A Mixed-Valence Superstructure Assembled from A Mixed-Valence Host-Guest Complex
Zhichang Liu, Marco Frasconi, Wei-Guang Liu, Yu Zhang, Scott M. Dyar, Dengke Shen, Amy A. Sarjeant, William A. Goddard, Michael R. Wasielewski, and J. Fraser Stoddart

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.8b05322 • Publication Date (Web): 27 Jun 2018

Downloaded from http://pubs.acs.org on June 27, 2018

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
A Mixed-Valence Superstructure Assembled from A Mixed-Valence Host-Guest Complex

Zhichang Liu,1,3,* Marco Frasconi,2 Wei-Guang Liu,4 Yu Zhang,1 Scott M. Dyar,1 Dengke Shen,1 Amy A. Sarjeant,1 William A. Goddard III,4 Michael R. Wasielewski,1,5 and J. Fraser Stoddart1,4*

1Department of Chemistry and 5Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
2Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
3Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
4Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA

Supporting Information Placeholder

ABSTRACT: Herein, we report an unprecedented mixed-valence crystal superstructure which consists of a 2:1 host-guest complex \([MV\subset(CBPQT)_2]^{2+}\) \([MV = \text{methyl viologen}, \text{CBPQT} = \text{cyclobis(paraquat-}\pi\text{phenylene})]\). One electron is distributed statistically between three \([MV\subset(CBPQT)_2]^{2+}\) comprised of a total of 15 viologen units. The mixed-valence state is validated by single-crystal X-ray crystallography which supports an empirical formula of \([MV\subset(CBPQT)_2]_2\pi(PF_6)_3\) for the body-centered cubic superstructure. Electron paramagnetic resonance provides further evidence of electron delocalization. Quantum chemistry calculations support the existence of mixed-valence state. Our findings demonstrate that precise tuning of the redox states in host-guest systems can lead to a promising supramolecular strategy for achieving long-range electron delocalization in solid-state devices.

Long-range electron delocalization involving noncovalently bonded assemblies plays a pivotal role in biological processes such as light-harvesting antenna complexes. A steadily improving understanding of electron delocalization at the molecular level has been assisted by the investigation of artificial model systems—invoking donor–acceptor assemblies and mixed-valence complexes—which have instigated the creation of optoelectronic devices. Indeed, tremendous advances have been made towards developing artificial systems composed of molecular frameworks and supramolecular architectures. The development of host-guest chemistry has opened the door to synthetic hosts being ideal systems for studying electron delocalization through noncovalent-bonding interactions. Since the late 1980s, we have investigated cyclobis(paraquat-\pi\text{phenylene}) (CBPQT4+). Figure 1a—composed of two 1,1’-dialkyl-4,4’-bipyridinium (BIPY2+) units—which is capable of forming inclusion complexes with neutral π-electron-rich guests through π–π and charge-transfer interactions. Recently, we discovered the ability of CBPQT4+, when reduced to CBPQT2(•+) to form a stable 1:1 inclusion complex BIPY2•+(CBPQT2(•+)) with appropriate guests containing BIPY2•+ because of favorable radical–radical interactions. By employing this 1:1 complex as a template, many high-energy mechanically interlocked molecules—(MIMs)—which would otherwise be difficult to synthesize—have been prepared. These MIMs exhibit intramolecular electron delocalization in their mixed-valence states thanks to the protection of the mechanical bond.

Herein, we demonstrate an unprecedented example of mixed-valence states in a crystal superstructure assembled from a unique 2:1 host-guest complex MV⊂(CBPQT)2 (MV = \text{methyl viologen})—namely, one MV entity encircled by two CBPQT rings—which bears evenly 2/3+ charge. In other words, two positive charges are distributed statistically among total 15 BIPY units as well as its unusual ratio of BIPY/charge have been confirmed as one neutral MV0⊂(CBPQT)2 and one neutral MV0⊂(CBPQT)2. The formation of this mixed-valence superstructure complex as well as its unusual ratio of BIPY/charge have been confirmed by single-crystal X-ray diffraction (XRD), which affords an empirical formula of \([MV\subset(CBPQT)_2]_2\pi(PF_6)_3\) for the body-centered cubic superstructure, while the existence of free radicals in the bulk sample has been proved by electron paramagnetic resonance (EPR) spectroscopy. Quantum chemistry calculations support the existence of mixed-valence state.

