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We perform fully relativistic calculations of binary neutron stars in corotating, circular orbit. While
Newtonian gravity allows for a strict equilibrium, a relativistic binary system emits gravitational
radiation, causing the system to lose energy and slowly spiral inwards. However, since inspiral
occurs on a time scale much longer than the orbital period, we can treat the binary to be in
quasiequilibrium. In this approximation, we integrate a subset of the Einstein equations coupled
to the relativistic equation of hydrostatic equilibrium to solve the initial value problem for binaries
of arbitrary separation. We adopt a polytropic equation of state to determine the structure and
maximum mass of neutron stars in close binaries for polytropic indices n = 1, 1.5 and 2. We
construct sequences of constant rest-mass and locate turning points along energy equilibrium curves
to identify the onset of orbital instability. In particular, we locate the innermost stable circular
orbit (ISCO) and its angular velocity. We construct the first contact binary systems in full general

relativity. These arise whenever the equation of state is sufficiently soft (n
>
∼ 1.5). A radial stability

analysis reveals no tendency for neutron stars in close binaries to collapse to black holes prior to
merger.

PACS numbers: 04.20.Ex, 04.25.Dm, 04.30.Db, 04.40.Dg, 97.60.Jd

I. INTRODUCTION

Neutron star binaries are interesting for numerous rea-
sons. Several neutron star binary systems are known to
exist even within our own galaxy [1]. For some of these
systems (including PSR B1913+16, B1534+12) general
relativistic effects in the binary orbit have been measured
to high precision [2,3]. Binary neutron stars are believed
to be among the most promising sources of gravitational
waves for detectors like LIGO, VIRGO and GEO. This
circumstance has triggered multiple efforts to predict the
gravitational waveform emitted during the inspiral and
the final plunge of the two stars. More fundamentally,
the two-body problem is one of the outstanding unsolved
problems in classical general relativity.

Considerable effort has gone into understanding bi-
nary neutron stars. Most of this work has been per-
formed within the framework of Newtonian hydrodynam-
ics. Hachisu and Eriguchi [4] constructed hydrostatic
equilibrium of binaries in synchronized circular orbits.
Rasio and Shapiro [5] studied binary equilibrium con-
figurations and their dynamical evolution, including the
merger of the two stars. The coalescence of neutron star
binaries has also been investigated by Shibata, Nakamura

and Oohara [6], Zhuge, Centrella and McMillan [7] and
Ruffert, Janka and Schäfer [8] and other investigators.

Many investigators have also studied the binary prob-
lem within a post-Newtonian framework. As long as the
stars are well separated they can be approximated by
point sources. In this case hydrodynamical effects are
neglected and the gravitational waveform can be calcu-
lated to second post-Newtonian order (see [9] and ref-
erences therein). Post-Newtonian calculations that do
take into account hydrodynamical effects are also un-
der way: Shibata [10] and Taniguchi and Shibata [11]
have constructed equilibrium configurations and Oohara
and Nakamura [12] have studied binary coalescence.
Lai [13], Lai and Wiseman [14] and Lombardi, Rasio and
Shapiro [15] have constructed binary equilibrium config-
urations in an ellipsoidal approximation.

Fully general relativistic treatments of the problem
are complicated by several factors, including the non-
linearity of the partial differential equations and the re-
quirement of very large computational resources to solve
the coupled system. These simulations are currently
only in their infancy [12]. Recently, Wilson, Math-
ews and Marronetti [16] (hereafter WMM) reported re-
sults obtained with a relativistic numerical code. Their
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code assumed several simplifying physical and mathe-
matical approximations. Their results suggest that the
central densities of the stars increase as the stars ap-
proach each other and that massive neutron stars indi-
vidually collapse to black holes prior to merger. WMM
therefore find that in general relativity, the presence of
a companion star and its tidal field tend to destabilize
the stars in a binary system. This conclusion is op-
posite to what is expected from Newtonian [17], post-
Newtonian [13–15,18], perturbative [19] and matched
asymptotic expansion [20,21] treatments of the problem.
WMM also find that just prior to plunge and merger,
their binary system has a total angular momentum too
large to form a Kerr black hole (see the discussion in [22]).

In this paper we construct fully relativistic binary neu-
tron stars in quasiequilibrium circular orbit (“quasi”-
equilibrium because these binaries are not strictly sta-
tionary: because of the slow emission of gravitational
radiation, general relativistic binaries cannot be in strict
equilibrium). These models are interesting on their own
right and provide initial data for future dynamical evolu-
tion calculations. We study the structure of the neutron
stars in these close binary systems and determine, for
example, their maximum allowed equilibrium mass. In
addition, we build quasiequilibrium binary sequences of
constant rest-mass. These sequences approximate evolu-
tionary trajectories of neutron star binaries undergoing
slow inspiral via the generation of gravitational radiation.
By locating the turning points in their total energy ver-
sus separation curves, we can identify the onset of orbital
instability at the innermost stable circular orbit (ISCO)
and the orbital parameters at that critical radius. We
have presented preliminary results in [23], and analyzed
the stability of these binaries in [24]. We do not find any
evidence for a destabilization of neutron stars in close
binaries.

The purpose of this paper is to discuss details of our
approximations, equations, and numerical method, and
to present more complete results. The paper is organized
as follows: in Section II we discuss all the underlying as-
sumptions and approximations made in our calculations.
In Section III we derive all the equations describing the
quasiequilibrium of relativistic binary neutron stars. The
numerical implementation of these equations is described
in Section IV. We present results for several different
polytropic equations of state in Section V and briefly
summarize our findings in Section VI. We also include an
Appendix with tabulated data for some of our sequences.

II. BASIC ASSUMPTIONS AND

APPROXIMATIONS

Throughout this paper we will assume that the two
neutron stars have equal mass, are corotating in a circular
orbit and that the matter obeys a polytropic equation of
state.

Choosing a polytropic equation of state permits a wide
survey of models as a function of the stiffness of the
equation of state and also simplifies the integration of
the matter equation (33). However, polytropic equations
could be easily replaced by more realistic cold equations
of state.

Restricting our analysis to stars with equal masses al-
lows us to exploit spatial symmetry and solve the problem
in just one octant in our Cartesian grid (see Section III A
below). However, generalizing our method to stars of
unequal mass is straightforward. Nevertheless, it is in-
teresting to note that all well determined masses of neu-
tron stars in close binary systems have masses remarkably
close to 1.4M⊙ (see, for example, [1]). Focussing on stars
with equal mass may therefore be physically reasonable
as well as numerically convenient.

