Keck Planet Imager and Characterizer (KPIC): status update

Keck Planet Imager and Characterizer: status update

D. Maweta,b, C. Z. Bondc, J.-R. Delormea, N. Jovanovica, S. Cetred, M. Chunc, D. Echeverria, D. Hallc, S. Lilleyd, J.K. Wallaceb, and P. Wizinowichd

aDepartment of Astronomy, California Institute of Technology, Pasadena, CA 91106, USA; bJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; cW. M. Keck Observatory, 65-1120 Mamalahoa Hwy., Kamuela, HI, USA 96743; dInstitute for Astronomy, University of Hawaii, 640 N. A`ohoku Place, Hilo, HI, USA 96720;

\textbf{ABSTRACT}

Here we report on the status of the The Keck Planet Imager and Characterizer (KPIC), which is an on-going series of upgrades to the W.M. Keck II adaptive optics system and instrument suite focused on exoplanet imaging and spectroscopic characterization. The KPIC infrared pyramid wavefront sensor and fiber injection unit to high-resolution infrared spectrograph NIRSPEC have been assembled, integrated and are under-going tests at the University of Hawaii before installation at the Summit in the Fall of 2018.

\textbf{Keywords:} Exoplanets, high contrast imaging, high contrast high resolution spectroscopy, small inner working angle coronagraphy, vortex coronagraph, on-axis segmented telescopes, apodization, Extremely Large Telescopes

1. INTRODUCTION

The Keck Planet Imager and Characterizer (KPIC) consists of an on-going series of upgrades to the W.M. Keck II adaptive optics system, facility infrared imager NIRC2 and high-resolution spectrograph NIRSPEC. The upgrades aim to enable unique exoplanet science. NIRC2 was upgraded with an L-band vortex coronagraph1–5, now offered in shared-risk mode. The NIRC2 L-band vortex enabled the discovery of new protoplanet candidates6,7 disks, and allowed us to constraint mass accretion rates in protoplanetary disks with gaps9.

2. KPIC SCIENCE CASES

Exoplanets around late-type stars. M dwarfs constitute a promising reservoir to survey in order to advance our understanding of planetary formation and evolution. Indeed, M dwarfs outnumber all earlier-type stars together10. Their abundance, low close binary fraction, and the ubiquitous presence of massive protoplanetary disks at young ages imply that they are common sites of planet formation. Close separations (< 1 AU) have been extensively probed by Doppler and transit surveys with the following results: the frequency of close-in giant planets (1 – 10\(M_{\text{Jup}}\)) is only 2.5 ± 0.9\%, consistent with core accretion plus migration models11. On the other hand, the Kepler survey indicates that Earth- to Neptune-sized planets might be as common as one per star12–14. The outskirts of young M-dwarf systems (10 – 100 AU) have been probed by first-generation direct imaging instruments, and results show that massive planets are rare: fewer than 10.6\% of M-dwarf systems surveyed harbor 1 – 13\(M_{\text{Jup}}\) giant planets in their outer regions15. Disk instability does not seem to be a common mechanism of giant planet formation. The 1 – 10 AU parameter space is thus believed to be the overwhelmingly favored region for planet formation. Across the entire range of sensitivity (10\(M_{\oplus} – 10\(M_{\text{Jup}}\)), the occurrence rates measured by microlensing surveys imply an average 1.60.2+0.4 planets per star16. Microlensing probes the full range of planetary masses in this region, but the masses and metallicities of the host stars are usually poorly constrained and so are of limited value for statistical studies. Moreover, one-shot microlensing-detected objects can not be followed up. High contrast imaging with a good knowledge of the host star distance and age is therefore the perfect complement to indirect techniques, and holds the promise of filling in this unknown.
untouched parameter space, and provide excellent characterization opportunities. Last but not least, M dwarfs provide the best star-planet contrast ratios for young giant planets among all stellar masses.

KPIC will target this reservoir with the most advanced high contrast imaging technologies, unveiling these planets with unprecedented sensitivity, but also directly analyzing their thermal light with high-resolution spectroscopy (NIRSPEC), enabling the retrieval of the molecular composition of their atmosphere17 and in favorable cases the Doppler imaging of cloud, wind, and temperature gradients.18–20

Planetary systems in star forming regions (SFR). Sky coverage with an infrared WFS is typically 50\% higher than with a classical visible WFS.21 In obscured areas such as SFR, the gain is much more dramatic. The population of young stars in Taurus, 140 pc away, is dominated by M stars and very late K stars,22 making infrared WFS essential for these very red stars. Indeed, an R-band WFS sensitivity rolloff at $R \simeq 13$ currently provides access to only a handful of T Tauri stars, while a rolloff at $J/H \simeq 13$ mags would enable high contrast on a hundred young stars in Taurus alone. Thus, infrared wavefront sensing enables high contrast imaging studies of extrasolar planetary systems (both disk + protoplanets) in their infancy.