Figure 1. (a) Structural formulas of BIPY2+ and CBPQT4+. (b) UV-Vis-NIR Absorption and (c) EPR spectra of an equimolar mixture (deep blue) of CBPQT•4PF6 and MV•2PF6 and its reduced product (red) upon addition of 6 equiv of CoCp2.
To understand the binding properties19 of CBPQT\textsubscript{2} towards
neutral MV\textsubscript{0}, we investigated the reduction of an equimolar mixture
of CBPQT•4PF\textsubscript{6} and MV•2PF\textsubscript{6} using cobaltocene (CoCp\textsubscript{2}).
The UV-Vis-NIR spectrum (Figure 1b) of this mixture before
reduction exhibits no Vis-NIR absorption bands and no EPR signals
are observed (Figure 1c). Upon reducing this mixture with 6
equiv of CoCp\textsubscript{2}, a new band appears at 367 nm with a shoulder at
392 nm, observations which are in line with the spectra reported19-
20 for neutral CBPQT\textsubscript{0} and MV\textsubscript{0}, indicating the generation of both
these neutral forms. We observed, however, a very weak broad
NIR absorption band at \sim1178 nm, which is not really noticeable
until it is magnified 20-fold. This characteristic NIR band, which
de-rives from charge-resonance transitions, can be ascribed to the
formation of complexes between BIPY0 and trace of the incompletely
reduced BIPY+ radical cations. Consistent with the appearance
of the NIR band, a non-negligible weak EPR signal is
also evident for the reduced solution sample, confirming the presence
of radical species. The existence of both weak NIR band and
EPR signal indicates that, although most of this mixture is re-
duced to CBPQT0 and MV0, trace amounts of BIPY in CBPQT or
MV still remain as radical cationic BIPY+ which associates with
its neutral counterpart BIPY0. Thus, certain mixed-valence complexes
are formed.

This observation encouraged us to assess the formation of complexes
in the extreme case of a mixed-valence system. Despite the
rapid disproportionation of BIPY+ radical cations, we were able

to obtain black single crystals suitable for XRD from an equimolar
mixture of CBPQT•4PF\textsubscript{6} and MV•2PF\textsubscript{6} reduced with 6 equiv
of CoCp\textsubscript{2}. The resulting black crystals are strikingly different
from the red crystals of CBPQT0 and MV0. Single-crystal XRD
analysis (Figure 2) shows that the superstructure is composed of a
unique 2:1 host-guest complex MV⊂(CBPQT),—namely, a MV
entity embraced by two CBPQT rings with a C\textsubscript{2} axis passing
perpendicular (Figure 2c) through the center of the MV plane. Two
isostructural CBPQT rings—adopting a slightly conical shape
with two angles between the ring plane and two p-xylene planes
of 100 and 104°—are held (Figure 2b) together head-to-head by
six [H\cdots H] contacts of 2.33–2.39 Å. The “corner” angles of
CBPQT are 112°, a value which is comparable with the 113°
found in CBPQT0. The mean distance between two BIPY planes
of CBPQT is 6.83 Å, similar to the value reported19 for CBPQT0.
The MV entity is encapsulated through π–π interactions of 3.31 Å
between MV and two CBPQT as well as by four [C–H\cdots π] interactions
of 2.85–2.94 Å with a dihedral angle between MV and
CBPQT of 70°. Somewhat unexpectedly, the positive charge car-
died by this complex is observed to be a non-integer less than
even 2. We identified two CBPQT rings and (ii) a host-guest complex bear-
ing charges more than zero but less than one.