Demanding that the stars be corotating is a much
less realistic assumption. Even if the stars in a binary
started out corotating at a large separation, maintain-
ing this corotation during inspiral would require a larger
viscosity than is possible in neutron stars [25,26]. In-
stead, it is more likely that the circulation of the stars
is conserved during inspiral. However, our assumption of
corotation greatly simplifies the solution of the problem
(see Section III B) and it is appropriate to tackle this
simpler case first. Even in Newtonian theory, the con-
struction of nonsynchronous binaries is difficult because
of the unknown velocity field; only in ellipsoidal models
can one build nonsynchronous as easily as synchronous
binaries [15]. Constructing more realistic sequences of
constant circulation requires a dynamical treatment, as
one marches inward from one radius to the next using
the full coupled set of field and hydrodynamic evolution
equations to guarantee conservation of circulation.

In Newtonian gravity, a strict equilibrium solution for
two such stars in a synchronized circular orbit always

exists, except for very stiff equations of state (with n
<∼

1.5) near contact [4]. Since this solution is stationary,
the hydrodynamical equations for the matter reduce to
a single Bernoulli integral, which greatly simplifies the
problem (see Section III C).

Because of the emission of gravitational waves, a bi-
nary in general relativity cannot be in strict equilib-
rium. However, up to the innermost stable circular or-
bit (ISCO), the timescale for orbital decay by radiation
will be much longer than the orbital period, so that the
binary can be considered to be in “quasiequilibrium”.
This allows us to neglect both gravitational waves and
wave-induced deviations from a circular orbit to good
approximation. A similar approximation is often used
in stellar evolution calculations: there the relevant evo-
lution timescales are the nuclear or Kelvin-Helmholtz
timescales, while the stars maintain (quasi) hydrostatic
equilibrium on a dynamical timescale.

We attempt to minimize the gravitational wave con-
tent by choosing the spatial metric to be conformally
flat, as in WMM (see also [27]). As will be shown in
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Section III A, the field equations then reduce to a set of
coupled, quasi-linear elliptic equations for the lapse, the
shift and the conformal factor. If we neglect small devi-
ations from circular orbit, the fluid flow is again station-
ary, and the hydrodynamical equations again reduce to a
relativistic Bernoulli integral (see Section III B). Solving
these equations yields a valid solution to the initial value
(constraint) equations, and an approximate solution to
the full Einstein equations for an inspiraling binary at
any given moment, prior to plunge.

This conformal approximation has been carefully
tested in Ref. [28] for a single rotating star in station-
ary equilibrium, which is the simplest numerical example
in relativity for which the equilibrium solution deviates
from conformal flatness. In Ref. [28] it was shown that
by assuming conformal flatness, the resulting deviations
from the exact solution were typically much smaller than
1%, even for highly relativistic stars.

III. BASIC EQUATIONS

A. Field Equations

To construct a numerical model of a binary system we
employ the ADM decomposition of Einstein’s equations
of general relativity [29]. The derivation of our adopted
equations closely follows the derivation in [28] for rotating
stars.

We write the metric in the general form

ds2 = −α2dt2 + γij(dxi − ωidt)(dxj − ωjdt). (1)

Throughout the paper Latin indices will run from 1 to 3,
whereas Greek indices will run from 0 to 3. We also set
G = c = 1. By definition of the extrinsic curvature Kij ,
the three-metric γij satisfies the dynamical equation

∂tγij = −2αKij − Diωj − Djωi, (2)

where Di denotes the covariant derivative associated with
γij . This equation can be decomposed into its trace

∂t ln γ1/2 = −αK − Diω
i, (3)

where γ = det γij and K = Ki
i, and its trace-free part

γ1/3∂t(γ
−1/3γij) = −2α(Kij −

1

3
γijK)

−Diωj − Djωi +
2

3
γijDkωk. (4)

In the following we will choose maximal slicing so that

K = 0. (5)

We expect the gravitational wave content of the space-
time to be small (see Section II), and we now want to use
this expectation to simplify the problem. Unfortunately,

the physical fields cannot be cleanly separated into freely
specifiable dynamical degrees of freedom and dependent
quantities, which are determined by the constraint equa-
tions. However, such an identification is possible with the
help of a conformal decomposition [30]. We can therefore
attempt to minimize the gravitational wave content of
the (physical) spacetime by removing the dynamical (or
“wave”) degrees of freedom from the conformal fields.
This can be achieved by choosing the three-metric γij to

be conformally flat, so that γ−1/3γij = fij , where fij is
the flat space metric. We will later use Cartesian coor-
dinates, for which fij becomes the Kronecker delta δij .
Note that this choice can always be made to find initial
data on one time slice without any approximation. Our
approximation lies in assuming that the metric will re-

main conformally flat for all times during the inspiral.
Eq. (4) then reduces to [31]

2αKij = −Diωj − Djωi +
2

3
γijDkωk. (6)

We now write the metric as

γij = Ψ4fij , (7)

where Ψ is the conformal factor. The later is determined
by the Hamiltonian constraint

R − KijK
ij = 16πρ, (8)

where the source term ρ is defined by

ρ = nαnβTαβ. (9)

Here nα is the normal vector to a t = const slice and Tαβ

is the stress-energy tensor. For the metric (7), the Ricci
scalar R in (8) reduces to

R = −8Ψ−5∇2Ψ, (10)

where ∇2 is the flat space Laplacian associated with fij .
Inserting this into (8) we find

∇2Ψ = −1

8
Ψ−7K̃ijK̃

ij − 2πΨ5ρ. (11)

Here we have transformed Kij according to

K̃ij = Ψ10Kij , (12)

which, from Eq. (6), now satisfies

K̃ij = −Ψ6

2α

(

∇iωj + ∇jωi − 2

3
f ij∇kωk

)

. (13)

Inserting this expression into the momentum constraint

DjK
ij = 8πji (14)

yields
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∇2ωi +
1

3
∇i(∇jω

j) = 2∇j ln(αΨ−6)K̃ij − 16παΨ4ji.

