
IEEE  JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-21, NO. 5 ,  MAY 1985 

The Effect of Spatially Dependent Temperature and 
Carrier Fluctuations on Noise in Semiconductor Lasers 

ROBERT J. LANG, STUDENT MEMBER, IEEE, KERRY J. VAHALA, STUDENT MEMBER, IEEE, 
AND AMNON YARIV, FELLOW, IEEE 

443 

Abmmt-The spatially dependent equations of motion for a  single- 
mode semiconductor laser including Langevin source terms are derived 
and solved. The relative intensity, frequency, and field fluctuation spec- 
tra  are derived and calculated. The results include low-frequency excess 
noise, frequency noise enhancement due to two forms of amplitude- 
phase coupling, and power-independent contributions to the linewidth. 

0 
I. INTRODUCTION 

VER  the past twenty years,  semiconductor  lasers have 
evolved into  a reliable  source  of  coherent  near-IR  light. 

Their  small  size,  low  power  requirement, and  ability to  be 
directly  modulated  at microwave  frequencies  has, in more  re- 
cent  years,  made  them  the subject  of  intense study  for use in 
communications systems,  particularly  fiber  optics  transmission 
systems.  Part  of this  interest  has  been  directed  towards  char- 
acterizing  their  noise  properties and  the  consequent  effects  on 
transmission  of  information.  Several anomalous  features  in 
their  noise  spectra have been  observed,  including  a  spiking 
resonance  in the intensity  spectrum [ l ]  and  the  frequency 
fluctuation  spectrum [4], a  linewidth  some  thirty  timesgreater 
than  that  predicted  by  the  modified Schawlow-Townes theory 
[ 2 ] ,  power-independent  linewidth  components [3], [25], as- 
symmetry  in  the  field  spectrum [4], and excess  noise at low 
frequencies in both  the  intensity  and  frequency  fluctuation 
spectrum [5], [ 6 ] ,  [7], [ 2 5 ] ,  Several  theoretical  models, both 
semiclassical and  quantum mechanical, have explained many 
of these  features. Early work  by McCumber [lo] explained 
the spiking  resonance in the  intensity  spectrum  as a result of 
photon-inversion  dynamics using a Langevin approach;  treat- 
ments by  Lax [8] and Haug and Haken [17] also noted  this 
effect  and in addition provided  a  quantum-mechanical  treat- 
ment. More recently,  gain  spectrum  detuning  has  been  invoked 
by several authors  to explain  linewidth  enhancement,  the  as- 
symmetrical  field  spectrum,  and resonance structure  in  the 
frequency  fluctuation  spectrum [9], [ 151. Other  theoretical 
and  experimental  works  have  corroborated  these  results [l],  
[l 11. To date, however,  there  has  been no  satisfactory  ex- 
planation  of  the  observed rise in both  intensity  and  frequency 
noise  below  approximately 1 MHz. 

Most theories  either  assume a priori or quickly  reduce to 
spatially  independent  sets of equations.  This  approach  offers 
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the distinct  advantage  of  reducing  a  multidimensional  set  of 
partial  differential  equations to  a  one-dimensional  set  of ordi- 
nary  differential  equations,  and  the  assumption’s  validity  in 
justified  by  the large number of  effects  predicted  or explained 
by such  theories.  Still,  there  are  features  of the laser dynamics 
that  are  lost; implicit  in  such treatments are the assumptions 
that averages of products  are equal to  the  product  of  the aver- 
ages, and  any  fluctuations  in  spatial  distributions  are lost  in 
the averaging process [ 121 . 

Diffusion,  for  example,  plays no role in a  spatially  indepen- 
dent  treatment,  yet  diffusion  both  damps  out  spatial  tiuctua- 
tions  and  introduces  fluctuations of its  own. Voss and Clarke 
[13] and van  Vliet and Mehta [ 141  have  proposed  diffusion 
noise  as  a  major  source of low-frequency  transport noise in 
semiconductors. Using a Langevin approach,  they calculated 
carrier and  temperature  fluctuations in different  geometries, 
and  from  those,  current  and voltage  noise. 