For the sake of simplicity, we used a model in which MV is
shown in purple and CBPQT, in red. The bond lengths of BIPY
in MV and CBPQT are 3.25 Å and 3.23 Å, respectively. The bond lengths for BIPY of
CBPQT are 3.30 Å and 3.28 Å, similar to those reported for BIPY of CBPQT.

Figure 2. Crystal (super)structure of MV⊂(CBPQT)\textsubscript{2}. (a) Front
view showing the corner angles of CBPQT, torsional angle of
BIPY in CBPQT, and [C–H\cdots π] interactions (pink dash lines). (b) Side view exhibiting the angles between xylene planes and
CBPQT, the dihedral angle between MV and CBPQT, and [H\cdots H]
interactions (blue dash lines) between two CBPQT. (c) Top view
indicating the C\textsubscript{2} symmetrical axis and the width of CBPQT, and
π–π interactions between MV and CBPQT. H, white; CBPQT, red;
MV, purple. The bond lengths of BIPY in MV and CBPQT are
portrayed in purple and red, respectively.

To understand the binding properties19 of CBPQT\textsubscript{2} towards
neutral MV\textsubscript{0}, we investigated the reduction of an equimolar mixture
of CBPQT•4PF\textsubscript{6} and MV•2PF\textsubscript{6} using cobaltocene (CoCp\textsubscript{2}).
The UV-Vis-NIR spectrum (Figure 1b) of this mixture before
reduction exhibits no Vis-NIR absorption bands and no EPR signals
are observed (Figure 1c). Upon reducing this mixture with 6
equiv of CoCp\textsubscript{2}, a new band appears at 367 nm with a shoulder at
392 nm, observations which are in line with the spectra reported19-
20 for neutral CBPQT\textsubscript{0} and MV\textsubscript{0}, indicating the generation of both
these neutral forms. We observed, however, a very weak broad
NIR absorption band at \sim1178 nm, which is not really noticeable
until it is magnified 20-fold. This characteristic NIR band, which
de-rives from charge-resonance transitions, can be ascribed to the
formation of complexes between BIPY0 and trace of the incompletely
reduced BIPY+ radical cations. Consistent with the appearance
of the NIR band, a non-negligible weak EPR signal is
also evident for the reduced solution sample, confirming the presence
of radical species. The existence of both weak NIR band and
EPR signal indicates that, although most of this mixture is re-
duced to CBPQT0 and MV0, trace amounts of BIPY in CBPQT or
MV still remain as radical cationic BIPY+ which associates with
its neutral counterpart BIPY0. Thus, certain mixed-valence complexes
are formed.

This observation encouraged us to assess the formation of complexes
in the extreme case of a mixed-valence system. Despite the
rapid disproportionation of BIPY+ radical cations, we were able

to obtain black single crystals suitable for XRD from an equimolar
mixture of CBPQT•4PF\textsubscript{6} and MV•2PF\textsubscript{6} reduced with 6 equiv
of CoCp\textsubscript{2}. The resulting black crystals are strikingly different
from the red crystals of CBPQT0 and MV0. Single-crystal XRD
analysis (Figure 2) shows that the superstructure is composed of a
unique 2:1 host-guest complex MV⊂(CBPQT),—namely, a MV
entity embraced by two CBPQT rings with a C\textsubscript{2} axis passing
perpendicular (Figure 2c) through the center of the MV plane. Two
isostructural CBPQT rings—adopting a slightly conical shape
with two angles between the ring plane and two p-xylene planes
of 100 and 104°—are held (Figure 2b) together head-to-head by
six [H\cdots H] contacts of 2.33–2.39 Å. The “corner” angles of
CBPQT are 112°, a value which is comparable with the 113°
found in CBPQT0. The mean distance between two BIPY planes
of CBPQT is 6.83 Å, similar to the value reported19 for CBPQT0.
The MV entity is encapsulated through π–π interactions of 3.31 Å
between MV and two CBPQT as well as by four [C–H\cdots π] interactions
of 2.85–2.94 Å with a dihedral angle between MV and
CBPQT of 70°. Somewhat unexpectedly, the positive charge car-
died by this complex is observed to be a non-integer less than
even 2. We identified two CBPQT rings and (ii) a host-guest complex bear-
ing charges more than zero but less than one.