(15)

Here the source term ji is given by

jα = −γα
βnγT βγ. (16)

This equation can be simplified by writing the shift vector
as a sum of a vector and a gradient [32]

ωi = Gi − 1

4
∇iB. (17)

Eq. (15) can then be replaced by the two equations

∇2Gi = 2∇j ln(αΨ−6)K̃ij − 16παΨ4ji (18)

and

∇2B = ∇iG
i. (19)

Imposing the full set of dynamical equations for the
evolution of Kij would be inconsistent with Eq. (6) and
our approximation that γij remains conformally flat at
all times. However, in addition to Eq. (5) we can always
require that the maximal slicing condition be preserved
∂tK = 0. Taking the trace of the time evolution equation
for Kij together with Eq. (11) then yields an equation for
the lapse

∇2(αΨ) = αΨ

(

7

8
Ψ−8K̃ijK̃

ij + 2πΨ4(ρ + S)

)

. (20)

Here the source term S is defined by

S = γijTij . (21)

Eqs. (11), (18), (19) and (20) together with the matter
equations (see next Section) form a system of coupled,
nonlinear elliptic equations, which has to be solved itera-
tively. The boundary conditions follow from asymptotic
flatness. Following Bowen [33], the exterior solution to
the field equations can be expanded in terms of multi-
pole moments. We adopt as outer boundary conditions
the fall-off behavior of the lowest order non-vanishing
multipole moments. Because of the symmetries of the
problem it is possible to solve it in only one octant of
a Cartesian grid. The resulting boundary conditions on
the coordinate planes together with the outer boundary
conditions are summarized in Table 1.

B. Matter Equations

As we have discussed in Section II, we neglect wave-
induced deviations from a strictly periodic, circular orbit,
and also assume the stars to be corotating. In Cartesian
coordinates we can choose the equatorial plane to be the

r → ∞ x = 0 y = 0 z = 0

Gx
∼

z

r3
∂xGx = 0 ∂yGx = 0 Gx = 0

Gy
∼

xyz

r7
Gy = 0 Gy = 0 Gy = 0

Gz
∼

x

r3
Gz = 0 ∂yGz = 0 ∂zG

z = 0

B ∼

xz

r3
B = 0 ∂yB = 0 B = 0

α − 1 ∼

1

r
∂xα = 0 ∂yα = 0 ∂zα = 0

Ψ − 1 ∼

1

r
∂xΨ = 0 ∂yΨ = 0 ∂zΨ = 0

TABLE I. Boundary conditions for the outer boundaries
(r → ∞) and on the coordinate planes in Cartesian coordi-
nates. The equatorial plane is taken to be the y = 0 plane
and the stars are taken to be aligned with the z-axis.

y = 0 plane, so that the fluid four velocity then takes the
form

uα = ut(1, Ωz, 0,−Ωx), (22)

where Ω is the constant angular velocity. We introduce
a vector

ξα = (0, z, 0,−x), (23)

in terms of which the four velocity can also be written

uα = ut(αnα + Ωξα − ωα). (24)

Define v to be the relative velocity between the matter
and a normal observer

1

(1 − v2)1/2
= −nαuα = αut. (25)

Then, from uαuα = −1, we find

v2 =
Ψ4

α2

(

(Ωz − ωx)2 + (ωy)2 + (Ωx + ωz)2
)

. (26)

For a perfect fluid the stress energy tensor is

T αβ = (ρ0 + ρi + P )uαuβ + Pgαβ, (27)

where ρ0 is the rest-mass density, ρi is the internal energy
density and P is the pressure. The source term ρ in
Eq. (9) can then be written

ρ =
ρ0 + ρi + P

1 − v2
− P, (28)

the momentum source ji in Eq. (16) becomes

ji =
(ρ0 + ρi + P )

α

(Ωξi − ωi)

1 − v2
, (29)
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and S in Eq. (21) is given by

S = (ρ0 + ρi + P )
v2

1 − v2
+ 3P. (30)

In order to describe the matter close to equilibrium we
will use two of our basic assumptions. Neglecting devi-
ations from a strictly periodic circular orbit and taking
the two stars to be corotating is equivalent to assuming
that the fluid four velocity is proportional to a Killing
vector

∂

∂t
+ Ω

∂

∂φ
. (31)

In this approximation, the matter equations can be inte-
grated analytically, which yields the relativistic Bernoulli
integral (see, e.g., [34])

ut

h
= const. (32)

Here h is the enthalpy

h = exp

(
∫

dP

ρ0 + ρi + P

)

. (33)

For a polytropic equation of state

P = κρ
1+1/n
0 , (34)

where κ is the polytropic constant and n the polytropic
index, the enthalpy becomes

h =
ρ0 + ρi + P

ρ0

. (35)

It is very useful to introduce a dimensionless ratio

q =
P

ρ0

, (36)

in terms of which we can express

ρ0 = κ−nqn (37)

ρi = nκ−nqn+1 (38)

P = κ−nqn+1. (39)

Note that in the Newtonian limit we have q ≪ 1. In-
serting the last three expressions together with Eqs. (25)
and (35) into Eq. (32) we find

q =
1

1 + n

(

1 + C

α(1 − v2)1/2
− 1

)

, (40)

where we have written the constant in Eq. (32) as 1+C.
Also, we use q to rewrite the source terms (28–30) as

ρ = κ−nqn

(

1 + (1 + n)q

1 − v2
− q

)

(41)

ji = κ−nqn (1 + (1 + n)q)

α

(Ωξi − ωi)

1 − v2
(42)

ρ + 2S = κ−nqn

(

1 + (1 + n)q

1 − v2
(1 + 2v2) + 5q

)

. (43)

Note that physical dimensions enter our problem only
through the polytropic constant κ in the equation of
state (34). It is therefore useful to nondimensionalize all
equations and eliminate κ from the problem. This means
that given the polytropic index n, we can solve the equa-
tions once and use the results for arbitrary κ. Since κn/2

has units of length we can introduce dimensionless coor-
dinates t̄ = κ−n/2t, x̄ = κ−n/2x and the same for y and
z. The derivative operator scales as ∇̄i = κn/2∇i, and
the extrinsic curvature as K̄ij = κn/2K̃ij . The angular
velocity Ω transforms according to Ω̄ = κn/2Ω. We also
rescale B̄ = κ−n/2B and ξ̄i = κ−n/2ξi Putting terms
together we find the Hamiltonian constraint

∇̄2Ψ = −1

8
Ψ−7K̄ijK̄

ij − 2πΨ5qn

(

1 + (1 + n)q

1 − v2
− q

)

,

(44)

the lapse equation

∇̄2α̃ = α̃
7

8
Ψ−8K̄ijK̄

ij

+2πα̃Ψ4qn

(

(1 + (n + 1)q)
1 + 2v2

1 − v2
+ 5q

)

, (45)

and the momentum constraint equations

∇̄2Gi = −2∇̄j(α̃Ψ−7)K̄ij

−16πΨ4qn 1 + (1 + n)q

1 − v2
(Ω̄ξ̄i − ωi) (46)

and

∇̄2B̄ = ∇̄iG
i. (47)

