
Terahertz Waveguiding in Silicon-Core Fibers 

Derek A. Bas,
1
 Scott K. Cushing,

1
 John Ballato,

2
 and Alan D. Bristow

1,* 

1Department of Physics, West Virginia University, Morgantown, WV, 26506, USA 
2Center for Optical Materials Science and Engineering Technologies (COMSET), School of Materials Science and 

Engineering, Clemson University, Clemson, SC 29631, USA 
*alan.bristow@mail.wvu.edu  

Abstract: We propose the use of a silicon-core optical fiber for terahertz 

(THz) waveguide applications. Finite-difference time-domain simulations 

have been performed based on a cylindrical waveguide with a silicon core 

and silica cladding. High-resistivity silicon has a flat dispersion over a 0.1 – 

3 THz range, making it viable for propagation of tunable narrowband CW 

THz and possibly broadband picosecond pulses of THz radiation. 

Simulations show the propagation dynamics and the integrated intensity, 

from which transverse mode profiles and absorption lengths are extracted. It 

is found that for 140 – 250 m core diameters the mode is primarily 

confined to the core, such that the overall absorbance is only slightly less 

than in bulk polycrystalline silicon. 

  

OCIS codes: (230.7370) Optical devices, Waveguides; (300.6495) Spectroscopy, terahertz; 
(160.6000) Semiconductor materials; (060.2290) Fiber materials.  
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1. Introduction  

The terahertz (THz) frequency range is useful for various technological and scientific 

applications; see [1,2] and references therein. THz radiation lies between the microwave and 

infrared (IR) regions of the electromagnetic spectrum and so THz-based technologies share 

many of the same potential applications as its spectral neighbors. However, THz components 

are less developed and so many hurdles exist that must be overcome in order to develop 

suitable device architectures. For example, and most simply, high-quality transmission fibers 

are needed to confine and direct THz radiation in a manner that is robust and enabling of 

compact practical devices. Various schemes have been investigated for THz waveguiding 

using either dielectric [3-6] and metallic [7] materials. Dielectric fibers provide advantages in 

length and flexibility, extend low-frequency waveguiding capabilities, and have much lower 

power absorption than metal waveguides [4]. Existing schemes are typically very efficient for 

laboratory use in the specific applications for which they are designed, with attenuation 

coefficients as low as about 0.01cm
-1

 [3,5]. However, designing a multipurpose, 

commercially-manufactured THz waveguide would be an important advancement of the field. 

Flexibility and available wavelength ranges become important considerations and for 

applications such as endoscopy [8] it is important that the waveguide’s core, and hence the 

propagating mode, be protected by a cladding for deployment. 

It has been predicted that silicon would be an optimal material for THz applications. 

Factors that support the claim are its relatively constant refractive index and low absorption 

over the THz frequency range [9], as well as its high thermal conductivity, high optical 

damage threshold, and low-loss transmission in the infrared frequency range [10]. Recently, 

Ballato, et al., have manufactured various silicon-core fibers using a scalable molten-core 

technique, which shows promising results for future applications [10-12]. Alternative 

manufacturing techniques include chemical vapor deposition [13] and high pressure melt 

infiltration [14]. The molten-core method is particularly appropriate for THz applications, 

because it provides for large core (> 50 μm) fiber fabrication (potentially single-mode at THz 

frequencies) with length scalability and potentially high-speed manufacturing. 

Silicon-core optical fibers have been shown to guide near- and mid-wave infrared light, 

increase nonlinear-optical properties [15] and act as Faraday isolators [16]. The purpose of 

this paper is to extend the range of potential applications for silicon optical fiber to THz 

waveguides. The propagation of pulsed THz radiation is simulated to capture the propagation 

effects over a wide tuning range for either narrow band continuous-wave (CW) or broadband 

pulse transmission. Proof-of-concept studies are being performed and the observed THz 

transmission spectra and properties will be discussed in detail elsewhere. 

2. Mode Analysis 

Similarly to conventional optical fibers, semiconductor-core waveguides for THz applications 

operate on the (classical) principal of total-internal reflection. The radiation modes are 

confined and guided by the higher index silicon core (ncore = 3.418 at ~1 THz) [9], which is 

clad by silica (nclad = 1.954 at ~1 THz) [9,17]. Optical fibers are characterized by a normalized 

frequency parameter      /V NA d  , where the core diameter, d, is taken for the purposes of 



this work to be 140, 170, 200, and 250μm. The wavelength λ, is defined as  c/ncore, with c 

being the vacuum light speed and the frequency range = 0.5 – 3 THz, which correspond to 

core wavelengths of ~29.2 m – ~175 m. The numerical aperture for an optical fiber is given 

by 2 2

0sin /c core cladNA n n n   , where θc is the half acceptance angle and n0 for the external 

medium, which is usually air. The core-cladding refractive index contrast is >1, which leads to 

a very high NA compared to conventional optical fibers, where the refractive index contrast is 

typically ~10
-3

. For practical considerations, such as for single-mode operation, to eliminate 

intermodal dispersion, and to increase output efficiency, it is preferable to minimize V, hence 

NA. This can be accomplished by setting n0 = 3.418 to simulate end-butt coupling to a silicon 

chip or hemispherical lens. 
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Fig. 1 (a) Normalized frequency parameter V for fibers with d = 140, 170, 200, and 250 μm 

(blue, green, red, and cyan). The horizontal line is at V = 2.405. (b) The normalized 1/e2-

diameter of fundamental HE11 mode. Inset shows simulated Gaussian pulse values of w/d 

versus core thickness. (c) Modal refractive index THz frequency and core diameters. 