The  analysis of a semiconductor laser is somewhat  different 
from that  of  the bulk  semiconductor,  however,  because  of  the 
additional  coupling  between  carriers,  temperature  distribution, 
and  the  optical field. In  this paper,  we  shall solve the spatially 
varying  equations  of  motion  for the carrier  density,  tempera- 
ture  distribution,  and lasing field.  The  results  of the analysis 
will show that spatially varying temperature  fluctuations  con- 
tribute significantly to  the low-frequency  noise  in both  the 
intensity  and  frequency  fluctuation  spectra,  and  that  diffusion 
controls  the precise structure of the  spectra. Carrier fluctua- 
tions,  while  present,  are  shown to  contribute minimally to the 
two  spectra.  In  Section 11, we set up  transport  equations  for 
the  photon  field, carrier  density,  and  temperature  distribution 
with Langevin sources; we linearize them,  and  transform  the 
small-signal equations  to spatial and  temporal  frequency-space. 
In Section 111, we  normalize the Langevin sources to  the  dy- 
namical  variables and  relate  them to  the macroscopic  transi- 
tion  rates  in  the laser. In Section  IV, we derive  expressions  for 
relative intensity,  frequency,  and field fluctuation  spectra, in- 
cluding  simplified  results for  the  low-frequency  limit; we pre- 
sent  numerical  examples  of the results, and  compare  them 
with  experimental  observations. We conclude  in  Section  V by 
summarizing  several important  results of the analysis. 

11. EQUATIONS OF MOTION 

A. Transport Equations 

The  starting  point  for the analysis is the set of  equations de- 
scribing the  time  evolution  of  the  carrier  density,  temperature, 
and laser mode  amplitude. The equations  are, respectively,  for 
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carriers 

N = o , V Z N - E o ~ i ( N , T ) I E , / 2  - R , ( N ) + R ( x ) + Z  
2% 

(1) 

where N(x)  is the carrier density, DE is the electronic  dif- 
fusivity, R, is the spontaneous  emission  rate per unit  volume, 
R(x)  is the  pump  rate, ti is a Langevin source, and xi(N, 2") is 
the imaginary part of the susceptibility.  For  temperature 

where T(x)  is the  temperature, DT is the thermal  diffusivity, 
and 0 is a Langevin source.  For  the  electric  field,  the  short 
(picosecond)  round-trip  time of the cavity lets  one  treat  the 
lasing mode  as effectively seeing all parts  of  the  cavity at  once, 
so that  the  optical  field  responds  to integrals over the lasing 
volume.  The field equation is [ 151 

where E, is the  electric  field  amplitude of the  nth  mode, 0, 
is the  nth resonant  frequency of the  unpumped  cavity, r p  is 
the  photon lifetime, p is the nonresonant  contribution to re- 
fractive  index, P ( x )  is the  induced  polarization, A is a Lange- 
vin source, om is the  actual lasing frequency,  and {e,@)> are 
the normalized nth spatial  modes of the  unpumped  resonator, 
where 

and  Vis  the volume of the lasing mode. 
These equations  are  then linearized about  operating  points 

N(x)  f No (x) + v (x, t )  

R,(N) = R,(No) + w, . v 

where 

and 

is the differential  spontaneous  emission  rate  per  unit  volume. 
If  the laser is  assumed to be  running  in  a single mode,  then 

Substitute  definitions (4)-(6) into (1)-(3),  neglecting terms  of 
second order  or less to get 

i, = ~ ~ 0 2 ~ ~  + D ~ v ~ V  - ? [Xi(No)Ai(1+ 2 P )  + (jVAO21 
2h 

- R,(N,) - wsv +R + z 
i = D T v 2  To + DT02r  -t 0 

Here r and i subscripts on {, v, x, and A denote  the real and 
imaginary  parts,  respectively, of the  quantities which bear 
them. 