Here we have used

α̃ = Ψα. (48)

Eqs. (44–47) together with (40) form a set of seven equa-
tions for the seven unknowns Ψ, α, Gi, B̄ and q. More
specifically, we have to find a solution to six coupled,
quasi-linear elliptic equation for the gravitational fields,
together with one algebraic equation for the matter. K̄ij

and ωi in the above expressions can be expressed in terms
of the unknowns with the help of Eqs. (13) and (17).
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C. The Newtonian Limit

In this Section we will briefly show that in the New-
tonian limit the above equations approach the expected
form. In particular we expect

α → eΦ ∼ 1 + Φ, (49)

where Φ is the Newtonian potential. Also, in the Newto-
nian limit Φ, C, v ≪ 1, so that (40) becomes

q =
1

n + 1

(

C − Φ +
1

2
v2

)

=
1

n + 1

(

C − Φ +
1

2
Ω2(x2 + z2)

)

. (50)

Here we have used ωi = 0 (absence of frame dragging in
the Newtonian limit). This limit, by Eq. (13), implies
Kij = 0. With q ≪ 1, Eq. (44) now reduces to

∇2Ψ = −2πΨ5qn. (51)

Identifying

Ψ → e−Φ/2 ∼ 1 − Φ

2
(52)

yields, to leading order, the Poisson equation

∇2Φ = 4πρ0. (53)

Eq. (45) gives the same limit.

IV. NUMERICAL METHOD

A. Constructing Quasiequilibrium Models

Corotating, equal mass binaries in circular orbits form
a two-parameter family (just like single, uniformly ro-
tating stars). A particular configuration is uniquely de-
termined by two independent parameters. For compu-
tational purposes it is particularly convenient to choose
these parameters to be the maximum density qmax and
the relative separation of the stars [35].

As mentioned in Section III, we choose the stars to
orbit in the y = 0 plane and to be aligned with the z-axis.
In this case the surface of one star will intersect the z-
axis at two different places. We will label the intersection
closer to the origin of the coordinate system r̄A and the
one further out r̄B . The ratio

zA ≡ r̄A/r̄B (54)

then parametrizes the relative separation of the stars. We
can construct an algorithm for solving the gravitational
and matter equations by modifying the algorithm used by
several authors for single rotating stars [47,37,38]. Mak-
ing this algorithm stable requires rescaling the coordi-
nates with respect to r̄B so that

x̂ = x̄/r̄B ŷ = ȳ/r̄B ẑ = z̄/r̄B, (55)

which means that the outer edge of the matter will always
be at r̂B = 1. We also rescale

K̂ij = K̄ij r̄B B̂ = B̄/r̄B Ω̂ = Ω̄r̄B. (56)

Eqs. (40) and (44–47) are left unchanged, except that the
matter source terms in (44–46) have to be multiplied by

r̄2
B and ∇̄i has to be replaced by ∇̂i. This rescaling then

allows us to determine r̄B as well as the the angular veloc-
ity Ω̂ and the matter constant C via an iteration process
that uses qmax and zA as the two input parameters.

The iteration scheme starts with an initial guess for
the rest density distribution. We chose the density pro-
file of an isolated, spherical star, i.e. we integrate the
Tolman-Oppenheimer-Volkoff equations for the central
density qmax and rescale the profile such that it fits be-
tween r̂A = zA and r̂B = 1. For this matter distribution
we can then find a solution to the field equations (44–47)
using a full approximation storage multigrid scheme (see,
e.g., [39]).

Once a solution to the field equations has converged to
an adequate accuracy on the finest level of the grid hier-
archy, we evaluate Eq. (40) at three different locations to

find new values for the constants Ω̂, C and r̄B as well as
a new density distribution. To do so we first search for
the maximum density along the z-axis [40] and call this
location r̂C . We can then evaluate Eq. (40) at the three
points r̂A, r̂B and r̂C

(1 + (n + 1)q)
(

α2 − Ψ4(Ω̂ẑ − wx)2
)1/2

= 1 + C, (57)

where we have used x = y = ωy = ωz = 0 on the z-
axis. Note that at r̂A and r̂B the density vanishes q = 0.
This set, on first sight, looks like three equations for the
two unknows Ω and C. However, changing the scaling
parameter r̄B will also change the gravitational fields, so
that α and Ψ will implicitly depend on r̄B . We determine
how α and Ψ scale from the Newtonian limit. Rescaling
the Poisson equation shows that the Newtonian potential
Φ scales with r̄2

B . Eqs. (49) and (52) therefore suggest
that α and Ψ should be rescaled according to

α = (α̂)r̄2

B Ψ = (Ψ̂)−r̄2

B
/2. (58)

Inserting these scale relations into (57) then yields three

equations for the three constants Ω̂, C and r̄B, which
can be solved iteratively. Once the constants have been
determined the new matter distribution can be calculated
using Eq. (40).

The iteration can then be continued by finding the new
fields for the new matter distribution. At each step we
calculate the residuals of Eqs. (44–47) and integrate these
over the numerical grid. We typically stop the iteration
when the sum of these six integrated residuals is smaller
than about 1 % of the estimated truncation error on the
finest grid.
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Once an iteration has been completed, we can calculate
several physical quantities that characterize the configu-
ration. The total rest-mass M0,tot is

M0,tot =

∫

M

ρ0u
αd3Σα =

∫

M

ρ0u
t√−gd3x, (59)

where the subscript M denotes integration over the sup-
port of the matter and

√−g = αΨ6. In nondimensional
form we can therefore write

M̄0,tot ≡ κ−n/2M0,tot = r̄3
B

∫

M

αΨ6utqnd3x̂. (60)

The total mass-energy (ADM mass) is

Mtot = − 1

2π

∮

∞

∇iΨd2Si = − 1

2π

∫

∞

∇2Ψd3x, (61)

Using the Hamiltonian constraint (44) this can be rewrit-
ten

Mtot =
1

16π

∫

∞

Ψ−7K̃ijK̃
ijd3x

+

∫

M

Ψ5qn

(

1 + (1 + n)q

1 − v2
− q

)

d3x, (62)

or, in nondimensional form,

M̄tot ≡ κ−n/2Mtot =
r̄B

16π

∫

∞

Ψ−7K̂ijK̂
ijd3x̂

+r̄3
B

∫

M

Ψ5qn

(

1 + (1 + n)q

1 − v2
− q

)

d3x̂. (63)

Eq. (63) is the actual form we use to evaluate Mtot. The
angular momentum is aligned with the y-axis and can be
defined as

