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ABSTRACT

We have fabricated planar photonic crystal nanocavity lasers based on our high quality-factor design that
incorporates fractional edge dislocations in triangular lattice photonic crystal cavities. Lasers with InGaAsP
quantum well active material emitting at 1550nm were optically pumped with 10ns pulses, and lase at room
temperature at threshold pumping powers below 220�W. We have attributed this to the small mode volume and
high Q factors inherent to our device design. We have performed detailed numerical analysis of our structures,
and have found an excellent agreement between theoretical predictions and experimental results. The optical
�eld of the lasing mode in our nano-laser is localized in the air-hole region and therefore the laser can be used
to investigate interaction between light and matter introduced in the cavity and nanospectroscopy.

Keywords: p hotonic crystals, photonic bandgap, semiconductor lasers, InGaAsP

1. INTRODUCTION

Photonic crystals, often referred to as a "semiconductor for light", are recent innovation that can permit the
miniaturization of integrated optical circuits to a scale comparable to the wavelength of light. These man-made
periodic nano-structures, with high refractive index contrast modulation, can be designed to open up frequency
bands (photonic band-gap) within which the propagation of electromagnetic waves is forbidden irrespective of
the propagation direction. One class of photonic crystals, planar photonic crystals (PPC), represents particularly
promising geometry for realization of compact nano-optical devices and their integration with microelectronic
devices due to compatible fabrication techniques of the two systems. The basis of the planar photonic crystal
is a dielectric slab, perforated with a two dimensional periodic lattice of holes.1, 2 The light is localized to the
slab in the vertical direction by means of total internal re
ection and is controlled in the lateral direction by
distributed Bragg re
ection due to the presence of 2D lattice of holes. The combination of these two mechanisms
makes localization of light in all three dimensions possible. One of the most promising applications of planar
photonic crystals is realization of compact and eÆcient optical nano-cavity, with high quality factor (Q) and
small mode volume (Vmode). Many theoretical treatments of photonic crystal cavities have been reported, struc-
tures were successfully realized in various material systems, high quality factor (Q) designs have been proposed
and experimentally veri�ed and room-temperature lasing was reported by several groups.3{15

In this work we report theoretical and experimental analysis of high-Q optical nano-cavities based on trian-
gular lattice planar photonic crystal. Cavity design is based on fractional edge dislocations in single defect PPC
cavity (Figure 1). In our earlier publications we predicted high quality factors (Q > 10; 000) in these struc-
tures,5, 16 demonstrated low-threshold room temperature lasing,14 and measured record-high quality factors.8

Here we present in-depth theoretical analysis of cavities based on fractional edge dislocations and compare
theoretical predictions with experimental results. The paper is organized as follows: in section 2 we present
results of 3D �nite di�erence time domain (3D FDTD) analysis; wafer design and nanofabrication procedure is
reported in section 3; experimental results are described in section 4; conclusions and discussion of the results
are summarized in section 5.
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2. STRUCTURE DESIGN AND FINITE DIFFERENCE TIME DOMAIN ANALYSIS

The structure that we are interested in is based on a single defect cavity de�ned in a triangular lattice planar
photonic crystal. Our planar photonic crystal is based on a free-standing membrane: high dielectric constant
slab (refractive index n = 3:4) is perforated with 2D lattice of holes with periodicity a and is suspended in the
air. The cavity consists of a defect hole (radius rdef ) that is smaller than surrounding holes (radius r) which
de�ne the photonic crystal mirror. The row that contains the defect hole is elongated by moving two photonic
crystal half-planes a fraction of a lattice constant apart in the �X direction (Figure 1). Each half-plane is moved
by p=2, yielding total dislocation of p.

Figure 1. (a) Conventional single defect cavity (p = 0). When structure is "cut" along the dashed line, and two PPC
half-planes are dislocated along �X direction by p=2, (b) high-Q cavity can be formed (p = 0:25 � a).