High Dispersion Coronagraphy to characterize young giant planets. Coupling a high-resolution spectrograph with a high-contrast imaging instrument (Fig. 1) is the next big step in the direct characterization of exoplanet atmospheres.20 In this scheme, the high-contrast imaging system serves as a spatial filter to separate the light from the star and the planet, and the high-resolution spectrograph serves as spectral filter, which differentiates between features in the stellar and planetary spectra, e.g., between different absorption lines and radial velocities. High-resolution spectroscopy has three game-changing benefits:

1. Detailed species-by-species molecular characterization (spectral retrieval).
2. Doppler measurements (planet spin, orbital velocity, plus mapping of atmospheric and/or surface features).
3. Last but not least, improved detection capability by side-stepping speckle noise calibration issues affecting low-resolution spectroscopic data from current integral field spectrographs such as SPHERE/IFS, SCExAO/CHARIS, and GPI.

Most direct imaging results so far have indeed focused on photometry and very low-resolution spectroscopy, due to the lack of instruments designed to optimally merge high contrast imaging (wavefront control and coronagraphy) and high-resolution spectroscopy at small angles from the host star.23, 24 KPIC, and its fiber injection unit (FIU) linking Keck AO to NIRSPEC would enable routine high-resolution characterization of directly imaged low-mass companions and exoplanets (see Table 1). The KPIC FIU to NIRSPEC will also make Doppler imaging mainstream.18

Characterization of close-in planets. For transiting and non-transiting hot Jupiters and warm Neptunes, high-resolution transmission spectroscopy has been used to detect molecular gas25–27 and to study day to night side wind velocity,25 providing an ultimate test for 3D exoplanet atmosphere models. For planets detected with the RV method, spectral lines owing to the planet and star may be separated via their radial velocities (> 50 km/s). The RV of a planet can thus be measured to break the degeneracy between the true planet mass and orbital inclination intrinsic to RV detections.28 Together with NIRSPEC, KPIC will provide the sensitivity, spectral resolution, and spectral coverage necessary to pursue such studies, on time for high scientific value and unique follow-up opportunities in the TESS era.

Protoplanetary disks. Dust and gas accretion disks around young stars form as a natural consequence of the conservation of angular momentum in a collapsing cloud core. Planets are born in their dense dusty midplane disk, called protoplanetary (PP) disks. The evolution, and ultimately the dispersion of PP disks, holds the key to many open questions related to planet formation. High-resolution infrared spectroscopy is instrumental in understanding PP disk gas dynamics through, e.g. the study of the emission and absorption of CO ro-vibrational
Figure 1. High-dispersion coronagraphy (HDC) concept. A classical high-contrast instrument, with an adaptive optics (AO) or wavefront control (WFC) system followed by a starlight suppressing coronagraph, is linked to a high-dispersion spectrograph using a fiber injection unit (FIU). The data processing steps are as follows: the raw data (planet-residual starlight unfiltered by the high-contrast instrument, and various noise contributors such as photon shot noise, readout noise, background noise, etc.) is cross-correlated with a theoretical template yielding a new observable, called here the cross-correlation function (CCF). The CCF profile provides improved dynamic range for detection and molecular characterization. Its broadening with respect to the instrument line profile is a direct measure of the planet’s spin rotation. The variation of the line profile morphology over the rotation period enables Doppler imaging.

Table 1. Target list for HDC with KPIC.

Detection and characterizing young forming planets. Answering the key question How do giant planets form? can not be achieved by only observing older, dynamically evolved systems. Detecting extrasolar giant planets near the epoch of their formation is much easier, due to their higher luminosities. This requires the full angular resolution of Keck, in order to separate giant planets at solar system scales from their host stars. Most of the luminosity of these forming planets is expected to be emitted at near-infrared wavelengths from a circumplanetary disk. It has so far proved difficult to uniquely separate circumplanetary emission from circumstellar lines. Spatially resolved high-resolution spectro-astrometry (at mas scale) of the molecular gas allows measuring its distribution in space and velocity, correlate it to disk geometries and accretion activity. Infrared spectroscopy also enables detailed characterization of the molecular composition of young disk, including organic molecules.
disk emission, as this requires resolving line emission at high spectral dispersion. The kinematic signatures of these warm disks will occur in the range of 3-30 km/s (similar to the velocities of Jupiters moons), with strong line emission from CO and H$_2$O in the bandpass of HISPEC. These data might even lead to measurements of the dynamical masses of these forming exoplanets, in much the same way as one can derive masses of T Tauri stars from the velocity curves of circumstellar disks. Finally, Doppler monitoring of directly-imaged planets could lead to discoveries of exomoons.\cite{30}

3. KPIC CAPABILITIES

KPIC is both capable of taking images of exoplanets with Keck II infrared imager NIRC2 and perform high-resolution spectroscopic characterization of their atmospheres with NIRSPEC. Table 2 summarizes KPIC’s specifications.

4. KPIC STATUS BY SUBSYSTEM

In this section we present a brief overview of the status of KPIC’s subsystems integration. A block diagram is shown in Figure 2.