Jtot =
ǫyjk

8π

∮

∞

xjK̃kld2Si =
ǫyjk

8π

∫

∞

xj∇lK̃
kld3x (64)

(see, e.g., [32]). This is the total angular momentum
contained in the spacetime and includes both the orbital
and spin angular momentum of the stars. Using ∇lK̃

kl =
Ψ10DlK

kl as well as the momentum constraint (14), this
can be rewritten

Jtot =

∫

M

Ψ10(zjx − xjz) d3x =

∫

M

Ψ10fijξ
ijjd3x,

(65)

where we have also used definition (23). Finally, we can
substitute (42) for ji and write the angular momentum
in the nondimensional form

J̄tot≡ κ−nJtot =

r̄4
B

∫

M

Ψ10

α
qn 1 + (1 + n)q

1 − v2
fij ξ̂

i(Ω̂ξ̂j − ωj) d3x̂, (66)

where we have rescaled ξ̄ according to ξ̂ = ξ̄/r̄B.

In the following we will denote half the total rest-mass,
mass and angular momentum by M̄0 = M̄0,tot/2, M̄ =
M̄tot/2 and J̄ = J̄tot/2. In the limit of large separation,
M̄0 and M̄ approach the corresponding values of isolated
stars.

Performing numerical simulations in three dimensions
requires large computational resources. We have there-
fore implemented our algorithm in a parallel environment
using the DAGH infrastructure [41] and run it both on
the SP2 cluster at the Cornell Theory Center and the
Origin2000 at the National Center for Supercomputing
Applications at the University of Illinois. We typically
use grids of (64)3 or (128)3 gridpoints, and run the code
in parallel on 8 processors. DAGH has been developed as
part of the Binary Black Hole Grand Challenge Project
and is a package of routines and computational structures
that allows for a convenient implementation of parallel
applications on grid hierarchies.

B. Constructing Quasiequilibrium Sequences

In addition to constructing individual quasiequilibrium
configurations, we can also build quasiequilibrium se-
quences of constant rest-mass M̄0. As we will discuss
in Section V, these sequences provide approximate evo-
lutionary tracks of inspiraling neutron star binaries.

Our quasiequilibrium configurations are parametrized
by their relative separation zA and maximum density
qmax. We therefore have to find a path through this two-
dimensional parameter space along which M̄0 is constant.
This can be achieved in several different ways. For ex-
ample, for each separation zA one could vary qmax until
a configuration of mass M̄0 has been found [38]. Here
we found it easier to start with a small (and hence only
mildly relativistic) qmax for each zA, and then increment
qmax in small steps keeping zA constant. The results can
be tabulated, and the procedure repeated for a different
zA. Once sufficient data have been collected one can then
interpolate to a chosen rest-mass M̄0. Note that for each
zA = const sequence we adjusted the outer boundary so
that the number of gridzones covering the stars is the
same for all separations.

We have performed several tests to check our code. In
two different regimes the results can be compared with
known solutions: for small masses and weak fields we
recover the Newtonian limit, and for large separations
we approach the Oppenheimer-Volkoff spherical solution
for each star and its near-by field. We have also checked
the fully relativistic identity [42,43]

dMtot = ΩdJtot, (67)

which holds along constant rest-mass sequences. To eval-
uate Eq. (67), we have to take numerical differences be-
tween integrals of very similar magnitude, so that their
relative error was much larger than that of the individual

7



FIG. 1. Rest-density contours in the equatorial plane for
a neutron star binary close to the ISCO. Each star has a
rest-mass of M̄0 = 0.169, corresponding to a compaction in
isolation of (M/R)∞ = 0.175. The contours show isosurfaces
of the rest-density in decreasing factors of 0.556.

integrals. Nevertheless, we found that this identity is sat-
isfied typically to ∼ 10% (except close to turning points,
where the error due to the differentiation dominates). We
expect that the numerical data presented in this paper
are typically accurate to within a few percent, and are
confident that our code correctly predicts qualitative fea-
tures, like, for example, changes in the maximum allowed
mass.

V. RESULTS

A. Sequences for n = 1.0

In this Section we discuss configurations and sequences
with a polytropic index n = 1, representing a fairly stiff
equation of state. This is a particularly interesting ex-
ample, since realistic neutron stars are expected to be
governed by equations of state of similar stiffness. Re-
sults for n = 1.5 and n = 2 will be presented in Sec-
tion VB. Numerical values in geometrized units can be
obtained from our nondimensional “barred” quantities
by multiplying with appropriate powers of κ, according
to Eqs. (60), (63) and (66) (for example M = κn/2M̄ ,
J = κnJ̄ , and ρ0 = κ−nρ̄0).

In Fig. 1 we show the density profile in the equatorial
plane of a binary neutron star. Here zA = 0.175, and
the stars are close to the ISCO (see below). Each star
has a rest-mass of M̄0 = 0.169, corresponding to a com-
paction in isolation of (M/R)∞ = 0.175. The contours

FIG. 2. Rest-Mass M̄0 versus maximum density ρ̄c for sep-
arations zA = 0.3 (bottom solid line), 0.2, 0.1 and 0.0 (top
line). The dashed line is the Oppenheimer-Volkoff result for
a n = 1.0 polytrope. The insert is a blow-up of the region
around the maximum mass.

show isosurfaces of the rest-density in decreasing factors
of 0.556. The maximum compaction of a stable n = 1.0
polytrope in isolation is (M/R)∞ = 0.216, correspond-
ing to a maximum rest-mass M̄0 = 0.180 and a maximum
mass M̄ = 0.164.

In Fig. 2 we plot the rest-mass M̄0 versus the maximum
density ρ̄c = ρ̄max

0 + ρ̄max
i for several different separations

between zA = 0.3 (roughly two stellar radii apart) and
zA = 0 (touching). As zA → 1, we expect these curves
to approach the spherical Oppenheimer-Volkoff (OV) re-
sult, which we included as the dashed line in Fig. 2. Note,
however, that the exact OV curve is computed from a
one-dimensional ordinary differential equation with very
high accuracy, while the binary configurations have been
calculated on very coarse, three-dimensional numerical
grids. From convergence tests we know that we system-
atically underestimate masses, and accordingly, for large
separations, we find masses slightly smaller than the cor-
responding OV masses. All graphs lie within less than 2%
of the OV curve, showing that the presence of a compan-
ion star has only very little influence on the mass-density
relationship.