The  zeroth-order  terms  in (7)-(9) establish the  operating 
point  for  the  laser;  the  first-order  terms describe the small- 
signal response to  the Langevin  driving terms.  Since  (1) we 
are  only  interested in the second  moment  of A, and (2 )  A is 
approximately  white over the laser line, we can drop  the e-jv 
on  the right hand side of (9); separating  real  and imaginary 
parts  of (9) and taking out  the  zeroth  order  terms gives 

i - D T V 2 r = @  (1 3) 

where l / rR  E w, + ~ ~ A i c ~ ( x ) / 2 4 ? .  Equations (10)-(13) com- 
prise the  fluctuation  equations describing the small-signal 
behavior o f  the relative amplitude ( ~ ( t ) ) ,  phase ( ~ ( t ) ) ,  carrier 
density ( ~ ( x ,  t)), and  temperature ( r (x ,  t))  of a  single-mode 
semiconductor  laser. 

B. Fourier Analysis 
Equations (12) and (13) are  partial  differential  equations 

involving spatial  derivatives in  the Laplacian operator. An 
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exact  solution must take  into  account  the  spatial  variation of 
1/TR and  the  boundary  conditions,  the  latter of  which  are  in 
general mixed  and/or  inhomogeneous.  Unfortunately,  con- 
figurations  for  which  closed-form  solutions  exist  are  few  and 
far  between. We will make  three  simplifying  assumptions. 

1) ti, cr,  and os (and thus 1/TR) are constant over the ac- 
tive  region. 

2) The  carriers  are  confined to  the active  region so that  the 
normal derivative of v vanishes on  the  boundary (e.g., an  ideal 
buried  heterostructure). We can  include  structures with  no 
lateral  confinement (e.g., gain-guided)  by  allowing the  lateral 
confinement  direction to approach  infinity. 

3) The  temperature  profile is subject to fictitious  boundary 
conditions; all  functions  and  derivatives  are  continuous  across 
the  boundary of the device (i.e., we neglect  variations in mate- 
rial  parameters  resulting  from  compositional  shifts  from GaAs 
to AlGaAs). 

We now define  Fourier  transforms. For quantities  which 
vary  in  time 

F(w) = Jdr f ( t )  e- jwt ,  f(t) = - d o  ?(a) ei"? (14) 

For  quantities which  vary  in  space and have fictitious  bound- 
ary  conditions 

277 's 

For  carrier fluctuations  confined to  a  region SI X S2 X S 3  with 
volume VA = S1S2S3, the  finite  domain gives rise to  a  discrete 
spectrum  with  eigenfunctions  defined  as 

We make use of the  identity 

fi3x f(x) g (x) =F b3 k f(k) g(- k)  
1 

(1 9) 
( 2 4  

define 

l?(k)G7 [d3x le,(x))2 e- jk'x 
1 

(20) 
(2 77) 

and  approximate 

Ci,r(k)  X ??i,r * (27113 r(k) (21 

(which is tantamount to assuming that p is constant over the 
optical  mode) so that  the  fluctuation  equations,  transformed 
in  both space and  time, become 

- 
= %(n, 0) 

( jw t DTk2) ?(k, a) = 6 ( k ,  a). 

b otherwise 

having index  vector n; the wavevector q(n) is defined by Elimination  of  carrier  density (6) and  temperature  distribution 
(7") from (22)-(25) gives 

The associated  spectral  representation is 

r (n> - h(x)  = - h(n) d n ,  x). (1 7) 
(26) 

n 'A (1 - jwR) - T-] 
p 3 k  r(k) $i 

Gr w ,  

In this  expression, the {ni} can take  on integer values from 0 
to 00, and y(n) is a  normalization  factor equal to  1,  2, 4, or 8 X(n, a) 
depending on  how many  of  the n:s are  zero (0, 1 , 2 ,  or 3, re- Si n 1 
spectively).  Then the  operators  in (10)-(13)  transform  as jw + DEq2 (n) + - 

