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An Exact Formulation of Coupled-Mode Theory for 
Coupled-Cavity Lasers 

Abstract-We derive coupled-mode rate equations for coupled-cav- 
ity lasers using a new approach. The method, based on the Mittag- 
Leffler theorem, is exact. We compare the coupling coefficients to those 
derived by several different approximations. 

I. INTRODUCTION 
N THE world of semiconductor lasers, coupled-cavity I lasers are of interest for two reasons. First, intention- 

ally coupled lasers have been demonstrated to exhibit sin- 
gle-longitudinal-mode oscillation under small-signal 
modulation, FM modulation capabilities, and bistable op- 
eration [ 11, [2]. Second, a coupled-cavity laser makes a 
good model for a laser system in which there is optical 
feedback. For example, if the laser output is being cou- 
pled into an optical fiber, any stray reflection back into 
the laser constitutes a second cavity. 

The problem of analyzing the modes and/or dynamic 
response of a coupled-cavity laser generally boils down 
to developing a time-domain description of the optical 
field, e.g., a set of rate equations. The rate equation for 
the inversion, since it depends only upon the optical in- 
tensity and not the phase, is far easier to obtain. Over the 
years, several techniques have been developed to produce 
a set of optical rate equations. Generally, they are based 
on modal expansions in terms of either the longitudinal 
modes of the composite resonator (composite resonator 
theory) or in terms of the modes of the individual cavities 
(coupled-mode theory). 

Composite resonator theories have the advantage of 
minimizing the number of variables necessary to describe 
the optical field. Indeed, for a coupled-cavity laser run- 
ning in a single longitudinal mode, only a single variable 
is needed-the complex amplitude of the composite cavity 
mode. The simplicity inherent in such a treatment has led 
to relatively simple analytic expressions for the dynamic 
response and noise properties of coupled-cavity lasers [3]. 
The drawback to composite resonator theory is that one 
must solve the dispersion relations (and in some cases, 
solve for the complete fields) in steady state before a set 
of rate equations can be formulated. 

Manuscript received February 17, 1987; revised July 30, 1987. This 
work was supported by the National Science Foundation and the Office of 
Naval Research. 

R. L. Lang was with the California Institute of Technology, Pasadena, 
CA 91125. He is now with the Jet Propulsion Laboratory, Pasadena, CA 
91109. 

A. Yariv is with the California Institute of Technology, Pasadena, CA 
91125. 

IEEE Log Number 8717454. 

On the other hand, coupled-mode theory-based on an 
expansion of the field in eigenmodes of the individual laser 
cavities-increases the number of variables necessary to 
describe the optical field, but yields a more intuitive de- 
scription of the field. If multiple longitudinal modes of 
the system are present, the number of variables is less 
attractive in a composite resonator theory (in which a new 
variable for each resonator mode is required). Early cou- 
pled-mode treatments [4] required lossless cavities and 
lossless couplings, conditions that are hardly met in cur- 
rent applications. More recently, Marcuse [5], [6] devel- 
oped a coupled-mode description in terms of arbitrary 
cavities; he allowed for the selection of arbitrary bound- 
ary conditions on the fields chosen as the individual cavity 
modes to allow for matching the individual cavity modes 
to the composite cavity modes. 

Unfortunately, the coefficients that appeared in the gen- 
eral coupled-mode description depended upon overlap in- 
tegrals between the individual cavity modes and the com- 
posite cavity modes. In fact, each coupling coefficient was 
a sum of several such overlap integrals. Thus, it became 
necessary, again, to solve for the composite cavity modes 
in steady state to formulate a time-domain set of equations 
for the optical field. 

It is not necessary, however, to solve for composite- 
cavity fields to formulate a coupled-mode theory of cou- 
pled resonators. In fact, it is not even necessary to make 
any approximations to formulate the theory. To actually 
use coupled-mode theory, it is necessary to truncate the 
set of modes to some finite number and invoke the adi- 
abatic approximation that the equations are valid for time- 
varying gain. In this paper, we derive a set of exact cou- 
pled-mode equations for a general system of two lasers; 
we apply the theory to the most common geometry of cou- 
pled-cavity laser, that of two axially coupled cavities, and 
we compare the results to those of existing theories. 