Despite the fact that torsional angles associated with BIPY
change upon guest complexation, the change in the bond lengths
can be used to establish19,21-22 the oxidation states of BIPY. To
clarify the oxidation states of each BIPY of [MV⊂(CBPQT)\textsubscript{2}]2/3+,
we compared the bond lengths of two classes of BIPY units in this
complex with those for BIPY reported19,23 present in CBPQT\textsubscript{0},
CBPQT2/3+, and CBPQT0 as well as MV2+, MV3+, and MV0. We
were able to identify (Figure 3) a clear trend in the lengths of the
bonds in BIPY at different redox states. In particular, the bond
length for C4–C4’ undergoes a distinct change from \sim1.49 Å (2+),
to \sim1.43 Å (2+), to \sim1.37 Å (0), in line with the nature of bond
C4–C4’ changing from a single bond, a radical-delocalized bond,

Figure 3. Comparison of bond lengths of BIPY in MV and
CBPQT for MV⊂(CBPQT)\textsubscript{2} with BIPY in CBPQT2+, CBPQT2/3+,
CBPQT0, MV2+, MV3+, and MV0. Arrows indicate the changes in
bond lengths of BIPY.

The existence of the unpaired electrons in the mixed-valence
crystals was also confirmed by EPR spectroscopy. An EPR signal
inhomogeneously broadened by many hyperfine splittings was
Figure 5. Crystal superstructure of $[\text{MV} \subset \text{CBPQT})_2]_{\text{PF}_6}$: (a) Octahedron assembled from six $\text{MV} \subset \text{CBPQT})_2$ surrounding two PF_6 and (e) its schematic representations. (b) Body-centered cubic superstructure assembled by adjacent octahedrons sharing $\text{MV} \subset \text{CBPQT})_2$ as linkers and (f and g) its schematic representations. (d) Hexagonal channels packing into (c) hexagonal arrangement as viewing along c-axis (the diagonal of the cube in b). (h) Schematic representation of body-centered cubic superstructure after removing all $\text{MV} \subset \text{CBPQT})_2$. Green balls represent PF_6 pairs in e-h. (i) A representation showing that every $\text{MV} \subset \text{CBPQT})_2$ is encircled by four $\text{MV} \subset \text{CBPQT})_2$ and two pairs of PF_6. (j) 20 Complementary [C–H···π] interactions (Figure S2) of 2.59–2.79 Å between BIPY planes and H atoms on CBPQT of adjacent $\text{MV} \subset \text{CBPQT})_2$. (k) Schematic representation of an extended body-centered cubic framework wherein PF_6 pairs are omitted. CBPQT, red; MV, purple; F, green; P, yellow. H atoms in a–d and i and solvents are omitted.

Figure 4. Solid-state continuous-wave EPR spectrum of crystals of $[\text{MV} \subset \text{CBPQT})_2]_{\text{PF}_6}$.