As we decrease the separation, the mass supported by a
given central density ρ̄c increases slightly. In particular,
the maximum rest-mass increases from M̄max

0 = 0.179
for zA = 0.3 to M̄max

0 = 0.182 for stars in contact. This
trend clearly suggests that the maximum allowed mass

of neutron stars in close binaries is slightly larger than

in isolation. This increase is caused in part by the ro-
tation of the stars and in part by the tidal fields. More
specifically, we find that the increase of the maximum al-
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FIG. 3. Binding energy and angular momentum as a func-
tion of the angular velocity for several different values of M̄0.
The curves are labeled by the compaction (M/R)∞ of the
stars in isolation at infinity, starting with 0.05 and increasing
in steps of 0.0025 up to 0.2. The maximum compaction of
a stable, isolated, non-rotating n = 1.0 polytrope is 0.217.
The upper label gives the orbital frequency for stars with a
rest-mass of 1.5M⊙

lowed mass is comparable to the corresponding increase
of an isolated neutron star rotating with the same angu-
lar velocity [38]. Any destabilizing, relativistic effect in
binaries therefore has to be smaller.

The collapse of binary neutron stars to black holes
prior to merger reported by WMM could, in principle,
be caused either by a decrease of the maximum allowed
mass, or by a dynamical instability. As we have shown,
the maximum allowed mass, within our assumptions and
approximations, increases, which rules out the first pos-
sibility. Note, however, that we are only constructing
quasiequilibrium configurations, which may not be dy-
namically stable. In [24] we show that all inspiraling
binary neutron stars are secularly stable against radial
collapse to black holes all the way down to the innermost
stable circular orbit (ISCO). While this does not com-
pletely rule out the existence of a dynamical instability,
we note that in Newtonian binaries, dynamical instabili-
ties always occur later along equilibrium sequences than
secular instabilities [44,17]. The same result has been
shown for single, rotating relativistic stars [45]. Recently,
Thorne [21] has argued analytically that tidal fields sta-
bilize systems and that stars which are stable in isolation
are stable with respect to both secular and dynamical
modes in binary configurations.

Fig. 2 demonstrates that at fixed rest-mass, the central
density decreases as the stars approach each other and
get tidally deformed. This effect, as well as the increase

FIG. 4. Blow-up of two curves in Fig. 2: binding en-
ergy (solid) and angular momentum (dashed) as a function
of the angular velocity for a binary with M̄0 = 0.169 and
(M/R)∞ = 0.175.

of the maximum allowed mass, is consistent with post-
Newtonian predictions [13,15,18].

Next we construct sequences of constant rest-mass
M̄0, which up to the ISCO approximate evolutionary se-
quences. As discussed in Section II, we maintain coro-
tation, whereas in reality it is more likely that circula-
tion will be conserved. Nevertheless, our sequences are
the first sequences of inspiraling binaries in full general
relativity. Moreover, post-Newtonian sequences of con-
stant circulation are not vastly different from corotat-
ing sequences [15]. In Fig. 3 we plot the binding en-
ergy (M − M∞)/M0 and the angular momentum J̄ as a
function of separation for several different rest-masses.
Since the separation is not an invariant quantity, we
have parametrized the sequence by the nondimension-
alized angular velocity M0Ω (= M̄0Ω̄). Our curves do
not connect to M0Ω = 0, corresponding to infinite sepa-
ration, since we can numerically resolve only fairly close
models.

In the top half of Fig. 3 we show plots for sequences
for several different, increasingly relativistic rest-masses.
The curves are labeled by the compaction (M/R)∞ that
the stars would have in isolation at infinity. We have
plotted graphs for (M/R)∞ between 0.05 and 0.2 in in-
crements of 0.025. In the lower half of Fig. 3 we show
corresponding plots of J̄ . According to Eq. (67) the min-
ima in both curves must agree, which they do within our
numerical accuracy. In Fig. 4 we show a blow-up of the
two curves for stars with (M/R)∞ = 0.175.

For infinitely separated stars, both the binding energy
and the angular velocity vanish. As the stars approach
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M̄0 M̄∞ (M/R)∞ M0ΩISCO (Jtot/M
2

tot)ISCO

0.059 0.058 0.05 0.003 1.69
0.087 0.084 0.075 0.0065 1.37
0.112 0.106 0.1 0.01 1.22
0.134 0.126 0.125 0.015 1.12
0.153 0.142 0.15 0.02 1.05
0.169 0.155 0.175 0.025 1.00
0.178 0.162 0.2 0.03 0.97

TABLE II. Numerical values for sequences of constant
rest-mass M̄0 and polytropic index n = 1. We tabulate the
total energy M̄∞ and compaction (M/R)∞ each star would
have in isolation as well as the angular velocity M0Ω and the
angular momentum Jtot/M

2

tot at the ISCO. The maximum
rest-mass in isolation is M̄max

0 = 0.180.

each other, the angular velocity increases while the bind-
ing energy decreases. This effect is essentially Newtonian
and is even evident for two Newtonian point masses. As
the stars approach, however, finite size effects eventu-
ally play an important role. The energy associated with
the rotation of the individual stars adds to the (nega-
tive) binding energy, and therefore reduces it. For stiff
enough equations of state, for which the moment of in-
ertia and hence the rotational energy of the individual
stars is large (see Section VB), the binding energy goes
through a minimum and then increases again prior to
contact. The location of the minimum marks the onset
of a secular instability, beyond which the binary can no
longer maintain corotation. It is expected that the dy-
namical instability defining the ISCO occurs after, but
close to the onset of the secular instability [44,17]. In the
following we will refer to the location of the minimum as
the ISCO.

The upper labels give the orbital frequency in Hz for
stars of rest-mass 1.5M⊙. The corresponding gravita-
tional wave frequency is larger by a factor of 2 for the
dominant quadrupole mode. For small values of the com-
paction we find ISCO frequencies comparable to those
reported by WMM. However, for larger compaction and
more relativistic configurations we find frequencies very
similar to what is found from post-Newtonian calcula-
tions [46].

We summarize our results in Table 2, where we also in-
clude the dimensionless angular momentum Jtot/M

2
tot =

J/2M2 at the ISCO. For small rest-masses, this value
is larger than unity, in agreement with WMM. For high
enough rest-masses, however, it drops below unity, so
that the two stars could plunge and form a Kerr black
hole without having to lose additional angular momen-
tum.

FIG. 5. Rest-Mass M̄0 of a n = 1.5 polytrope versus maxi-
mum density ρ̄c for separations zA = 0.3 (bottom solid line),
0.2, 0.1 and 0.0 (top line). The dashed line is the Oppen-
heimer-Volkoff result.