TR 

+ DTk2 V i  - 
- jwR 5, A(n) ti 
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Fig. 1. Effect of inhomogeneities in carrier  density  and  optical  field on 
Ielaxation  resonance (R(O+)(2 in the  intensity  noise  spectrum.  The 
optical field distribution is taken  to  be f (1 + cos (2mxilSi)) in the 
lateral  direction  and  susceptibility is taken to be  proportional to 
[ 1/(1 + E ) ]  [ I  + E cos (2mi/Si)l in the  lateral  direction. Transverse 
variation contributes negligibly to  the resonance, so for  a  symmetric 
structure,  the  dominant damping  comes  from the n = (0 ,  2, 0) term. 
(a) e = 0. (b) E = 0.5, S2 = 2.0 Mm. (c) E = 0.5, S2 = 4.0 urn. 

where 

C. Relaxation  Resonance 
If either xi(x) or le&)\ are  constant over the active  region 

then  the  only  nonzero ?&z) or A(n) is the n = (0, 0,O) term. 
In  this  situation, R ( w )  reduces to McCumber's relaxation  reso- 
nance [lo] 

where A is the fill  factor.  However, if both xi(x) and le&)] 
vary over the active  region, then  there are  nonzero values for 
zi(n) and A(n), which  contribute  additional  terms  to  the  reso- 
nance expression.  Physically, this is a demonstration of the 
fact  that  there is a  considerable  diffusive flow of carriers if 
the carrier  density is not  uniform,  and  the phase lag between 
the diffusion  process  and the normal  carrier-photon  dynamics 
alters the  frequency response [23]. For  typical  dimensionsand 
distributions, the result is a  damping  of both  the  intensity reso- 
nance IR(w)I2 and  the  frequency  resonance 11 - jwR(u) l2 .  
Figs. 1 and 2 illustrate the damping  for several different  con- 
figurations.  It is interesting to note  that  if  any  of  the  products 
Xi(.) A(n)  are negative, they can have the effect of sharpening 
the resonance;  however,  such  terms  decrease the overlap  be- 
tween  the gain and  the  optical  mode, degrading the perfor- 

rad2 
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Fig. 2. Same  parameters  for  frequency  fluctuation  resonance 1 + 
HZ 

&I1 -jn;2Rl2. 

mance of the laser and making  it  unlikely that  such a mode 
would  be the preferred  mode  of  oscillation. 

111. LANGEVIN SOURCES 
A. Rate Normalization 

When  several systems  of  particles  interact with each  other 
and/or  with  external  baths  through  random  particle  interac- 
tions,  there  are  fluctuations associated with  each  interaction. 
Such  fluctuations  can  be  accounted  for by  including ap- 
propriately  normalized Langevin sources into  the  equations 
of motion. This approach can  be  used  with  systems w l c h  
vary  continuously (e.g., temperature) if the  interaction being 
characterized by a Langevin source is particulate  (that is, the 
interaction  occurs in  discrete  units,  such as  photon  absorption 
or  nonradiative  recombination).  Each  independent  number 
variable ( A }  will have  associated with it a fluctuation  source 
{a) which  satisfies 

( a ( t )  a ( t ' ) )  = (3 - 6 ( t  - t ' )  

where 0 denotes ensemble average. For a  number variable 
which varies in space  as  well, one has the modified  relation 

<a@, t )  a(x' ,  t ' ) )  = dd(*' 6 ( t  - t ' ) 6 3 ( ~  - x'). (32) 
( d t )  

There  are  additional  fluctuations  associated  with the micro- 
scopic  kinetics  of  carrier  and  thermal  diffusion,  however. 
These have a  different  spatial  correlation  than the previous 
sources. Van  Vliet and Mehta [41] have shown  that  the 
sources  obey 

( M x ,  t )  M X ' ,  f')) 

= 2 0 ~ 0 ,  . vxf [NO(&+) S3(X - X')] 6 ( t  - t ' )  (33)  
for carrier  diffusion,  and 

(8&, t )  Bg(x', t ' ) )  

(3 4) 
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for  thermal diffusion  where K is the specific  heat per unit 
volume and kB is Boltzmann’s constant. 