In our earlier publication5 we showed that in photonic crystal cavities, with r=a = 0:275, rdef=a = 0:2 and
d=a = 0:75 (d is thickness of the slab), it is possible achieve Q factors as high as 11,000 by tuning the dislocation
parameter p. The Q was maximized when p=a = 10%. These high Q values were obtained while maintaining a
very small mode volume of Vmode � 0:1(�=2)3. The cavities described in Reference 5 were originally designed
for cavity QED experiments, where strong-coupling between atoms introduced into the high �eld region of the
cavity and light trapped in the cavity is to be investigated. However, it is clear that the presence of a hole at
the point of maximum �eld intensity is not desirable in low-threshold laser designs, since the overlap with the
gain region is decreased. Therefore, we have revisited the problem of cavity design in order to investigate the
in
uence of the defect hole size (rdef ) on the Q factor of the cavity.

In order to improve the lateral con�nement of light, we decided to analyze structures with slightly bigger
holes (r=a = 0:3). This results in more compact cavity, since fewer layers of photonic crystal can be used to
eÆciently con�ne the light. On the other hand, bigger holes in the photonic crystal mirror increase the scatter-
ing of light in the vertical direction and therefore result in decreased Q factors. As the �rst step, we calculated
the band diagram of the bulk photonic crystal with parameters r=a = 0:3, d=a = 0:75, and nslab = 3:4, and
we found that bandgap exists for vertically even modes (TE-like) for the normalized frequencies in the range
a=� 2 (0:2508; 0:3329). 3D FDTD was used to calculate this dispersion diagram, as described in Reference
17. The discretization used in FDTD algorithm was a = 20 computational points. Next, we modelled various
high-Q cavity designs in order to �nd their eigen-modes. In Figure 2 we show the results of 3D FDTD analysis
of the structure with p=a = 10%, rdef = 0:2a, r = 0:3a and d = 0:75a. Two dipole modes, labelled LQ and
HQ, are found to exist in the cavity. These dipole modes correspond to doubly-degenerate modes of the simple
single defect cavity,3 but the degeneracy between them is lifted due to the dislocation. Also, additional modes
are found close to the air-band. Those modes are not localized to the defect hole, but are instead attributed to
the waveguide modes of the elongated central row.

As the next step, we investigated the dependence of the frequency of the two modes on the geometry of
the cavity. Figure 3 shows positions of the two dipole modes as the function of elongation (p) and the size of
the defect hole (rdef ). It can be seen that in all cases two dipole modes are more split-apart as the dislocation
increases. This is due to the fact that the modes interact more strongly (they are not orthogonal anymore) as
p is increased. On the other hand, as the defect hole becomes bigger, the modes are shifted towards higher
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Figure 2. Defect modes of the cavity with p=a = 10% and rdef = 0:2a. (a) Cavity supports two dipole modes, and
their pro�les are shown (Bz component and vector of the ~E �eld). Gray shaded region in the spectrum corresponds to
the modes of the bulk photonic crystal, while the bandgap is represented with white color. (b) Amplitude of the E �eld
is shown. It can be seen that light is localized in the small defect hole.

frequencies. This is expected since modes' overlap with the low-dielectric constant material (air) increases as
rdef increases. One more interesting feature is that splitting between LQ and HQ modes does not depend
strongly on the size of the central hole, and is mostly dependant on the amount of dislocation introduced.

For �xed rdef mode with smaller eigen-frequency (HQ) has higher quality factor than the other mode (LQ).

Figure 3. Dependence of the position of the two dipole modes of the cavity on the amount of dislocation introduced
(p), and the size of the defect hole (rdef ).