 

V is graphed as a function of frequency in Fig. 1(a), showing a linear increase in the V 

with frequency and a steeper slope with increasing core diameter. A fiber is single mode if its 

normalized frequency is less than the first root of the J0 Bessel function, i.e. V < 2.405, which 

is indicated as the horizontal line on the plot. Based on the normalized frequency calculations, 

it was determined that for d < 140 μm, wave propagation will have too much spatial overlap 

into the cladding, leading to higher attenuation. On the other hand, for d > 140 μm the 

wavelength range for single-mode operation diminishes. 

Using commercially available OptiMode software, the fundamental HE11 guided mode 

profile was computed. The 1/e
2
-diameter of the mode profile was found in terms of the 

normalized frequency parameter and core diameter [18] as 

 

  1.5 60.65 1.619 2.879w d V V    .               , (1) 

 

The normalized mode profile w/d is plot as a function of frequency in Fig. 1(b). The w/d 

parameter increases geometrically with decreasing frequency, but more slowly for wider core 

diameters. For high frequencies, ν > 1.5 THz, w/d ranges from 0.75 –1.4. Values of w/d >> 1 

leads to overlap of the mode in the cladding, which for THz radiation will result in absorption 



in the silica [9,17]. This issue is limited for wider cores, but even the 250 m core shows 

overlap into the silica. 

The modal index nmode was determined from the spatial extent of the mode profile; see Fig. 

1(c). It is found that for high frequencies and large core diameters nmode approaches the value 

of bulk silicon, ncore. At low frequencies and especially in smaller core fibers there is 

increased mode overlap with the cladding and the mode index approaches nclad, confirming the 

result of the normalized 1/e
2
-diameter of the mode profile. 

Fresnel losses occur at the interfaces between external Si (chip or hemisphere) and fiber, 

due to mismatch between the nmode and n0. For example, 0.5-THz radiation coupling to the 

140-μm fiber has a reflection of IR/I0 = (nsi
2
-nmode

2
)/ (nsi

2
+nmode

2
) ≈ 0.03. Reflection decreases 

as the core diameter and frequency increase, because nmode  n0. 

2. Finite-Difference Time-Domain Simulations 

Finite-difference time-domain (FDTD) simulations also were performed on fibers with core 

diameters of d = 140, 170, 200, and 250μm, and cladding outer diameters of 1.6 m using 

open-source Meep software [19]. Due to the radial symmetry of the optical fiber geometry 

two-dimensional simulations are sufficient to determine propagation trends. The simulation 

cell has a grid size of 5000 m  3000 m, surrounded by a 100-m border to absorb all 

reflections into the simulation region. The spatial and temporal resolution is set to 6.25 m 

and 41.7 fs respectively. 
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Fig. 2 (a) Spatial pattern of intensity at a single instant in time for a pulse travelling through a 

140μm core fiber. Larger darkened areas are a visual aid to show the cladding and should not 

be confused with a nonzero intensity (Media 1; 6.6 MB). (b) Comparison of main pulse and 
dispersive low-frequency tail for smallest and largest core diameters (Media 2; 6.6 MB).  

 

The core is centrally located inside the cell with dimensions of 4000 m  d and 

symmetric cladding has dimensions of 4000 m  1600 m. A bulk Si region is placed at the 

entrance and exit regions of the fiber region to mimic either end-butt coupled focusing 

hemispheres or planar chip. The dielectric constants are determined from fitting the literature 

results [9] with a damped oscillator model to determine the dispersion relation 
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where the high-frequency dielectric constant is () = 11.67895, the oscillator amplitude is  

 = 0.00248, resonance frequency is 0 = 2.35368 THz and damping rate is  

 = 17.1509 THz for the Si core. Similarly, () = 3.64407,  = 0.16585, 0 = 5.47686 THz 

and  = 2.96159 THz for the SiO2 cladding. These units are scaled to dimensionless 

parameters to run in the FDTD code. 

The source is described as the discrete time derivative of a Gaussian [19] waveform as  

 1 2 2

0( ) ( ) exp( ( ) / 2 )E t i i t t t w
t

  
    


, (3) 

 

which corresponds to a plane-wave source with a Gaussian envelope determined from the 

frequency-domain properties of a desired pulse with center frequency of 1.755 THz and the 

full-width at half-maximum (FWHM) of 2.925 THz. These parameters give a pulse width of 

p ~ 342 fs. This pulse shape approximately reproduces those found by optical rectification; 

for example see [20]. The input extends across the full input (left) side of the cell, such that 

the radiation couples to both the core and cladding. This assumes that the mode is nearly 

equivalent to being at the beam waist if it were a focused Gaussian mode, and also provides a 

faster travelling reference pulse in the cladding for comparison to the core region of the fiber. 