We can then split = tD + g ,  0 = OD + B E  into diffusion- 
related  and particle-related fluctuation  terms;  the  particle 
terms,  after normalizing to  number rates, give the following 
correlations [ 151 : 

(3 5) 

where Ro is the sum of all rates  that change photon  number. 

( & ( X ,  t )  & ( X I ,  t ’ ) )  = R ~ ( x )   6 3 ( ~  - x’) 6 ( t -  t ’ )  (36) 

where R2 is the  rate per  unit  volume of events that change 
carrier  density. 

(eE(X,  t )  e E ( X ’ ,  t’)> = (“:.>’ - R3(x)   S3(x - x ’ )  S(t - t ’ )  

(3 7) 
where ENR is the mean  thermal  energy  dissipated  in  a  non- 
radiative  (or  absorptive)  event and R 3  is the event rate per  unit 
volume. 

In  addition,  there  are several nonzero  off-diagonal  correla- 
tions,  reflecting the  fact  that  many events  change more  than 
one  system  at  a  time.  They  are  as follows: 

where R 1   ( x )  is the  rate of stimulated  transitions. 

(39) 

where R4 is the  rate  of heat-generating  absorptions. 

(e,+, t)  t E ( X ’ ,  t’))  = c R ) R 5  - ( x )  F 3  (x - x’) 6( t  - t ’) 

(40) 
where R5 is the  rate of  nonradiative  carrier  recombination. 
All other possible  off-diagonal  terms are negligible or  zero, 
including (AiA,> [I  51 . 
B. Langevin Sources in the Transfom Plane 

Equations (28) and (29) are in terms of  transformed  vari- 
ables, so it is convenient to cast  (33)-(40) in  the same  manner, 
particularly  since we  will eventually be interested  in  spectral 
functions Wfg(a) which  are  themselves  transformed  quantities. 
Mathematical  problems  arise  when  one attempts  to  take  the 
Fourier  transform  of  a  stationary signal, however. (While it is 
always  possible to solve the  equations  by Laplace  transform, 
the complications  due to  the initial  conditions  make  the  calcu- 
lation somewhat  tedious.) To be rigorous, one  must use finite- 
domain  Fourier  transforms  defined  as  follows: 

+ T / 2  
. F T ( ~ )  J d t f ( t )   e - j w t ,  

zT(o) J d t  g(t> e-iwt.  (41) 

- T / 2  

+ T/2 

-TI2 

Then,  to calculate the spectral  term  defined  by  the Weiner- 
Khintchine  relations  as 

wfg(a) = J”. <f(t)  g(t  + 7)) e - ja t .  (42) 

In  terms of the  transforms (41), 

Strictly  speaking, the  relations which make  the  Fourier  trans- 
form useful (e.g., transformation  of  differential  operators)  are 
not  exact so long  as the object  of  the  transform is finite  at  the 
limits of integration.  However,  as T+w, the results  of  the 
spectral  calculation become valid. In deference to  our use of 
properties  of the infinite-domain  transform, we will drop  the 
7~ notation  and  continue  to use f. 

We are  also  interested  in  spatial  Fourier  transforms  of the 
Langevin sources  in the same way  that we  defined  transforms 
for  the dynamical  variables  in (15) and (16). The calculations 
are  somewhat  simplified if we make  the  assumption  that all 
carrier  rates  are  uniform over the active  region.  The  trans- 
formed (33)-(40)  are 

where 
r 

(44) 

(4 5) 

(47) 

where  sinc (x) sin (x) /x  and 6 ,  is the  Kronecker  delta. 
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None  of the Langevin spectra have any  frequency  depen- 
dence,  which is as it  should  be; the  nature  of  the Langevin ap- 
proach is that  the  sources  are Markoffian [I61 and  therefore, 
white. 