Therefore, the mode of interest is the HQ mode, the one that has ~E �eld aligned along x-axis, as shown in
Figure 2(a). The quality factors of LQ modes are limited to several hundreds and therefore are not of practical
importance. In Figure 4 we show dependence of the vertical (Qvert) and lateral (Qlateral) quality factors of
the HQ mode on the amount of fractional edge dislocation introduced (p), for various sizes of central defect

18     Proc. of SPIE Vol. 5000

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/6/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



hole (rdef ). For de�nition of lateral and vertical Q-factors interested reader can see Reference 3. The lateral
Q-factor (in-plane Q-factor) depends on the position of the mode within the bandgap, and can be improved by
adding more photonic crystal layers around the cavity. The ultimate Q-factor that we can achieve is therefore
limited by Qvert. In our calculations, cavity was surrounded with �ve layers of photonic crystal, as shown in
Figure 2(b).

The highest Q-factor that we could achieve in our cavities is around 7,000, when rdef=a = 0:2. For com-

Figure 4. Dependence of the (a) vertical and (b) lateral quality factor of the HQ mode on the amount of dislocation (p)
and the size of the defect hole (rdef ). Only �ve layers of photonic crystal surrounding the defect hole was used. Qlateral

can be improved by adding more photonic crystal layers.

parison, we were able to achieve Qs as high as 11,000 when r=a = 0:275.5 As expected, bigger holes of the
bulk photonic crystal used in the present work (r=a = 0:3) introduce more scattering of light, and therefore the
Q-factors are smaller. Another important conclusion is that Q-factors higher than 5,000 can be achieved even
when the central defect hole is made smaller. However, optimal design (Q-factor maximized) requires more
dislocation as rdef decreases. This can be understood and explained by performing Fourier analysis of the HQ
mode �eld components as described in our earlier publication.16 For example, when rdef = 0:1a, Qvert � 5; 500
can be achieved if p=a = 30%. This is important result for realization of low-threshold lasers since both reduced
rdef and increased p=a will increase overlap between the eigen-mode of the cavity and gain (dielectric) region,
thus reducing the threshold powers. However, in our design we still want to keep the central defect hole since
the application that we have in mind for our lasers is nano-spectroscopy, and interaction between cavity �eld
and matter introduced into the defect hole is of interest. For example, our device could be used as an eÆcient
and compact gas sensor.

3. FABRICATION PROCEDURE

Our cavities were fabricated in InGaAsP quantum well material. Metalorganic chemical vapor deposition was
used to grow the active laser structure on an InP substrate. Optical gain is provided by four 9nm thick,
compressively strained, quantum wells with an electronic bandgap at Eg = 1:55�m, separated by 20nm thick
InGaAsP barriers (Eg = 1:22�m). This active material is placed in the center of a 330nm thick InGaAsP slab
(Eg = 1:22�m), with 1�m thick sacri�cial InP layer underneath the slab. An InGaAs etch stop is introduced
above the InP substrate, and the active quaternary material is designed to operate at � = 1:55�m. Because of
the compressive strain, the coupling is the strongest to the TE polarized modes of the slab. This is desirable
since in triangular lattice PPC the bandgap is larger for TE-polarized light. An etch mask consists of 40nm Au
evaporated on top of 100nm SiON, deposited using plasma-enhanced chemical vapor deposition. The fabrication
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process starts with the deposition of 150nm of polymethyl methacrylate (PMMA) electron beam resist, followed
by electron-beam lithography to de�ne structures in PMMA. We use an Ar+ ion milling step to transfer the
mask pattern through the Au metal mask, and this procedure is followed by a C2F6 reactive ion etching (RIE)
to transfer the mask from the Au into the SiON. Inductive-coupled plasma RIE etching is �nally used to transfer
the pattern from the SiON mask layer into the InGaAsP. Finally, the mask is removed in a HF acid and the
InGaAsP membrane is released from the substrate by wet etching in 4:1 HCl:water solution at 4oC. The �nal
structure is a free standing membrane supported at one side (Figure 5).

