CaltechAUTHORS
  A Caltech Library Service

Rouse and Reptation Dynamics of Linear Polybutadiene Chains Studied by ^2H NMR Transverse Relaxation

Klein, Philip G. and Adams, Christine H. and Brereton, Michael G. and Ries, Michael E. and Nicholson, Timothy M. and Hutchings, Lian R. and Richards, Randal W. (1998) Rouse and Reptation Dynamics of Linear Polybutadiene Chains Studied by ^2H NMR Transverse Relaxation. Macromolecules, 31 (25). pp. 8871-8877. ISSN 0024-9297. doi:10.1021/ma980513e. https://resolver.caltech.edu/CaltechAUTHORS:20180719-151257214

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20180719-151257214

Abstract

Deuterium NMR has been used to investigate two different types of dynamics of linear polybutadiene chains in the melt. The transverse relaxations of short Rouse chains of molecular weight 640−3000 were biexponential, which has been attributed to separate decays of the methylene and methine deuterons. Interpretation of the transverse relaxation rates using a model for Rouse dynamics, combined with molecular simulations, gave the shortest Rouse unit as approximately 4.4 monomers and the shortest Rouse time as 8.3 × 10^(-7) s. The reptation dynamics of higher molecular weight entangled chains were investigated using ABA isotopic triblock copolymers, of total molecular weight 14000−135000, where A is protonated polybutadiene of molecular weight greater than the entanglement molecular weight and B is a deuterated block. These polymers were specifically synthesized so that the fast motion of the Rouse-like chain ends should not complicate the signal. The fundamental parameters found for the Rouse chain were used in the reptation model, assuming fast dynamics, and gave an entanglement molecular weight, M_e, of 5380 or approximately 21 Rouse units. This M_e is more than twice the conventional value, obtained from rheology, and is more suggestive of the critical molecular weight M_c, consistent with previous NMR work. The theoretical analysis used in this work is based on the assumption that the chain dynamics are fast on the time scale set by the NMR deuterium quadrupolar interaction. The highest molecular weight samples were found to not satisfy this criterion and indicate the molecular weight at which a new theoretical approach is needed.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://dx.doi.org/10.1021/ma980513eDOIArticle
Alternate Title:Rouse and Reptation Dynamics of Linear Polybutadiene Chains Studied by 2H NMR Transverse Relaxation
Additional Information:© 1998 American Chemical Society. Received April 1, 1998; Revised Manuscript Received July 7, 1998.
Issue or Number:25
DOI:10.1021/ma980513e
Record Number:CaltechAUTHORS:20180719-151257214
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20180719-151257214
Official Citation:Rouse and Reptation Dynamics of Linear Polybutadiene Chains Studied by 2H NMR Transverse Relaxation Philip G. Klein, Christine H. Adams, Michael G. Brereton, Michael E. Ries, Timothy M. Nicholson, Lian R. Hutchings, and Randal W. Richards Macromolecules 1998 31 (25), 8871-8877 DOI: 10.1021/ma980513e
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:88025
Collection:CaltechAUTHORS
Deposited By: George Porter
Deposited On:19 Jul 2018 22:35
Last Modified:16 Nov 2021 00:23

Repository Staff Only: item control page