The X-ray crystal superstructure reveals that every two PF_6 anions—one of them disordered (Figure S1) about a six-fold c-axis—are surrounded by the para-xylylene planes of six $\text{MV} \subset \text{CBPQT})_2$ to form (Figure 5a and e) an octahedron wherein six $\text{MV} \subset \text{CBPQT})_2$ occupy the vertices, but they also serve as shared linkers in connecting these octahedrons together in a three-dimensional array which extends throughout the whole crystal. Thus, every octahedron has the empirical formula of $[\text{MV} \subset \text{CBPQT})_2]_{\text{PF}_6}$. The $[\text{MV} \subset \text{CBPQT})_2]_{\text{PF}_6}$ repeating motifs adopt (Figure 5b, f–g) an approximately body-centered cubic packing arrangement, wherein (i) PF_6 anion pairs represent (Figure 5h) the vertices and the center of the cube and (ii) each $\text{MV} \subset \text{CBPQT})_2$ is linked with two pairs of PF_6 through its two outward-pointing para-xylylene faces. As viewed along the c-axis (Figure 5b), hexagonal channels—which are filled (Figure 5d) up with PF_6 anions at 8.61 Å apart from each other and penetrate through every octahedron—can be observed to pack (Figures 4c and S1) into a hexagonal arrangement. In the superstructure every $\text{MV} \subset \text{CBPQT})_2$ is encircled (Figure 5i) by four adjacent $\text{MV} \subset \text{CBPQT})_2$ and two pairs of PF_6 generating an octahedron. Since every complex has three types of facets—namely, para-xylylene planes, BIPY planes, and CBPQT ring planes—in which the para-xylylene planes interact with PF_6 anions, every $\text{MV} \subset \text{CBPQT})_2$ links (Figures 5 and S2) with four adjacent but orthogonally oriented $\text{MV} \subset \text{CBPQT})_2$ by means of 20 complementary [C–H···π] interactions ranging from 2.59 to 2.79 Å between the BIPY planes and H atoms on the CBPQT rings, assembling (Figure 5k) into an extended body-centered cubic framework with PF_6 pairs as vertices and center of each cube. Hirshfeld surface analysis confirms (Figure S2b) that the reciprocal [C–H···π]/[π···H–C] interactions, which contribute 79.8%, are the most significant interactions between $\text{MV} \subset \text{CBPQT})_2$.
Quantum chemistry calculations were carried out to analyze the charge distribution within and beyond MV⊂(CBPQT)₂. XRD analysis indicates that every three MV⊂(CBPQT)₂ share statistically two positive charges to give a body-centered cubic superstructure with the empirical formula of [MV⊂(CBPQT)₂]₂(PF₆)₃. The calculated bond lengths (Table S2) for C4–C4’ in MV (1.36 Å) and MV’ (1.42 Å) agree well with the trend in Figure 3. The uneven distribution of positive charge attracts PF₆ anions, encouraging one of them to drift from the 3-fold axis to a position that is closer to the two MV⊂(CBPQT)₂. Such an outcome is in agreement with observations (from XRD) which show that one of the two PF₆ anions does not occupy one single position with equal distances between six MV⊂(CBPQT)₂, but is disordered over six symmetry-related positions with one-sixth occupancy. We have demonstrated that two CBPQT rings are able to encapsulate cooperatively one MV entity to form a mixed-valence 2:1 host-guest complex MV⊂(CBPQT)₂. XRD analysis indicates that every three MV⊂(CBPQT)₂ share statistically two positive charges to give a body-centered cubic superstructure with the empirical formula of [MV⊂(CBPQT)₂]₂(PF₆)₃. The fact that every MV⊂(CBPQT)₂ bears only a mean charge of 2/3+ suggests the distribution of every two positive charges over two MV⊂(CBPQT)₂ with one neutral MV₀⊂(CBPQT)₂. Quantum chemistry calculations confirm the mixed-valence state of the solid-state superstructure. This research highlights the potential of host-guest strategies for achieving long-range charge delocalization in solid-state devices by constructing host-guest complexes with precisely adjustable redox states.

ASSOCIATED CONTENT

Supporting Information
Detailed information regarding the experimental methods and procedures, X-ray crystallographic data, and supportive figures and tables. This material is available free of charge via the Internet at http://pubs.acs.org. CIF file for [MV⊂(CBPQT)₂]₂(PF₆)₃ (CCDC 985866).

AUTHOR INFORMATION

Corresponding Authors
zhichangliu@northwestern.edu
stoddart@northwestern.edu

Notes
The authors declare no competing financial interests.

ACKNOWLEDGMENT

This research is part of the Joint Center of Excellence in Integrated Nano-Systems (JCIN) at the King Abdulaziz City for Science and Technology (KACST) and Northwestern University (NU). The authors thank both KACST and NU for their continued support of this research. This research was also supported by the National Science Foundation under grant no. DMR-1710104 (M.R.W.).

REFERENCES