Each pattern shown in Figure 5(a) consists of six di�erent cavities that have received the same electron-dose

Figure 5. SEM micrograph of the structure b4. Each structure consists of (a) six di�erent cavities with di�erent
elongation parameters: p0 = 0, p1 = 0:05 � a, p2 = 0:1 � a, p3 = 0:15 � a, p4 = 0:2 � a and p5 = 0:25 � a. (b) Blow-up of p3
cavity, and (c) of a single hole (tilted). Quantum wells and undercut air region can be seen.

during the e-beam lithography step, and therefore should have similar hole size (r) and lattice constant (a). The
only di�erence between the cavities in one structure is the value of the dislocation parameter p that assumed
values in the range p=a 2 (0; 0:25). In our experiments we tested several structures, but in this work we report
results for three structures (each of them consists of six di�erent cavities). The structures are labelled a2, b1
and b4, according to their position within 5x10 matrix of fabricated structures. In Figure 6 we show scanning
electron microscopy (SEM) micrographs of four cavities that lased, as described in the following section. In
order to determine the exact geometry of these nano-laser, we performed detailed image-analysis of the SEM
micrographs of these four cavities. We used pattern recognition procedure to determine the area of all holes
that make photonic crystal mirrors, and to estimate the radius of each hole. The results are shown in Figure 6
and summarized in Table 1.

Table 1. Table 1 - Geometry of four nano-lasers tested in the experiment

r r=a rdef rdef=a

a2, p4 126nm 0.290 �50nm 0.115

b1, p5 125nm 0.290 �71nm 0.162

b4, p5 139nm 0.320 �73nm 0.168

b4, p4 138nm 0.317 �73nm 0.168

Due to problems with the PMMA mask used, quality of fabrication procedure deteriorated when the pat-
terns were transferred from PMMA into the metal layer. However, even though holes are "funny" shaped, the
e�ective radius is very uniform and the hole radius variation is better than �5nm. In case of b4 structure, that
we show the most experimental data for in the following section, the average hole size is found to be r � 140nm,
and average periodicity of the photonic crystal lattice a = 435nm. This combination of geometries yield relative
thickness of d=a = 0:76 and relative hole size r=a = 0:32. This is slightly di�erent geometry than the one we
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Figure 6. SEM micrographs of (a) a2 p4, (b) b1 p5, (c) b4 p4 and (d) b4 p5 along with the distribution of hole sizes in
the bulk photonic crystal mirrors surrounding each cavity.

analyzed in the Section II. Using 3D FDTD code we found that for this geometry photonic bandgap is located in
the range a=� = (0:253; 0:345). Due to increased hole size, Q-factors of fabricated structures are expected to be
smaller than those reported in previous section. Moreover, Q-factors are expected to be even further decreased
due to increased scattering of light at the rugged hole walls (Figure 6).

4. EXPERIMENTAL RESULTS

Our cavities were optically pumped using a laser source at � = 830nm. Heat-sinking was poor in our structures,
since they are de�ned in the membrane that is connected to the substrate at one side only. Therefore, in order
to prevent overheating of the lasers, we pumped them in pulsed regime. In most of the cases structures were
pumped with 10ns long pulses,18 with periodicity 1�s, yielding the duty cycle of DC = 1%. Schematic of
the setup used in the experiment is shown in Figure 7. The pump beam was focused through 100x objective
lens onto the sample surface to obtain a spot size of about 3�m. The emission from the cavities was collected
through the same lens, and the spectrum of the emitted light signal was detected with an optical spectrum
analyzer (OSA). An additional 
ip-up mirror was used to obtain the optical images of the excitation pump-spot
and the cavity modes.

As the �rst step we measured the emission from the unprocessed InGaAsP material and obtained the gain
spectrum of the active material. We found that emission exists between 1300nm and 1650nm, with a maximum
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Figure 7. Experimental setup. NPBS stands for Non-polarizing beam splitter.