11. GENERAL THEORY 

Before we proceed, one caveat is in order; all rate equa- 
tion descriptions of the optical field have implicitly made 
an assumption that the instantaneous value of the carrier 
density (or equivalently, gain, or Fermi level) determines 
the evolution of the field. Because this approximation as- 
sumes that the optical field adiabatically follows the char- 
acteristics of the resonator, we refer to it as “the adiabatic 
approximation. ” It is definitely an approximation; the 
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vector wave equation, from which all rate equations must 
ultimately proceed, is 

a2 
at 

V 2 E ( x ,  t )  - p 2 [ E ( &  t )  + P ( x ,  t ) ]  = 0 (1) 

where P is the induced polarization and includes the ef- 
fects of laser gain. Clearly, (1) and any system derived 
from it contain time derivatives of the gain. Those time 
derivatives are almost always neglected, frequently with- 
out comment. 

One reason the approximation is rarely noted is that in 
most cases of interest (e.g. , semiconductor lasers), it is a 
very good one. One can easily estimate the size of the 
incurred error [7]; typically, it scales with the ratio be- 
tween the frequencies at which the gain fluctuates and the 
optical frequency, a ratio that is usually vanishingly small. 
And, of course, if the gain remains fixed, there is no ap- 
proximation at all. 

We point this out because our coupled mode equations, 
like all others, are exact only for fixed gain. By invoking 
the adiabatic approximation, however, they can be used 
for time-varying gain distributions as well. Thus, they 
may be used to analyze coupled-cavity laser dynamics. 

We take the field to be represented by a complex scalar 
amplitude F and the polarization to be characterized by a 
fixed complex dielectric constant E,. The wave equation 
becomes 

1 a 2  
c at2 

V 2 F ( x ,  t )  - y E ,  - F ( x ,  t )  = 0. 

We choose the time factor exp ( j u t )  and Fourier trans- 
form equation (2). An operator a /a t  becomes an alge- 
braic multiplier j w ,  and transformed variables are denoted 
by a tilde. The wave equation becomes a Helmholtz equa- 
tion, 

( 3 )  
V2F(X,  w )  + 7, w LE q x ,  w )  = 0. 

C 

Consider now a one-dimensional resonator oriented along 
the z axis with one boundary at z = 0, one at z = L, and 
a traveling wave E")  ( U )  eJkz incident from the right (Fig. 
1). In general, there will be a reflected wave E ' " ) ( w )  
e-Jkz. The relation between the two can be written 

E ' " ' ( o )  = R ( w )  E ' " ( w )  (4) 

for some function R (  U ) .  Formally, this is equivalent to 
the boundary-value problem consisting of (3) and the 
boundary conditions 

'21 

+L+ 
I ,Z 

z = - L  z = o  
Fig. 1 .  Schematic of a laser cavity. The reflectivity of the left mirror is r,, 

while the right mirror is characterized by scattering parameters r l l r  rz2, 
t I2 ,  and rZ1.  The length is L ,  and the complex index of refraction is p.  
The field amplitudes shown are the complex traveling-wave amplitudes. 

R ( w ) is given by 

1 
R ( w )  = ~ 

2E'" ( U )  

In general, R will be complex and analytic. If we require 
that R goes to infinity-that is, that we get an output field 
with no input-then we have a laser, and the roots to the 
equation 1 / R  ( w )  = 0 define the lasing frequencies. 

Derivation of the coupled-mode rate equations for a 
given resonator depends upon the analytic properties of 
the function R ( w ) .  It is remarkably simple, however, if 
R (  U )  satisfies several criteria. 

1) The only singularities of R ( U )  must be simple poles 
at a set of finite values denoted by { U , } .  Their residues 
are denoted by { p , }  for n = 1, 2, 

2) The poles are numbered in order from an analytic 
point wo such that 0 < I w 1  - wo I < 1 w2 - W O  1 < * . 

3) The function R ( w )  is bounded for all w # U,. 

4) A set of closed contours { C,} can be chosen such 
that C, encloses the points w1 U,; the minimum dis- 
tance R, of C, from wo tends to infinity as n + 00, while 
the length L, of C, is 0 (R, ). 

If these conditions are satisfied, then the Mittag-Leffler 
theorem [8] allows us to write the function R ( w )  as fol- 
lows: 

* . 

R ( w )  = R(wo)  + C OD (L + A). (7 )  
n = l  W - U, U, - WO 

The sum in [7] converges uniformly for all w # U,. Fur- 
thermore, if the series E:= l p , / (  w, - w o )  converges, then 
we can write 

ca 

m 

We define a set of variables {I?:"} such that 
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so that 
yields the relation 

= Er==, E?). A bit of algebraic manipulation 

jwE;lp) = j,,,???) + jpnE(') .  (10) 
We now invert the Fourier transform to get the set of 
equations 

E p  ( t )  = PoE(" ( t )  ( 1 1 4  

for n = 1, 2, * - . ( l l b )  
Equations (1la)-(llb) are a set of rate equations for 

field amplitudes in a laser cavity in the presence of an 
input field. Equation (1 lb) resembles a single-mode rate 
equation with driving field, and it is therefore tempting to 
interpret E?' ( t )  as the amplitude of the nth longitudinal 
(spatial) mode. While there is a spatial field distribution 
associated with each amplitude E?), if E ( ' )  ( w )  # 0 for 
some w # U,, the distribution is not generally that of a 
longitudinal mode which, by definition, is a solution to 
(3) with homogeneous boundary conditions. 

