Fountaine, Katherine T. and Cheng, Wen-Hui and Bukowsky, Colton R. and Atwater, Harry A. (2016) Waveguide modes in sparse III-V nanowire arrays for ultra-broadband tunable perfect absorbers. In: Active Photonic Materials VIII. Proceedings of SPIE. No.9920. Society of Photo-optical Instrumentation Engineers (SPIE) , Bellingham, WA, Art. No. 99200A. ISBN 9781510602311. https://resolver.caltech.edu/CaltechAUTHORS:20180706-085908720
Full text is not posted in this repository. Consult Related URLs below.
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20180706-085908720
Abstract
Design of perfect absorbers and emitters has been a primary focus of the metamaterials community owing to their potential to enhance device efficiency and sensitivity in energy harvesting and sensing applications, specifically photovoltaics, thermal emission control, bolometers and photodetectors, to name a few. While reports of perfect absorbers/emitters for a specific frequency, wavevector, and polarization are ubiquitous, a broadband and polarization- and angle-insensitive perfect absorber remains a particular challenge. In this work, we report on directed optical design and fabrication of sparse III-V nanowire arrays as broadband, polarization- and angle-insensitive perfect absorbers and emitters. Specifically, we target response in the UV-Vis-NIR and NIR-SWIR-MWIR via two material systems, InP (E_g=1.34 eV) and InSb (E_g=0.17 eV), respectively. Herein, we present results on InP and InSb nanowire array broadband absorbers, supported by experiment, simulation and analytic theory. Electromagnetic simulations indicate that, with directed optical design, tapered nanowire arrays and multi-radii nanowire arrays with 5% fill fraction can achieve greater than 95% broadband absorption (λInP=400-900nm, λInSb=1.5-5.5µm), due to efficient excitation and interband transition-mediated attenuation of the HE11 waveguide mode. Experimentally-fabricated InP nanowire arrays embedded in PDMS achieved broadband, polarization- and angle-insensitive 90-95% absorption, limited primarily by reflection off the PDMS interface. Addition of a thin, planar VO_2 layer above a sparse InSb nanowire array enables active thermal tunability in the infrared, effecting a 50% modulation, from 87% (insulating VO_2) to 43% (metallic VO_2) average absorption. These concepts and results along with photovoltaic and other optical and optoelectronic device applications will be discussed.
Item Type: | Book Section | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Related URLs: |
| ||||||||||
ORCID: |
| ||||||||||
Additional Information: | © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE). | ||||||||||
Series Name: | Proceedings of SPIE | ||||||||||
Issue or Number: | 9920 | ||||||||||
DOI: | 10.1117/12.2238397 | ||||||||||
Record Number: | CaltechAUTHORS:20180706-085908720 | ||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20180706-085908720 | ||||||||||
Official Citation: | Katherine T. Fountaine, Wen-Hui Cheng, Colton R. Bukowsky, Harry A. Atwater, "Waveguide modes in sparse III-V nanowire arrays for ultra-broadband tunable perfect absorbers (Conference Presentation)", Proc. SPIE 9920, Active Photonic Materials VIII, 99200A (9 November 2016); doi: 10.1117/12.2238397; https://doi.org/10.1117/12.2238397 | ||||||||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||||||
ID Code: | 87582 | ||||||||||
Collection: | CaltechAUTHORS | ||||||||||
Deposited By: | George Porter | ||||||||||
Deposited On: | 06 Jul 2018 22:23 | ||||||||||
Last Modified: | 15 Nov 2021 20:49 |
Repository Staff Only: item control page