Figure 8. Structure b4. Position of resonant modes detected in cavities p0�p5 as a function of the elongation parameter
p.

at around 1550nm. This wavelength range corresponds to normalized frequencies of a=� 2 (0:264; 0:335), which
is within the bandgap of the bulk photonic crystal mirrors surrounding the cavity. Next, we tested all six
cavities in b4 structure in order to characterize their resonant modes. We found two prominent resonant peaks
in the emission range of our InGaAsP material (Figure 8), and we observed that the position of these reso-
nances depends strongly on the value of the elongation parameter p, as predicted by our theoretical calculations
(Figure 3). Originally double degenerate modes of a single defect cavity with no dislocations introduced (p0)
become split apart as dislocation is introduced, and the splitting between two modes increases as amount of
dislocation increases. LQ mode positioned at higher frequencies (shorter wavelength) is shifted towards shorter
wavelengths, while HQ mode is shifted towards longer wavelengths, as we increase dislocation. This is in very
good agreement with theoretical predictions of Section II. Slight variations observed in the case of structure p5
(peaks jump towards longer wavelengths) might be attributed to the non-uniform defect hole size. Indeed, as
we observed in Section II, positions of peaks are strongly dependent on the defect hole size. In addition, LQ
and HQ modes are split even in the case of p0. We have attributed this to the broken symmetry of the structure
due to the fabrication disorders.

By introducing polarizer between the non-polarizing beam splitter (NPBS) and the collimator (Figure 7)
we could select polarization of the photoluminescence signal, and investigate polarization properties of the LQ
and HQ modes. We observed that these two modes are linearly polarized, but have orthogonal polarization
(Figure 9). This is in an excellent agreement with our 3D FDTD analysis that shows that LQ mode is polarized
along y-axis direction, while HQ mode is polarized along x-axis direction.
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Figure 9. Structure b4, cavity p3. Polarization dependance of the resonant modes. 0o corresponds to y-axis direction.
Figure also shows mode pro�les (Bz component), polarization ( ~E) and position in the spectrum of the LQ and HQ
modes, the result of 3D FDTD analysis.

In Figure 10 we show the dependence of detected peak output optical power as a function of peak input

Figure 10. Structure b4. L-L curve for p5 and p4 cavities for two di�erent duty cycles (DC). The pulse periodicity was
1�s in both cases. Spectrum taken below threshold, in the case of p4 cavity is shown in the inset.

optical power (L-L curve) for HQ resonant mode of p4 and p5 cavities in structure b4. In the case of structure p5
pumped with 1% duty cycle threshold power as low as Pth = 214�W is observed. This threshold power go up
to 520�W when duty cycle is increased to 3%. We have attributed this increase in the threshold power to poor
heat dissipation of our nano-laser and its increased temperature. Quality factor in the case of p5 structure was
estimated from below threshold luminescence measurements to be around Q � 2; 000 (Figure 10). However, it
should be mentioned that by estimating Q factors of the cavity from below-threshold characteristics, we under-
estimate actual Q-value. This is due to additional losses introduced in the cavity due to the re-absorption of
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light in the active region (quantum wells). Therefore, we expect actual Q-values to be higher and in the range
of 6; 000 as predicted by theory. In Figure 10 we also show L-L curve for p4 cavity in the b4 structure. It can be
seen that threshold is higher in this case, and it is around Pth = 950�W . There are several reasons for increased
threshold: gain provided from quantum wells is smaller at this wavelength (� = 1457:5nm) than in the case of
p5 cavity (� = 1504) since gain peaks at � � 1550nm; second, for rdef � 0:15a Q factor of p4 cavity is smaller
than Q factor of p5, as shown in Section II; �nally, p5 structure has more dielectric material in the cavity region
(bigger dislocation), and the mode-overlap with the gain material is better than in the case of p4 structure.

In the inset of Figure 10 we show spectrum of the HQ peak of the p4 cavity (set b4), taken at the thresh-
old. Full-width half-maximum of the resonance is FWHM = 0:34nm, and that corresponds to Q factor of
Q � 4; 300. This is in good agreement with our theoretical predictions of Qp4 = 4; 000. However, since the
spectrum is taken at the threshold, it is possible that the linewidth is narrowed due to the presence of the gain.
Therefore, this very high Q value that we measure should be taken with caution, and more detailed analysis
is to be conducted in order to get reliable estimates for Q-factors. For example, structures de�ned in passive
materials (e.g. SOI) should be characterized in order to get unambiguous estimates of Q-factors.