IV. FLUCTUATION SPECTRA 
A.  Relative Intensity and Frequency Huctuation Spectra 

The relative  intensity  fluctuation  spectrum is defined  as 

while the  frequency  fluctuation  spectrum  is 

( [ i W W I  [-jW(Q)l) = lim 
T (53) 

T -b- 

We make use  of (28) and (29) for p” and jR+, and  relations 
(44)-(51) for the Langevin spectra.  The  tedium of the algebra 
is somewhat relieved if we note  that  the off-diagonal driving 
terms (e.g., WAj!E) are of importance  only near a crossing of 
the.  associated d~agonal spectra  (e.g.> W A ~ A ~ ,  W,,,,); while a 
full  solution  must  contain the off-diagonal  terms, we  lose  very 
little  by ignoring them  for  the rest of the analysis. Define 
or, 2 { y / ( i  and aT i& . / j j j ;  the relative  intensity  fluctuation 
spectrum  inc 
sources, is 

W p p ( W  = I. 

.luding photon,  carrier,  and  temperature noise 

+ j I 3 k  d3k’  r(k) r(k’) ii? 

The  frequency  fluctuation  spectrum  is 

Equations (54a)-(54e) and (55a)-(55e) are  plotted in Figs. 
3(a)-(e) and 4(a)-(e), respectively, for a  typical laser with 
parameters  listed  in  Table 1. There  are several features of 
interest  in the  equations  and graphs. Equations (54e) and 
(55e) are  the familiar  expressions  one derives  using the  stan- 
dard volume-averaged rate  equation analysis [15]. They 
contain  a  relaxation  resonance in the intensity noise [lo] 
and  the same  resonance in  the  frequency noise,  along with 
the linewidth  enhancement  factor aN [ 9 ] ,  [15]. The remain- 
ing expressions  are those  that  are  lost in the volume-averaged 
treatment. We can see from  the  graphs  that  boththe diffusion- 
driven  carrier fluctuations,  (54a)  and (55a), and  the spon- 
taneous emission-driven  carrier fluctuations  (54b),  (55b)  make 
negligible contributions  to  the  intensity noise and  frequency 
fluctuation spectra [Figs. 3(b)  and  4(b)]. Closer examination 
of the summations in (54b)  and  (55b) will show  why this is so. 
Each  term  makes  a  contribution  with  a  corner  frequency of 
Ro = DEq2(n) + 1/rR ; this is an  indication  of  diffusion  damp- 
ing above $ lo .  Below no, where  diffusion is less effective, 
however, the carrier  lifetime TR is responsible for damping the 
perturbation.  In  other  words,  spatial  perturbations to the 
carrier  density  are  damped out before they can  make  a  sub- 
stantial  low-frequency  contribution to the noise spectrum. 
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Fig. 3. Noise terms in the  intensity noise  spectrum  [(54a)-(54e)]  for 
the  parameters listed  in  Table I. (a)  Carrier  diffusion. (b) Carrier 
creationjannihiiation.  (c)  Temperature  diffusion. (d) Nonradiative 
recombination/absorption temperature  fluctuations. (e) Spontaneous 
emission. 

107 - 
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Hz 
Fig. 4. Noise  terms  in  the  frequency fluctuation spectrum [ (55a)-(SSe)] 

for  the  parameters listed  in  Table I. (a) Carrier  diffusion.  (b)  Carrier 
creation/annihilation.  (c)  Temperature  diffusion.  (d)  Nonradiative 
recombination/absorption temperature  fluctuations.  (e)  Spontaneous 
emission. 