B. Sequences for n = 1.5 and n = 2.0

In this Section we will present results for polytropic
indices of n = 1.5 and 2.0, representing softer equations
of state. Except for the absence of an ISCO prior to con-
tact (see below) all results are qualitatively very similar
to those for n = 1. In particular, we consistently find a
decrease of the maximum density as the stars approach,
and an increase in the maximum allowed mass. The rel-
ative size of these effects differs for three basic reasons:
First, for softer equations of state, the maximum mass of
a star occurs at a smaller value of the compaction M/R,
and hence relativistic effects play a smaller role. Second,
for softer equations of state these stars are more centrally
condensed. We therefore expect tidal fields to play a less
important role for the stability of these stars in close bi-
naries. While it is easier to deform their surface, the
bulk of the matter is very concentrated at the core of the
stars and well shielded from the tidal field of the compan-
ion. Third, for softer equations of state, the stars have a
smaller orbital frequency even at very small separations,
so that the effects of rotation are smaller. Accordingly
we find that the maximum allowed mass still increases
with decreasing separation, but the effect is smaller than
for n = 1.

More centrally condensed stars have a smaller moment
of inertia, and hence the rotational kinetic energy asso-
ciated with the spin of the stars is smaller than for less
centrally condensed stars. Therefore a turning point in
the binding energy curve can only be expected for stars
with a stiff enough equation of state. This effect has been

10



FIG. 6. Binding energy of n = 1.5 polytropes as a func-
tion of the angular velocity for different rest-masses. The
curves are labeled by the compaction (M/R)∞ of the stars
in isolation. The maximum compaction for a stable, isolated,
nonrotating n = 1.5 polytrope is 0.136.

discussed by several authors in the context of Newtonian
theory [47,17,48]. We did not see a turning point for
n ≥ 1.5, in agreement with [47,48]. For these polytropic
indices there is no ISCO prior to contact, and we expect
the orbits to be stable until the stars touch and form a
contact binary. This is the first construction of a contact
binary in full general relativity. Proving the existence of
a contact binary neutron star (by, e.g., the signature of
its gravitational waveform) would indicate that the equa-
tion of state of nuclear matter is rather soft. We do not
expect this to be the case [49].

In Fig. 5 we plot the rest-mass versus the central den-
sity for several different separations for n = 1.5. Quali-
tatively the result is very similar to Fig. 2 for n = 1: For
all separations the curve differs from the OV result by
less than 1%. For decreasing separation we find a small
increase in the allowed mass that a given density can
support. In particular, the maximum quasiequilibrium
rest-mass increases by roughly 1.2% from M̄ = 0.275 for
zA = 0.3 to 0.278 for stars in contact. For n = 1 the cor-
responding increase is about 2 %. The maximum density
decreases as the stars approach and get tidally deformed.

In Fig. 6 we plot the binding energy of n = 1.5 poly-
tropes as a function of the angular velocity. We show
results for several different rest-masses and label them
by the compaction (M/R)∞ for the same stars in isola-
tion. In contrast to the results for n = 1, these curves no
longer show a turning point. This implies that the stars
are secularly stable all the way to touching.

In Figs. 7 and 8 we show the corresponding results for
n = 2 polytropes. Again, in Fig. 7 we show the rest-mass

FIG. 7. Same as Fig. 5 for a n = 2.0 polytrope.

FIG. 8. Same as Fig. 6 for a n = 2.0 polytrope. The maxi-
mum compaction (M/R)∞ for a stable, isolated, nonrotating
n = 1.5 polytrope is 0.075.
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versus central density. The maximum quasiequilibrium
rest-mass increases from M̄ = 0.523 for zA = 0.3 to 0.528
for touching stars. This relative increase of roughly 1 % is
smaller than even for n = 1.5. As expected, the binding
energies in Fig. 8 do not show a turning point, so that
the binaries are secularly stable all the way to touching.

VI. SUMMARY AND CONCLUSIONS

We report on the first fully relativistic calculation of
binary neutron stars in quasiequilibrium. We previously
presented some of our preliminary results in [23]; here
we describe in detail all our assumptions and approx-
imations, equations and numerical algorithm, as well
as results for different polytropic indices. We integrate
a subset of Einstein’s equations, coupled to the equa-
tion of hydrostatic equilibrium, to solve the initial value
problem for binaries. We construct models of coro-
tating binary neutron stars in close circular orbit, in-
cluding relativistic models of contact binaries. We also
construct sequences of constant rest-mass configurations
parametrized by their separation and orbital angular fre-
quency.

We find that the maximum density of the stars de-
creases as the stars approach and get tidally deformed.
Simultaneously, the mass that a given maximum density
can support increases as the stars approach. In particu-
lar, we find that the maximum allowed mass of neutron
stars in quasiequilibrium binaries increases with decreas-
ing separation. These effects are larger for smaller poly-
tropic index (and hence stiffer equation of state).

Searching for turning points of the binding energy of
constant rest mass sequences, we locate, for small enough
polytropic index, the ISCO. As in the case of Newtonian

configurations, an ISCO exists only for indices n
<∼ 1.5;

for softer equations of state, contact is reached prior to
the onset of orbital instability.

In [24] we presented a more careful analysis of the ra-
dial stability of relativistic binary neutron stars against
collapse. We showed that all inspiraling binary neutron
stars are secularly stable against radial collapse to black
holes all the way to the ISCO (or contact, if, for large
enough n, no ISCO is encountered). We do not find any
evidence for a destabilization of neutron stars in close
binary orbits.
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APPENDIX A: NUMERICAL RESULTS FOR

SELECTED SEQUENCES

In the following we tabulate numerical values for se-
lected sequences. For a given polytropic index n and the
rest-mass (baryon mass) M̄0 of one star (or equivalently
its compaction in isolation (M/R)∞), we list the relative
separation zA = r̄A/r̄B, the maximal density parameter
qmax, the mass M̄ the angular momentum J̄ , the (or-
bital) frequency Ω̄, and the locations r̄A, r̄B and r̄C . We
have “barred” these quantities as a reminder that they
are dimensionless coordinate values. Recall that ρ, ρ0

and P may be obtained from q via Eqs. (37) – (39).