This result should not be surprising. The modes of an 
isolated resonator do not form a complete set when an 
external field is present [ 111. The fields F,, ( z )  associated 
with the amplitudes I??) (U) do, and therefore they are 
the "modes" we must use. The longitudinal modes may 
be taken as approximations to the true fields F , ( z ) ;  an 
example is discussed in Appendix A. 

Withal, the field is completely determined by the am- 
plitudes ,???) that evolve according to (1 la)-( 1 lb). We 
may use these equations to analyze a coupled-cavity laser 
by letting the input E") of one laser be the output E(') of 
the other and vice versa. Before doing that, we must cal- 
culate R (  U )  and its analytic properties. 

111. A ONE-DIMENSIONAL CAVITY 

We calculate the reflectivity function R ( U )  for the cav- 
ity illustrated in Fig. 1. It is of length L and is assumed 
to be filled with a gain medium of index p that may be 
complex to accommodate gain and/or loss. One mirror 
has reflectivity ro; the other, through which coupling takes 
place, is characterized by its reflection coefficients rl  r2, 
and transmission coefficients tZ1 t I 2 .  The traveling-wave 
amplitudes outside the cavity are given by and E ( ' ) ;  
inside the cavity, we denote them by 

Inspection of Fig. 1 yields the following relations be- 
tween the traveling-wave amplitudes: 

= t21Ei(i) + rllEi(r) 

and E ( ' ) .  

(12a) 

(12b) 

( 1 2 4  

= ro exp ( - 2 j f i ~ )  E( ' )  
22 E ( ; )  + tI2E? E(0)  = 

By eliminating 
find a linear relation between 
R ( w ) .  

and I?(') from (12a)-(12c), we can 
and E ( ' ) ,  and thus find 

R ( w )  = r22 + rot12t21 

(13) 
exp ( -2jwpL/c) 

1 - rorl l  exp ( -2jwpL/c)' 

Clearly, R satisfies the criteria for the Mittag-Leffler 
theorem. Its pole are found by setting the denominator of 
the fraction equal to zero and solving for w :  

rorll exp (-2jwpL/c) = 1 (14) 

(15) 
C 

a, = - (In rorll + 2jN7r) 
2JPL 

for integral N. The residues may be determined by apply- 
ing the following theorem. 

If R ( w )  = f ( w ) / g ( w )  has a simple pole at w = a,, 
and w, is an analytic point o f f (  a), the residue p,, is given 
by 

Applying this to (1 3), we find 

Thus, all of the residues are equal. 
We make a distinction here between the integer n and 

the integer N. Condition (2) for the validity of the Mittag- 
Leffler theorem required that the poles be ordered in dis- 
tance from the analytic point wo7 and that they be assigned 
the index n = 1 , 2 ,  3 - * * . On the other hand, N can take 
on values from - 03 to + 03. To preserve the ordering, we 
must order the values of N in distance from a given value. 
An example will make this clear. If we begin at a point 
in the interval N E ( 0 ,  1/2) ,  then for n = 1, 2, 3 ,  4, 5, 

to determine 
the order of the terms in each summation. This choice of 
ordering assures us that the summations in (8a)-(8b) are 
conditionally convergent (they are not absolutely conver- 
gent). 

Now let us evaluate the summation in (8b). We choose 

* * , we take N = 0, 1, -1, 2, -2, - 

(which corresponds to the choice of N in the example 
above). The summation becomes 

= 0. (19) 
1 1 1 1  

-1 1 -3  3 
+ - + - + - + . . .  
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Consequently, 

1 t12t21 

2 rll 
po = R ( q )  = r22 - --. 

IV. Two AXIALLY COUPLED CAVITIES 
To compose a set of coupled-mode equations for two 

coupled cavities, we must take the two-cavity system and 
split it into two “virtual” cavities, as illustrated in Fig. 
2. We label the two cavities by a and b. Parameters of the 
two cavities will be labeled by a subscript; fields will be 
labeled by a superscript in parentheses. The coupling be- 
tween the cavities will be characterized by transmission 
and reflection coefficients tab, tb, and r,,, rbb. 

