 4
Feature Engineering Results for Regression

Root Mean Squared Error

Model Stellar Surface Gravity (log(g)) Stellar Mass (Me) Density (g cm−3) Stellar Radius (Re) Effective Temperature (K)

L1 ±0.9088 ±0.6604 ±2.699 ±14.26 ±879.6
L2 ±0.8254 ±0.6341 ±2.669 ±13.25 ±875.4
SVR ±0.8735 ±0.6050 ±2.829 ±19.87 ±967.2

Table 5
Range of Values for Each Stellar Property

Stellar Surface Gravity (log(g)) Stellar Mass (Me) Density (g cm−3) Stellar Radius (Re) Effective Temperature (K)

Range 0.016–5.52 0.09–3.74 0–124 0.104–300.749 2500–27730

Table 6
Normalized RMSE for Each of the Stellar Properties with Each Different Model

Normalized Root Mean Squared Error (%)

Model Stellar Surface Gravity (log(g)) Stellar Mass (Me) Density (g cm−3) Stellar Radius (Re) Effective Temperature (K)

L1 ±0.1651 ±0.1809 ±0.0217 ±0.0474 ±0.0348
L2 ±0.1499 ±0.1737 ±0.0215 ±0.0441 ±0.0347
SVR ±0.1587 ±0.1657 ±0.0228 ±0.0661 ±0.0383
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Using these results, we can reduce the data to only the
features that hold importance for the classification tasks at hand
and improve the overall classification accuracy.

3.3.3.2. Classification Results

Upon running each of the five classifier models, we are able
to see how well each type predicts the correct value based on

the two metrics: out of sample error (Eout), which measures the
difference between the expected and empirical error, and
balanced accuracy. To calculate Eout, we first used the training
data on the scikit learn model. After it was trained, we used it to
predict the classes of the testing data. Since the classes of the
testing data are known, we can compare them to the class that
the model predicts. We predicted all of the classes for each data

Figure 4. Feature importance in random forest NKOI classification.

Figure 5. Feature importance in random forest number of confirmed planets classification.
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point in the testing data and for every data point misclassified,
we incremented a counter. After each pointʼs class was
predicted, we divided the total number of points in the testing
data to obtain the ratio of points that were misclassified. The
calculation for balanced accuracy can be seen in Section 3.2.3.

Our experiment was to check if the machine learning method
could pull from a complete set of noisy/sparse Kepler data the
correct values for each of the classifications described below.
For the number of KOIs, we had the model classify whether a
given star had at least one KOI associated with it. The
performance of each of the models for KOI is in Table 7.

Here we see that a naïve Bayesian model has a very high Eout

and guessing-level balanced accuracy. Each of the others have
a small out-of-sample error, and the model appears to be
moving beyond simply guessing. These values of balanced
accuracy are promising.

Turning to the number of TCEs in Table 8, we start to see
more favorable values for balanced accuracy. Here the models
were ran against the full light-curve set to determine if a given
star had a transit event.

Here, again, we see that a naïve Bayesian model is not a
good classifier for determining the number of TCEs. It has a
large out-of-sample error, and its balanced accuracy is that of
guessing. Each of the other model types are better to varying
degrees. Decision trees produced the best balanced accuracy,
but had a slightly higher out-of-sample error than that of a
random forest of 1000 trees, which produced the least out-of-
sample error and a very respectable value for balanced
accuracy. When compared to other examples using noisy
sparse data with multi-layer neural networks in the extended
physics community, the model is classifying fairly well. As an
example in a related field where the signal of interest (Higgs
boson) is an extreme minority in the an otherwise large data set,
the use of deep neural networks for classifying the Higgs boson

at the LHC (Alves et al. 2017) achieved accuracies ranging
from (∼60%–84%).
Finally, we look at the number of confirmed planets per

stellar light curve in Table 9. Here we wished to see if we could
move beyond a potential transit and determine if the method
could identify planets with some degree of confidence. This
would be very attractive as it would allow a set of data to be
evaluated against training data containing confirmed planets
and confidently tell us that a star that has yet to be analyzed
indeed has a planet.

Figure 6. Feature importance in random forest number of threshold crossing events classification.