From the source radiation, the algorithm incrementally evolves over finite time intervals using 

Maxwell’s equations [18], propagating in the +z direction. The FDTD simulation output 

electric field snapshots separated by about 300 fs in time. 
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Fig. 3. (a) Evolving shape of the pulse as the peak electric field reaches z-distances given in the legend. Vertical 
dashed lines indicate the core-cladding boundary. (b) Attenuation of core (blue) and cladding (red) modes. The blue 

squares represent the flux through the core, and the red squares represent the flux through the entire fiber. Blue and 

red solid lines are exponential fits to the data points. Blue and red dotted lines are Beer’s law attenuation curves for 
pure silicon and silica [9,16], respectively. 

 

Figure 2(a) shows the full-cell intensity snapshot at a single time step (17.67 ps after the 

wave enters the fiber) for d = 140 m. Regardless of the core diameter, the bulk of the pulse 

propagating in the core has a speed of 0.29c, which is consistent with ncore = 3.45. Lower 

frequency components clearly lag the main pulse at a slower velocity, which is consistent with 

the determination of V. In comparison, the cladding propagation speed is ~0.6c, due to the 

lower index. Hence, core waveguiding can be separated from cladding propagation by taking 

into account the refractive index contrast between the cladding and the fundamental 

waveguiding mode. For example, in a 1cm long large diameter fiber (for nmode ≈ ncore), the 

pulses that travel in the fundamental mode and in the cladding should be separated in time by 

z/c(nmode - nclad) = 48.8 ps. This temporal separation is an advantage for time-domain THz 

spectroscopy, which could easily identify each component. 



A side-by-side comparison of the pulse near the exit of the smallest and largest core 

diameters at the same time step is shown in Fig. 2(b). A clear tail is present for the lower 

frequency components in both fibers. In the 140 μm fiber the tail is dominated by poorer 

mode confinement, while in the 250 μm fiber intermodal dispersion is more prominent, 

although both effects are present in each fiber. 

The 1/e
2
 diameter of the mode is extracted by examining the transverse position x 

extracted from the intensity profile for a given time slice, wherein the z position is selected to 

be the peak THz intensity. Figure 3(a) shows the extracted intensity profiles for various 

positions z = 836, 2010, 3146 and 4305 m. Shortly after the pulse enters the core, its profile 

is very narrow and well-confined to the core, but after travelling approximately 4 mm it fills 

out the core and the shape becomes relatively stable. 

When the profile is stable, a w/d value representing the mode confinement can be 

extracted from a Gaussian fit of the pulse. Mode confinement for all four simulated core 

diameters is shown in the inset of Fig. 1(b). The behavior is consistent with that prediction 

from Marcuse’s equation [18] showing that smaller core diameters will experience the poorest 

mode confinement; see Eqn (1). Note that these values are integrated over the pulse spectrum. 

Attenuation for a single frequency (1 THz) in the 140 μm core fiber was obtained by 

tracking the simulated flux through planes at several z distances, as shown in Fig. 3(b). 

Intensity was integrated over the fiber core and compared with the attenuation for pure silicon. 

The core intensity is attenuated more strongly than would occur in silicon because nmode has a 

significant contribution from the cladding refractive index at 1 THz; see Fig. 1(c). Intensity 

integrated over the entire fiber was also compared with the attenuation for pure silica. 

Attenuation through the fiber cladding is fit well with Beer’s law for pure silica. 

5. Conclusion 

The transmission of a broadband THz pulse through silica-clad, silicon-core optical fibers of 

various core diameters has been simulated in order to demonstrate the feasibility of this 

potentially practical approach. It has been determined that optimal fiber core diameters will 

fall approximately in the 140-250 μm range; ideally suited for the molten-core fabrication 

approach to semiconductor optical fibers. For smaller diameters, the guided modes will 

experience more spatial overlap with the cladding, especially for the lower frequency 

components. For larger diameters, the wavelength range for which the fibers are single-mode 

is narrower, requiring intermodal dispersion to be taken into account. 

FDTD simulations agree well with a quantitative Beer’s law absorption analysis, and with 

normalized frequency calculations and Marcuse’s mode-confinement equation. The 

simulations demonstrate that THz waveguiding is achievable in semiconductor-core optical 

fibers of the stated core diameters. 

Overall silicon-core optical fibers that can be created using a molten-core pulling 

technique are suitable for narrowband CW or possibly broadband pulsed THz radiation in the 

range of 0.5 – 3 THz. In practice the fiber-manufacturing method can be altered to use a wider 

range of materials beyond silicon and silica to improving THz waveguiding. Since the mode 

and basic propagation analysis are discussed in this proposal, the experimental proof-of-

concept will be presented in detail elsewhere. 
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