Our coupled-mode theory requires that in the absence 
of an input field, each cavity is an independent resonator 
with transmission and reflection coefficients t I za ,  t 2 l a ,  rl l a ,  

rZ2, for cavity a and a similar set for cavity b. We partition 
the transmission and reflection coefficients of the coupled 
cavity between the two virtual cavities as follows: 

t12a E tub,  t12a E 1 

r l l a  E raa ,  r22a 0 (21) 
with similar relations (with a and b reversed) for the other 
cavity. Using these definitions in (15) and (17), we find 
that 

If we use values in ( l lb ) ,  with 

we get the familiar coupled-mode equations for coupled- 
cavity lasers. However, there is an additional equation- 
(1 la)-that is not in the form of a rate equation, and that 
has not appeared in traditional coupled-mode treatments. 

While E:) is the amplitude of the nth longitudinal 
“mode” of one of the cavities, E r )  is nothing of the sort; 
it is the frequency-independent reflection of the incident 
field. Its effect is to change the apparent values of the 
coupling coefficients. We write ( 1  la) for each of the two 
cavities: 

n = 1  

We can eliminate E r )  and Ebb’ from the coupled-mode 
equations ( 1  1 b) by using [from (23a)-(23b)] 

m 

Ebb) = PobPoa E k b )  

- PObPOa 

m 

- 
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(b) 
Fig. 2. Schematic of two coupled laser cavities. (a) The two-cavity sys- 

tem; the gap is characterized by scattering parameters r,,, r,,, t,,, and 
tbb. (b) The same system, split into two “virtual” cavities. 

and its companion relation with a and b reversed. Thus, 
if we define self coupling-coefficients K , ~ ,  Khb,  and cross- 
coupling coefficients Kabr Kba, we can write a set of cou- 
pled-mode rate equations involving only the longitudinal 
modes. They are 

m 
d 
-E?’  = jw,Ep’ + m = l  c ~ ( K ~ , E ? )  + K , ~ E ~ ) )  (25) 
at 

(26) PIKI 
9 K,, = POb. Kab = 

1 - PoaPOb 

The equations for cavity b are the same with reversed sub- 

Now we substitute the values for pii from (22). We de- 
scripts. 

fine a “coupling factor” K as 

(27) 
tab tbu 

raa rbb 

K G  -- 

K may be complex. Then 

C K/2 
K a a = - *  2jpaL, 1 + K / 4 ‘  

For a lossless coupling, K is real and positive. For lossy 
couplings-for example, the coupling provided by an air 
gap of a small number of half wavelengths-K can be- 
come purely negative and of magnitude greater than or 
equal to 4 [9], [lo]. 

If K approaches -4, the coupling coefficients diverge. 
This phenomenon has no physical basis; such a laser will 
remain well behaved. As we will show in Appendix B, 
the divergence occurs because the individual cavity modes 
become overcomplete as a description of the coupled sys- 
tem, in which case there is no exact, nonsingular repre- 
sentation of the coupled system in individual cavity 
modes. 

The value of the cross-coupling coefficients will vary 
with chosen field normalization. For example, if we de- 
fine E?’ as the traveling-wave amplitude (as we have done 
here), the cross-coupling coefficients will be different from 
what we would find if we defined 1 E?) as the total en- 
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ergy in the field (as was done in [5] and [6] ) .  Since the 
field normalization depends on the partitioning of the 
transmission coefficients in (21), that, too, can change the 

coefficients and the product of the cross-coupling coeffi- 
cients are independent of field normalization. In the com- 
parisons that follow, all of the coefficients have been ad- 
justed to have the same field normalization. 

In Fig. 3, for a system of two identical cavities with a 
lossless coupling, we plot I Kab 1 as derived from heuristic 
( 5 ) ,  overlap integral (6), local field (1 l ) ,  and the present 
treatments. The first three treatments give the same val- 
ues; they are close to the exact results for 1 t I 2  1 I 0.8.  
For a lossy gap as raa7 ‘bb remain 
fixed), the local field and exact coefficients both approach 
the same value: act. 

A 
1.0-- 

cross-coupling coefficients. However, the self-coupling kt.1 

0.5 -- 

I 
I 

0 

0 0.5 1.0 

It1 
+ 

Fig. 3.  Plot of I K , ~  I versus transmission for the different treatments, nor- 
malized to c / 2 j p ~ .  (a) Heuristic, overlap integral or local field, (b) ex- 

tab 
Kab + ~ -. 