Table 7
Comparison of Classifier Models for Classifying the Number of Kepler Objects

of Interest for a Given Set of Light Curves

Number of Kepler Objects of Interest

Classifier Eout (%) Balanced Accuracy (%)

Naïve Bayes 92.38 51.15
SVM 5.71 57.72
KNN 4.72 58.96
D-Tree 8.19 62.82
Random Forest (1000 Trees) 4.64 57.58

Table 8
Comparison of Classifier Models for Classifying the Number of Threshold

Crossing Events for a Given Set of Light Curves

Number of Threshold Crossing Events

Classifier Eout(%) Balanced Accuracy (%)

Naïve Bayes 87.25 50.04
SVM 14.98 66.86
KNN 10.84 62.77
D-Tree 13.99 71.53
Random Forest (1000 Trees) 8.029 69.94
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This classification proved to be difficult for all five
classifiers. Here SVM, KNN, and random forests were all
guessing a classification of zero (i.e., no confirmed planets). It
only makes sense that the model might revert to this since the
sample size is very small for light curves containing confirmed
planets and even smaller for light curves with multiple planets.

3.3.4. Further Analysis

After achieving the first set of results, we decided to define
what might be causing such low model performance. We
determined that our classification problems are heavily
imbalanced, where the minority class (such as a light curve
with a confirmed planet) is significantly smaller than the
majority class (light curves without confirmed planets). To help
remedy this, we turned to a method to attempt to oversample
the minority class. Specifically, we used the synthetic minority
oversampling technique, or SMOTE (Chawla et al. 2002).

In many cases with real data, the interesting examples within
the data can be severely underrepresented, making classifica-
tion difficult. The machine learning community has approached
this probably through both resampling the original data set
(either by oversampling the minority class or undersampling
the majority class; Lewis & Catlett 1994; Kubat &
Matwin 1997; Ling & Li 1998; Japkowicz 2000) or by adding
costs to the training examples (Pazzani et al. 1994; Dom-
ingos 1999). SMOTE provides an approach that combines both
oversampling the minority (or interesting) class and under-
sampling the majority class. Chawla et al. (2002) used several
different classifiers (C4.5 decision trees; Quinlan 1992; naïve
Bayes, and ripper; Cohen 1995b) and showed that this
combined method achieves better performance.

This algorithm does the following:

(1) Takes the minority class sample, xi, and its k minority
class nearest neighbors y1....yk.

(2) Introduces n synthetic examples along the line segments
joining xi with its k neighbors.
(a) Take the difference between y j and x i.
(b) Multiply the difference by number between zero

and one.
(c) Add the difference to x i.

We chose to apply this to our most promising classification set,
the number of TCEs. Table 10 shows our post-SMOTE
classification ratios, where class=0 represents light curves
without a crossing event, and class=1 where a crossing event
is detected.

As one can see, the data are dominated by class=0 events,
but by applying the various versions of a SMOTE model, we
achieve closer to a 50/50 ratio of class=0 and class=1

events. To provide additional metrics for model performance
with the addition of SMOTE, we calculated recall and
precision. Recall is defined as

= +( )Recall TP TP FN ,

which is basically the ratio of positives that are correct out of
all actual positives, and precision is defined as

= +( )Precision TP TP FP ,

which is the ratio of positives that are correct out of all guessed
positives.
Table 11 shows the previously reported Eout and balanced

accuracies as well as recall and precision for each model
classifier.
After applying SMOTE to our data, we saw that the SMOTE

SVM achieved the greatest improvement in results, which can
be seen in Table 12.

Table 9
Comparison of Classifier Models for Classifying the Number of Confirmed

Planets for a Given Set of Light Curves

Number of Confirmed Planets

Classifier Eout (%) Balanced Accuracy (%)

Naïve Bayes 94.54 52.23
SVM 0.745 55
KNN 0.745 55
D-Tree 1.49 54.62
Random Forest (1000 Trees) .745 55

Table 10
Model Results Before and After Applying SMOTE to Balance the Majority/

Minority Class

Post-SMOTE Classification Ratios

SMOTE Model Class=0 Class=1

No SMOTE 0.8781 0.1219
Regular 0.5 0.5
Baseline 1 0.5 0.5
Baseline 2 0.5 0.5
SVM 0.5001 0.4999

Table 11
Comparison of the Classifier Models Including Recall and Precision as Metrics

Number of Threshold Crossing Events (NCTE)

Classifier Eout (%)

Balanced
Accuracy

(%) Recall Precision F1 Score

Naïve Bayes 87.25 50.04 0.993 0.122 0.217
SVM 14.98 66.86 0.429 0.394 0.411
KNN 10.84 62.77 0.279 0.621 0.385
D-Tree 13.99 71.53 0.517 0.409 0.457
Random For-
est (1000
Trees)