n = 1, M̄0 = 0.0595, (M/R)∞ = 0.05

zA qmax M̄ J̄ Ω̄ r̄A r̄B r̄C

0.00 0.0275 0.057806 0.01095 0.061 0.000 1.529 2.773
0.10 0.0278 0.057806 0.01094 0.057 0.281 1.594 2.810
0.15 0.0281 0.057809 0.01098 0.053 0.430 1.677 2.868
0.20 0.0284 0.057815 0.01109 0.048 0.591 1.791 2.959
0.25 0.0286 0.057825 0.01129 0.042 0.771 1.940 3.087
0.30 0.0288 0.057836 0.01155 0.037 0.975 2.118 3.251

TABLE III.

n = 1, M̄0 = 0.1118, (M/R)∞ = 0.1

zA qmax M̄ J̄ Ω̄ r̄A r̄B r̄C

0.00 0.0658 0.105511 0.02715 0.101 0.000 1.289 2.353
0.10 0.0667 0.105502 0.02707 0.094 0.238 1.346 2.384
0.15 0.0676 0.105509 0.02710 0.087 0.365 1.418 2.433
0.20 0.0685 0.105521 0.02729 0.079 0.502 1.516 2.511
0.25 0.0693 0.105558 0.02766 0.070 0.655 1.644 2.621
0.30 0.0698 0.105593 0.02818 0.062 0.828 1.797 2.763

TABLE IV.

n = 1, M̄0 = 0.1341, (M/R)∞ = 0.125

zA qmax M̄ J̄ Ω̄ r̄A r̄B r̄C

0.00 0.0912 0.124786 0.03496 0.122 0.000 1.172 2.148
0.10 0.0926 0.124785 0.03482 0.114 0.217 1.225 2.175
0.15 0.0940 0.124787 0.03482 0.106 0.332 1.291 2.219
0.20 0.0954 0.124819 0.03500 0.096 0.458 1.381 2.290
0.25 0.0967 0.124849 0.03538 0.086 0.597 1.498 2.390
0.30 0.0976 0.124898 0.03596 0.076 0.756 1.639 2.520

TABLE V.
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n = 1, M̄0 = 0.1534, (M/R)∞ = 0.15

zA qmax M̄ J̄ Ω̄ r̄A r̄B r̄C

0.00 0.1235 0.140851 0.04188 0.146 0.000 1.056 1.943
0.10 0.1256 0.140842 0.04167 0.137 0.196 1.104 1.967
0.15 0.1280 0.140846 0.04162 0.127 0.300 1.163 2.005
0.20 0.1303 0.140859 0.04174 0.116 0.413 1.244 2.067
0.25 0.1325 0.140903 0.04210 0.104 0.539 1.350 2.156
0.30 0.1341 0.140971 0.04268 0.092 0.682 1.477 2.273

TABLE VI.

n = 1, M̄0 = 0.1685, (M/R)∞ = 0.175

zA qmax M̄ J̄ Ω̄ r̄A r̄B r̄C

0.00 0.1647 0.152893 0.04719 0.173 0.000 0.944 1.743
0.10 0.1683 0.152883 0.04691 0.163 0.176 0.987 1.762
0.15 0.1726 0.152875 0.04677 0.152 0.268 1.038 1.792
0.20 0.1769 0.152893 0.04681 0.139 0.368 1.108 1.844
0.25 0.1811 0.152936 0.04708 0.125 0.480 1.201 1.920
0.30 0.1844 0.152997 0.04758 0.111 0.606 1.312 2.022

TABLE VII.

n = 1, M̄0 = 0.1781, (M/R)∞ = 0.2

zA qmax M̄ J̄ Ω̄ r̄A r̄B r̄C

0.00 0.2164 0.160183 0.05024 0.202 0.000 0.841 1.560
0.10 0.2228 0.160174 0.04989 0.191 0.157 0.877 1.572
0.15 0.2327 0.160137 0.04963 0.180 0.238 0.917 1.587
0.20 0.2450 0.160130 0.04948 0.168 0.323 0.970 1.616
0.25 0.2590 0.160145 0.04953 0.154 0.415 1.038 1.662
0.30 0.2741 0.160189 0.04975 0.139 0.517 1.119 1.725

TABLE VIII.

n = 1.5, M̄0 = 0.241, (M/R)∞ = 0.85

zA qmax M̄ J̄ Ω̄ r̄A r̄B r̄C

0.00 0.0626 0.231583 0.13408 0.035 0.000 3.409 6.227
0.10 0.0633 0.231623 0.13471 0.032 0.631 3.569 6.318
0.20 0.0650 0.231708 0.13738 0.027 1.328 4.014 6.642
0.30 0.0665 0.231853 0.14341 0.021 2.184 4.740 7.281

TABLE IX.

n = 1.5, M̄0 = 0.258, (M/R)∞ = 0.1

zA qmax M̄ J̄ Ω̄ r̄A r̄B r̄C

0.00 0.0794 0.246547 0.14275 0.042 0.000 3.038 5.561
0.10 0.0802 0.246600 0.14346 0.039 0.564 3.183 5.643
0.20 0.0831 0.246688 0.14574 0.033 1.180 3.564 5.902
0.30 0.0855 0.246887 0.15166 0.026 1.938 4.204 6.460

TABLE X.

n = 1.5, M̄0 = 0.2745, (M/R)∞ = 0.125

zA qmax M̄ J̄ Ω̄ r̄A r̄B r̄C

0.00 0.1119 0.260578 0.14820 0.055 0.000 2.549 4.680
0.10 0.1141 0.260614 0.14830 0.051 0.472 2.658 4.722
0.20 0.1237 0.260665 0.14908 0.045 0.964 2.909 4.824
0.30 0.1380 0.260810 0.15227 0.038 1.518 3.291 5.061

TABLE XI.

n = 2, M̄0 = 0.495, (M/R)∞ = 0.05

zA qmax M̄ J̄ Ω̄ r̄A r̄B r̄C

0.00 0.0381 0.48628 0.7204 0.0073 0.000 12.89 23.47
0.10 0.0383 0.48635 0.7281 0.0068 2.382 13.49 23.82
0.20 0.0389 0.48649 0.7508 0.0057 4.998 15.11 24.99
0.30 0.0395 0.48672 0.7924 0.0045 8.192 17.78 27.30

TABLE XII.

n = 2, M̄0 = 0.52, (M/R)∞ = 0.065

zA qmax M̄ J̄ Ω̄ r̄A r̄B r̄C

0.00 0.0493 0.50929 0.7190 0.0095 0.000 10.70 19.52
0.10 0.0497 0.50936 0.7255 0.0089 1.976 11.18 19.76
0.20 0.0525 0.50950 0.7409 0.0077 4.069 12.30 20.34
0.30 0.0574 0.50969 0.7679 0.0065 6.432 13.95 21.44

TABLE XIII.

14