Additional  carrier noise sources  (for  example,  noise in the 
pump  current) can be  similarly treated  by  inclusion  into  the 
E Langevin source. 

The  fluctuations  due  to  temperature  diffusion (c) are,  by 
themselves,  greater  than  the  noise  produced  by  spontaneous 
emission (e); they  are,  however,  themselves  masked  by  the 
noise from  event-driven  thermal  fluctuations (d) .  Two  major 
contributors to  this noise source  are  nonradiative  recombina- 
tion  and  optical  absorption.  These  produce delta-like  impulses 
of  heat (Voss and Clarke's P-source revived [ 131 ). Since  there 
is no  thermal  lifetime  (the  equivalent  to 1 / ~ ~ ) ,  the  tempera- 

TABLE I 
LASER PARAMETERS ASSUMED IN THE GRAPHS OF FIGS. 3 AND 4 - 

O!N = -2.2 

CtT = -0.90 

w, = 2.2. l O I 5  rad1s-l 

ws = 109 s-l 

NO 5 10l8 ~ r n - ~  

Tp = 2 ' 10-l' S 

S1 = 0.2 &rn 

St = 2.0 pm 

S3 = 200 pm 

V = V, = 8.0 . lobi1 cm3 

= 7.3 . ctn3 

vi = 4.7 . 1 0 - ~  K-' 

p0 = 5.0.10-3 w 
TR = 1.9 . 10-l' S 

WR = 4.6 . lolo 1adls-l 

R~ = 4.2.1017 s-1 

R2 = 5.3 . loz7 cm-3 . s-l 

R 3  = 1.3 IOz7 cm-3 s-l 

fi = 5.0 . 10l6 

ENR = 2.3 . 10-19 3 

K = 1.9 J . ~ - 1  . cm-3 

DE = 220 crn2/s-' 

DT= 0.24  crn'ls-' 

ture  fluctuations  extend to verv  low  frequency  before leveling 
off  due to the  finite  volume of the lasing region.  The  fluctua- 
tions  couple to  the  amplitude via gain dependence  upon  tem- 
perature,  and to  the phase via the refractive index  dependence. 
It is instructive to compare the  photon  and  temperature noise 
in  the  intensity  spectrum  with  the  corresponding noise in the 
frequency  spectrum.  The  noise  termsare  substantially  the  same 
(aside from  the leading IR(i'l)12), but  the  photon noise in the 
frequency  spectrum is enhanced  by  a  factor 1 t CY$ over its 
counterpart  in  the  intensity  spectrum,  and  exhibits  a reso- 
nance. This is due to  the amplitude-phase  coupling  through 
carrier  dynamics  [9] , [l 11 , [15] and was  observed  by  Fleming 
and  Mooradian  [2].  The  temperature  fluctuation-driven  noise 
in the  frequency  spectrum is enhanced  by  a  factor (O~N - QT)'. 
Here, orT is a new  coupling  parameter;  it  represents  amplitude- 
phase  fluctuations  coupled  through  the  temperature  depen- 
dance  of gain and  index. CXN has  been  measured  and  calculated 
[18], [191 to be approximately  -2  to -4, while o ~ T  is on  the 
order of - 1 .  The  frequency  dependence of this noise source is 
of the  form  llf", 01 = 1 for several decades,  which  is in agree- 
ment  with  experimental  measurements  from several sources 
[ 5 ]  -[7], [ZO] , [25]  -[27].  The  noise  should  exhibit  the relaxa- 
tion  resonance  before falling off as I / f 2  at  high  frequency; this 
behavior,  however, is in practice  masked  by  other  processes. 
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B: Field Spectrum and Linewidth 
The field  spectrum of the laser diode is given by 

(E& + 7) EXt ) )  

= A ~ ( ( I  t p ( t  t 7)) ej9(t+7) (1 t p ( t j )  e j p ( t ) )  ejwmr. 