8.029 69.94 0.395 0.828 0.535

Table 12
Comparison of the Classifier Models After Applying SMOTE to the Minority

Class

NTCE with SMOTE SVM

Classifier Eout (%)

Balanced
Accuracy

(%) Recall Precision F1 Score

Naïve Bayes 85.4 50.5 0.980 0.123 0.219
SVM 13.2 65.8 0.381 0.452 0.413
KNN 21.4 62.0 0.517 0.289 0.371
D-Tree 17.1 69.8 0.524 0.362 0.428
Random For-
est (1000
Trees)

8.86 74.7 0.530 0.672 0.593

Note. Note the improvement in balanced accuracy for the random forest and
the trade-off for achieving better recall at the sacrifice of some precision.
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The naïve Bayesian model still produced guessing results
with a high Eout. However, the use of SMOTE greatly
improved the random forest, in particular, achieving almost
75% balanced accuracy. Additionally, in all cases but the
D-tree, the F1 score slightly improved. As a comparison,
Armstrong et al. (2017) achieved a 87% accuracy with an SOM
neural network for finding the true planet detections and
discarding the FPs among the KOIs. While the methods used in
Armstrong et al. (2017) and our work are very different, the
results give us an idea about the type of accuracy that is
obtainable with real Kepler data.

With more data containing positive detections and additional
data conditioning, a SMOTE feature engineering method could
be useful in achieving insight into exoplanet presence in a
given stellar system. This could provide astronomers a useful
tool for quickly identifying stellar systems with an extremely
high likelihood of exoplanet presence, allowing for more
focused analyses.

4. Discussion

While the results from the LSTM RNN were initially
disappointing, this led us to investigate feature engineering for
both regression and classification problems. Feature engineer-
ing provided excellent results for regression and very
promising results for classification. Once we achieved some
confidence in the approach, we decided to employ the SMOTE
technique on our data set to remove the severe imbalance. After
employing SMOTE, the classification results greatly improved.
The classification balance accuracy is in line with other results
with real data (using different methods), but still does not
achieve the ∼90%–95% that is achieved with simulated data
(Charnock & Moss 2017). Noisiness and sparseness of the data
appear to play a large role in the ability to classify real light-
curve data with machine learning techniques, but improve-
ments in performance can be made using minority class
oversampling techniques such as SMOTE.

Initially, we thought that the poor results from the LSTM
RNN were entirely due to the noisiness and sparseness of the
data and that light curves may not be suited to analysis with an
RNN. However, with the success of SMOTE, we now think
that there may be techniques to boost the minority class and
potentially improve the performance of representation learning
methods with real astrophysical data. It should be noted that
SMOTE cannot be used on time-series data as it is dependent
upon existing in feature space and is not applied to raw time-
series data. Future work will be to investigate such methods
and test if the LSTM RNN can be more successful with data
augmentation. This reinvestigation could be complementary to
the work by Naul et al. (2018) using RNN feature extraction.

The success of the feature engineering approach (particularly
with stellar property prediction) gives us confidence that these
techniques will make useful tools for the astronomy community
when beginning to analyze the large volume of data that will be
available with TESS and the JWST and provide better guidance
in using precious revisit time from ground-based observatories.

5. Summary

With the eminent boom of astronomical data on the horizon,
new methods and techniques need to be developed and refined
to reduce analysis time, increase accuracy, and provide new
insights into the data themselves. We attempt to add techniques

to the community through investigating representation learning
and feature engineering approaches to better understand what
may be possible.
Upon investigation, we discovered that our LSTM RNN

approach to representation learning was limited in its
applicability. This was either due to the limited positive
sample size within our data or the sparseness and/or noisiness
of real data, since successful applications of RNNs have been
shown primarily on simulated data where noise is also
simulated and therefore more predictable.
While representation learning did not prove to be ideal,

feature engineering provided excellent results with regard to
both regression and classification. For regression, the model
could predict values for density, stellar radius, and effective
temperature, where the ridge regression model performed the
best with a normalized RMSE of±0.0215,±0.0441,
and±0.0347 for each value, respectively. Classification results
showed that a random forest of 1000 trees produced the lowest
out-of-sample error at 8.86% with a balanced accuracy of
74.7%. Upon inspection of the literature in the community, this
may be the first comparative study of machine learning
methods using real astronomical data. We hope that this work
will be informative and provide a base for future endeavors
both from our team and the extended community.
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Sara Seager (MIT) and David Hogg (NYU) for discussions,
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