2jVCLaLa rm A 
2.0-- 

This result is also in agreement with the reported results 
from the overlap-integral treatment. (The heuristic for- 
mulas were derived under the explicit assumption that the 
coupling was lossless; they should not be applied to the 

tudes of the self-coupling coefficients from local field the- 
ory along with the exact results. 

The figures illustrate that the coefficients derived from 
all four approaches are generally within a factor of 2 or 
so of each other. Considering that other approximations 

case of a lossy coupling.) In Fig. 4, we plot the magni- 1.0 -- 

in the analysis-the adiabatic approximation, for exam- 0 0.5 1.0 

ple, or truncation of the set of modes-may take an equal It1 

or greater toll on quantitative accuracy, it may not make 
much difference which formulas are used. However, sipce 
this derivation is simple, analytical-and exact-we think 
it is preferable. The method can be generalized to higher 
dimensional problems. 

Fig. 4. Plot of I K,, I versus transmission for (a) local field, (b) exact. 

the laser must be 

F ( z ,  = E ( r )  e - ~ P ~  + ~ ( 1 )  e + ~ P ~  

( r o e - ~ P ~  + e j P ( z + 2 L )  ~ ( 0 ) .  (A41 
1 

r o t 1 2  

APPENDIX A 
=-  

In the spirit of coupled-mode theory, we would like to 
expand the field inside the resonator in terms of the modal 
amplitudes as Comparison of (Al), (A4), and the definition of E?’ 

shows that if a representation such as (Al)  exists, it must 
F ( 2 ,  w) = c E&) E?+) .  ( A l )  have 

n 

1 -jPz + &P(z + W ) .  ( ~ 5 )  

Equation (A5) is less than ideal. Not only do all the 
F,(z)’s  have the same form, they are explicit functions 
of w, and therefore are not stationary in time. 

However, in the absence of an input field, E?’ takes 
the form A , 6 ( w  - a,) for a constant A,. The product 
I?:) ( U )  F,(z;  w )  may thereby be written A , 6 ( w  - U,) 
E,(z; U, )  with no loss of accuracy. Only this case is F , ( z )  
independent of w and stationary in time; and of course, it 
is then the nth longitudinal mode of the isolated resonator. 

We will perform this expansion for the laser of Fig. 1 Fn(z) = (roe 
for the special case r22 = 0. From (12a)-(12c), we find 
the traveling-wave amplitudes 

Ei(0) 
= - 

t12 

2JPL 

r o t 1 2  

(A2) 

E ( [ )  = e E(0)  (A3) 

where P = w p / c .  By inspection of Fig. 1, the field inside 
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Tl . 

Direct Iona I 
Coupler 

Fig. 5. Coupled-cavity system with a fictitious directional coupler in the gap. All transmission coefficients are unity for plane waves traveling in the 
direction of the arrows. 

APPENDIX B 
As K approaches -4, or equivalently, POaPOb ap- 

proaches 1, the coupling coefficients diverge. To analyze 
this situation, we must examine the coupled structure 
within a composite-cavity representation. 

To do this systematically, we introduce a fictitious di- 
rectional coupler into the system of virtual cavities, as 
illustrated in Fig. 5. The coupler passes light from one 
laser to the other unchanged, but it allows us to inject a 
signal E(’)  and extract a probe E‘”), permitting applica- 
tion of the formalism of Section 11. 

We find a relation between E ( ’ )  and E‘”)  in the same 
way we found (13). If the reflectivities of the two cavities 
are R, ( w ) and Rb ( w ) , then the reflectivity seen at the di- 
rectional coupler is 

Each pole of R, ( 0) determines a mode of the composite 
cavity, just as the poles of R, and Rb determine the modes 
of the individual cavities. 

Now consider the situation when R, and Rb each pos- 
sess a finite number of poles and poa pOb + 1. In accor- 
dance with @a), we write 

and a similar equation for Rb. We can write this as a single 
ratio of two polynomials: 

where ( * ) indicates lower powers of W .  Then 

They are spanned by the union of the Nu modes of cavity 
a with the Nb modes of cavity b. However, if POaPOb + 

1, the denominator becomes only of order (Nu + Nb - 
1 ). We find ourselves trying to uniquely represent an ( N u  
+ Nb - 1)-dimensional space with (Nu + N b )  vectors. 
Clearly, the set of individual cavity modes is overcom- 
plete. Just as clearly, this situation will persist no matter 
how many poles lie in the spectrum of R, and Rb. There- 
fore, there is no exact solution for K = -4. In this situ- 
ation, an approximate theory (e.g., [5], [ l l ] )  will give 
more meaningful results. 
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