( 5 6 )  

If amplitude  fluctuations  are negligible or  suppressed in  the 
measurement  process (as, for  example, was done  in [ 2 0 ] )  
then  the field  spectrum can be  put  in  terms of the  frequency 
fluctuation  spectrum [22] as 

1 
2 

W , ( o  -I am) = - A i  Re ’ 

(5 7) 
where w is the deviation  from  the lasing frequency a,. In 
the case where WAw is a  sum  of several terms,  then W, will 
be  the  convolution of the individual W,’S calculated from  each 
of  the  terms  of W A w .  So, for  example,  a  dc  component of 
WAw results  in  a  Lorentzian  line 

Thishasalinewidthof  W~~(O),namely(l tq$)(Fiw/eVA~)R,, 
the  enhanced Schawlow-Townes  linewidth. To include the 
contribution  of  the  recombination  noise,  we  note  from Fig. 3 
that  the  spectrum  at  low  frequency is approximately  l/f-like 
with a  corner  frequency  near 1 Hz: we  model  it as 

T h s  leads to  an  approximate lineshape  of 

This is not  an easy  Fourier  transform to evaluate, but  we  can 
pick out  the  contribution  to  linewidth  by  exploiting  the 
Fourier  uncertainty  relationship,  that 

ATAW x 2 (61) 

so that  the linewidth Aw satisfies the implicit  relation 

For  the laser with  parameters given in Fig. 3, we  have of = 
3 . 10l2  rad2/s2, o1 = 3 rad2/s  which gives Am 6.6 * lo6 
rad/s and Af w 1.1 MHz. This is comparable to the power- 
independent  linewidth observed by Welford and Mooradian 

: [3], [24] and  Kikuchi  and  Okoshi  [25]. While carrier fluc- 

tuations  are  strongly  damped by  the carrier  lifetime rR at  low 
frequency,  and, as can  be  seen  from Fig. 4, make  minimal 
contributions to  the  frequency  fluctuation  spectrum (and 
hence,  linewidth),  temperature-induced  index/gain  variations 
are  not  similarly  damped. A primary  source  for  these  fluctua- 
tions is nonradiative  recombination, which is a function of 
carrier density,  and  therefore is constant  above  threshold. 
Hence,  the resulting contribution  to  linewidth is power- 
independent. 

V. CONCLUSION 

In  this paper we  have derived the  fluctuation  spectra  of a 
single-mode  semiconductor laser that result from  spatially 
dependent  fluctuations  in carrier  density and  temperature 
distribution. We have shown that the relaxation  resonance 
which  appears  in both  the  intensity noise and  frequency  fluc- 
tuation  spectra is damped  more  effectively  than  that  predicted 
by spatially independent  models;  and,  that carrier and  tem- 
perature  fluctuations  are  most  important  at  low  frequencies, 
where  some  of  them  mask  the  flat inverse power  spectra  re- 
ported elsewhere.  Carrier fluctuations  are  damped  by  the 
short carrier  lifetime;  perturbations to the carrier  density do 
not persist  long  enough to make significant low-frequency 
contributions, while at  higher  frequencies  they  are  damped 
by diffusion. Temperature  fluctuations, subject to  no such 
low-frequency  damping,  play  a  major  role  in  low-frequency 
fluctuations.  Events  which  produce  isolated rises in tem- 
perature (e.g., nonradiative  recombination,  absorption) give 
rise to a  spectrum  that increases at  low  frequencies,  contains 
decades  of l/f-like behavior and levels off  below 1 Hz. The 
frequency  spectrum displays an enhancement  due to  the de- 
tuned  nature  of  the gain spectrum; the enhancement  factor 
contains  both  the carrier-related  amplitude-phase  coupling  co- 
efficient  and a new,  temperature-related  amplitude-phase  cou- 
pling coefficient.  One  additional  prediction  of the  theory is a 
power-independent  linewidth  comparable to  that which has 
been  observed  experimentally. 
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