In order to further reduce threshold powers, it is bene�cial to make structures with smaller holes since that
improves Q-factors. Also, the defect hole should be smaller in order to increase mode overlap with the dielectric
(gain) material. As it can be seen in Table 1, cavity p5 from set b1 satis�es these conditions. Therefore, we
expect to observe small threshold power in the case of this cavity. In Figure 11 we show the positions of the
resonant modes in the cavity b1 p5. The spectra are taken for two di�erent pumping level, and line-narrowing
can be observed as laser is pumped harder. It can be seen that HQ resonance is positioned at � = 1560,
almost exactly at the position of the maximum gain (� = 1550nm). Q-factor of the LQ mode was estimated to
be QLQ = 505. In Figure 12 we show L-L curves for this structure, taken for two di�erent pumping levels. It
can be seen that threshold power in this structure is smaller than in the case of structure b4p5 shown in Figure 10.

Figure 11. Structure b1, cavity p5. Photoluminescence spectra taken at two di�erent pumping levels. Narrowing of the
linewidth in case of HQ mode can be observed. Q-factors of LQ mode are estimated to be around QLQ = 505.

In Figure 13 we show L-L curve for a2 p4 cavity, as well as tuning characteristics of structure a2. This
cavity also supports two modes, and the one at longer wavelength (HQ mode) lases. Since both holes in the
bulk photonic crystal mirror surrounding the cavity and the central defect hole are smaller in this case (Table
1), resonances are shifted towards longer wavelengths (smaller energies). A photoluminescence spectrum taken
above threshold, as well as the mode pro�les taken at di�erent pumping levels, are shown in the inset. The size
of the light spot emitted from the nano-laser is on the order of 3:9�m2, a strong indication that this laser has
a small mode volume. When the pump beam is only slightly moved from the center of the cavity (less than
1�m), the strong light intensity shown in Figure 13 disappears. This micro-photoluminescence result is another
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Figure 12. L-L curve of structure b1 p5 taken at di�erent pumping levels. DC = 1%

Figure 13. Structure a2 p4. (a) L-L curve. Lasing action occurs from HQ mode positioned at � = 1598nm. Insets show
spectrum above threshold, and mode pro�les of the lasing mode for several pump levels. The boundaries of the structure
can also be seen. The mode is very well localized to the center of the cavity. (b) Tuning properties of a2 structure, as a
function of elongation parameter p.

con�rmation that we indeed observe lasing from a well localized, small mode volume, high Q resonant mode.

5. DISCUSSION AND CONCLUSIONS

We have fabricated and characterized photonic crystal nano-cavities based on our fractional edge dislocations
design. We have numerically modelled our cavities and have investigated dependence of the optical properties
of the cavities on their geometry. The cavities were fabricated in active InGaAsP material, in a free-standing
membrane planar photonic crystal platform. The structures were tested at room temperature, and were opti-
cally pumped with pulsed laser source. Lasing was observed from the high-Q dipole modes of the cavities. In
spite of the unusual design of our structures, which has a hole etched through the position of maximum �eld
intensity, we observed low threshold powers in our devices. We have attributed this to the small mode volume
and the high Q factors inherent to our device design. In addition, low-Q dipole mode, positioned at shorter
wavelengths, was experimentally characterized and results are in good agreement with �nite di�erence time
domain model predictions. Polarization and lithographic tuning properties of high- and low-Q modes are also
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in an excellent agreement with theoretical FDTD predictions. The mode pro�les taken by our IR camera show
that the lasing resonance is well localized to the center of our cavity. Based on these experimental results, we
conclude that the observed room temperature lasing action corresponds to the high Q mode of our nano-cavity.
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