4.1 NIRC2 coronagraph

The NIRC2 L-band vortex coronagraph was commissioned in Spring/Summer 2015 and is now available in shared-risk mode.\cite{1-5}

4.2 Infrared Pyramid WFS

The infrared Pyramid Wavefront sensor of KPIC is described in detail in Bond et al. 2018 (these proceedings). The system was recently integrated with an infrared SAPHIRA e-APD array and successfully demonstrated <1e$^{-}$ readout noise at high gain at the University of Hawaii (Hilo). The sensor was paired to the fiber injection unit (Figure 3) and will soon be installed on the Keck II AO bench (Fall of 2018).

More details about the opto-mechanical design of the sensor can be found in Lilley et al. 2018 (these proceedings). The real-time control system of KPIC is described in Cetre et al. 2018 (these proceedings).
Figure 2. Block diagram of KPIC showing the different subsystems and the links between them. HODM - High Order DM, FIU - Fiber Injection Unit, IR-PyWFS - infrared Pyramid Wavefront Sensor, FEU - Fiber Extraction Unit.

Figure 3. Left: FIU plate (silver) in front of the PyWFS plate (Black). Middle: picture of KPIC from the back side of the FIU plate. Right: Picture of the space between the two plates when co-aligned.

4.3 FIU and FEU to NIRSPEC
The fiber injection unit linking the Keck II AO bench to NIRSPEC is discussed in details in Delorme et al. 2018 (these proceedings). The system was integrated and paired to the infrared Pyramid WFS (Figure 3), and will be installed at the Summit in the Fall of 2018. The fiber extraction unit will be integrated to the NIRSPEC calibration unit this Summer (2018).

5. CONCLUSIONS AND PERSPECTIVES
KPIC, with its IWA of ≃ 40 mas at K-band and ≃ 80 mas at L-band, will complement JWST at very small angles (the IWA of NIRCAM and MIRI will be 5-10 times larger). KPIC’s high resolution spectroscopic mode will demonstrate crucial capabilities that will be essential to follow-up discoveries from JWST, TESS and later on WFIRST CGI. KPIC will bridge the gap between the Keck AO system and a TMT planetary systems imager (PSI). Keck provides a pathfinder for ExAO and high dispersion coronagraphy on the highly-segmented TMT. KPIC will allow demonstrating critical component-level and system-level aspects, gain operational experience on segmented telescopes, and enable unique science, vetting the most promising targets for future follow-ups requiring a larger aperture.

ACKNOWLEDGMENTS
The near-infrared pyramid wavefront sensor is supported by the National Science Foundation under Grant No. AST-1611623. The camera used with the pyramid wavefront sensor is provided by Don Hall with support by the National Science Foundation under Grant No. AST-1106391. The fiber injection unit is supported by the Heising-Simons Foundation.
The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technol-
ology, the University of California, and the National Aeronautics and Space Administration. The Observatory
was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to
recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has
always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to
conduct observations from this mountain.

This work was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space Administration.

REFERENCES

Kuittinen, M., Vartiainen, I., Surdej, J., and Habraken, S., “Laboratory demonstration of a mid-infrared
AGPM vector vortex coronagraph,” A&A 553, A98 (May 2013).
of the QACITS pointing control technique with the Keck/NIRC2 vortex coronagraph,” 600, A46 (Apr.
2017).
Bottom, M., Campbell, R., Carlonagno, B., Defrère, D., Delacroix, C., Forsberg, P., Gomez Gonzalez,
C., Habraken, S., Jolivet, A., Liewer, K., Lilley, S., Piron, P., Reggiani, M., Surdej, J., Tran, H., Vargas
Catalán, E., and Wertz, O., “The W. M. Keck Observatory Infrared Vortex Coronagraph and a First Image
[6] Reggiani, M., Christiaens, V., Absil, O., Mawet, D., Huby, E., Choquet, É., Gomez Gonzalez, C. A.,
Ruane, G., Femienia, B., Serabyn, E., Matthews, K., Baraza, M., Carlonagno, B., Defrère, D., Delacroix,
C., Habraken, S., Jolivet, A., Karlsson, M., Orban de Xivry, G., Piron, P., Surdej, J., Vargas Catalan, E.,
and Wertz, O., “Discovery of a point-like source and a third spiral arm in the transition disk around the
É., Christiaens, V., Castellá, B. F., Huby, E., Isella, A., Kastner, J., Meshkat, T., Reggiani, M., Riggs, A.,
Serabyn, E., and Wallack, N., “High-contrast imaging of HD 163296 with the Keck/NIRC2 Lν#900-band
vortex coronagraph,” (June 2018).
K., Gomez Gonzalez, C. A., Wertz, O., Carlonagno, B., Christiaens, V., Defrère, D., Delacroix, C., Forsberg,
P., Habraken, S., Jolivet, A., Karlsson, M., Milli, J., Pinte, C., Piron, P., Reggiani, M., Surdej, J., and Vargas
Catalán, E., “Characterization of the Inner Disk around HD 141569 A from Keck/NIRC2 L-Band Vortex
Planets Forming in the TW Hya Protoplanetary Disk with the Keck/NIRC2 Vortex Coronagraph,” 154,
K. A., Wright, E. L., Eisenhardt, P. R., McLean, I. S., Mainzer, A. K., Burgasser, A. J., Tinney, C. G.,
Parker, S., and Salter, G., “Further Defining Spectral Type "Y" and Exploring the Low-mass End of the

