The influence of CO$_2$ forcing on North American monsoon moisture surges

Salvatore Pascale1,2,*, Sarah B. Kapnick2, Simona Bordoni3, Thomas L. Delworth2

1 Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey 08540, USA

2 Geophysical Fluid Dynamics Laboratory/NOAA, Princeton, New Jersey 08540, USA

3 California Institute of Technology, Pasadena, California 91125, USA

Supplementary material

Corresponding author’s address: Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey 08540, USA

E-mail: Salvatore.Pascale@noaa.gov
Supplementary Fig. 1: Composites of (a,c,e) precipitation (color shading) and 10-m wind anomalies (arrows) and (b,d,f) 500-hPa geopotential height (color shading and green contours) and wind anomalies the day after the onset (day 1) of a GoC surge with mean precipitation intensity $p_{su} < p_{50}$. Color shading and wind anomalies are shown only where composites are statistically significant at the 5% level according to a two-tailed t-test. Composites are shown for MERRA (a,b), FLOR-FA (c,d) and FLOR (e,f).
Supplementary Fig. 2: As in Fig. 2 but for $p_{50} \leq p_{au} < p_{95}$
Supplementary Fig. 3: As in Fig. 3 but for $p_{95} \geq p_{95}$. Green contours in (a,c,d) denote regions where precipitation anomalies exceed 8 mm d$^{-1}$.