
EQUIVALENT HAM ILTONIANS IN SCATTERING THEORY

It is now sufhcient to show that

(f,*,C) = expt —iE(k)tf f(k)C (k)d'k —+ 0.

A change of variables from k to E and two angle vari-
ables 0 gives

(f,*,e) = exp( —iZt)f(E, Q)4'(E,Q)JdZdQ,

where J is the Jacobian. By Schwarz's inequality, the
product of two square-integrable functions f and C is
absolutely integrable with the weight function J. The
Riemann-Lebesgue lemma then asserts the asymptotic
vanishing of the norm llaf&&ll.

The "asymptotic vanishing of destruction operators"
was used previously by Coester and Kummel. '8

'sF. Coester and H. Kummel, Nuclear Phys. 9, 225 (1959),
Appendix II.
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The general theory of relativity is cast into normal Hamiltonian form in terms of two pairs of independent
conjugate Geld variables. These variables are explicitly exhibited and obey ordinary Poisson bracket
relations. This form is reached by imposing a simple set of coordinate conditions. It is shown that those
functionals of the metric used as invariant coordinates do not appear explicitly in the Hamiltonian and
momentum densities, so that the standard differential conservation laws hold. The bearing of these results
on the quantization problem is discussed.

I. INTRODUCTION
" 'N the program of quantization of general relativity
~ ~ according to the Schwinger action principle it has
previously been shown that the classical theory can, in
principle, be reduced to canonical form in terms of
two pairs of independent, unconstrained canonical
variables. ' This canonical form has been given explicitly
for the linearized theory in I, where the analysis was
in complete analogy to the quantization of electro-
magnetic theory. In II, a general study of the dynamics
of the full classical theory led to the exhibition of four
unconstrained variables whose specification fully deter-
mines the state of the system, but which were not
canonical. The precise definition of these variables

~ Supported in part by a National Science Foundation Research
Grant.

$ Alfred P. Sloan Research Fellow. On leave from Palmer
Physical Laboratory, Princeton University, Princeton, New
Jersey.

Two previous papers in this series, R. Arnowitt and S. Deser,
Phys. Rev. 115, 745 (1959);and R. Arnowitt, S. Deser, and C. W.
Misner, Phys. Rev. 116, 1322 (1959), will be referred to as I
and II, respectively. Natation and units are as in II with the
exception that g'&' here denotes the three dimensional matrix
inverse to g@. Natural units are employed: «=1671-pc «=1, c=1,
where y is the Newtonian gravitational constant. Latin indices
run from 1 to 3, and Greek from 0 to 3 and x =t. Ordinary differen-
tiation is denoted by a comma in a subscript or by the symbol 8„.

depended upon the specification of the four remaining
field variables (the gauge functions) as invariant
coordinates. In general, these four field variables will

appear explicitly in the Hamiltonian density which
arises when the dynamical variables are rearranged into
canonical form. Thus, the Hamiltonian density will in
general depend upon the coordinates explicitly and
hence the system will appear to be nonconservative for
a closed system. The remaining problem, as was
stressed in II, was thus to achieve canonical form
while simultaneously choosing as coordinates a set of
gauge variables which will not appear in the resulting
Hamiltonian.

This paper exhibits explicitly a simple set of canonical
variables and coordinate conditions which solve the
above problem.

II. FORMULATION OF THE PROBLEM

Ke begin with the action integral obtained in II
when the algebraic constraints have been eliminated.
Written in terms of variables appropriate to a 3+1
dimensional breakup it becomes

fI= d4X 2,
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G= t d'x [fp(N, v)bn&+hp(N, v)vv&j, (2.3)

when the differential constraint variables, m&, have been
eliminated. No terms of the form T'„Ox& appear in
Eq. (2.3) since it will be recalled that these T'„vanish
as a consequence of the constraints. Since we have
seen that the v& are not determined dynamically they
may be used as independent variables in place of
coordinates. (This finds an analogy in a procedure used

where

&= (—'g)'* 'R= ('g)'t: —g"~~ —~~
+N ('R+K' K—K'&") 2'q—'(K&, 8'&',—K) (;

—2(N„—g&X; ) i'g (2.2)

N=( —goo)
—'*, ~,=g„, K;;=—Nr';; and K=g"X;;.

In Eq. (2.2) the symbol "~" means covariant differen-
tiation with respect to the three dimensional metric
g,;.This three-metric and its reciprocal g"=—'g'&'+N 'g'g&

are used to raise and lower indices and form the
curvature scalar E.. The action, being linear in time
derivatives, is to be varied independently with respect
to g'~' and E;; as well as E and q' which were seen to
play the role of Lagrange multipliers.

The variation of the Lagrangian with respect to E
and g' gives rise to the four equations not involving
time derivatives, i.e., the constraint equations. The
variation with respect to g'& and E;;yields the equations
involving the time derivatives of these variables. As
was seen in II, the twelve g'& and E,; variables can be
expressed in terms of three groups of four variables,
N&, v&, and w& (p=1, 2, 3, 4 is not a tensor index).
Inversely, the u&, v&, m» are functionals of g" and E;;.
The zv& are four variables obtained in terms of N&, ~& by
solving the constraint equations t

w&= f&(N",v")]; the
latter do not of course contain the Lagrange multipliers
Ã and q'. The N& are dynamical variables and the
~& gauge variables. This nomenclature corresponds to a
grouping of the twelve equations involving time
derivatives according to the following scheme: the
Boa& equations are to be regarded as equations that
determine X and q' as functions of N~, v~ and 80~~.

Consistent with calling the v& gauge functions, the
time derivatives are not determined dynamically and
so the e& are arbitrary. The four RON& equations represent
the first order equations for the two sets of dynam-
ical degrees of freedom of the field. Finally the Bp'N~

equations are the Bianchi identities since they guarantee
that the constraint equations are maintained in time.
An explicit set of N&, e&, and zv& were discussed in II,
though this set did not lead to a canonical form of the
theory. The criteria which the choice of N& and v& must
satisfy in order to put the theory into canonical form
with a conserved Hamiltonian can be obtained by
examining the generator. In general, the generator
which arises from varying the action at the boundaries, '
takes the form

in the parameterized form of particle mechanics and
will be discussed in more detail below. ) Should we wish
to view the v~ as coordinates (since they are now the
independent variables), we would write the coordinate
condition v&$g;;,K'if=x&. The apparent singling out of
a preferred coordinate frame does not imply a loss of
general covariance. Any coordinate condition which
can be satisfied generally, and in a unique way, can be
re-expressed in covariant form. This can be seen most
simply by starting with the example of the De Donder
coordinate conditions. The conditions

g~" =Q (2.4a)

are equivalent to using as coordinates four scalar
functionals of the metric, 8&, defined as the four linearly
independent solutions of

v';.:"=—(-'g) '(ll"'v', ) ..=o. (2.4b)

G= "d'* fP.~C.+&o„(p.,r.,x )» 3. (2.6)

The significance of the result (2.6) is brought out by
examining the parameter formalism of classical mechan-
ics. In II, an example of this was given in terms of
particle mechanics where one Lagrange multiplier
occurred in the parameterized Lagrangian. In general
relativity we have seen that there exist four Lagrange
multipliers, S and g'. That this is characteristic of a
field theory is brought out by the example of parameter-
ized scalar meson theory. This case also provides an
illustration of how the N&, v&, and m» variables enter in

Thus Eq. (2.4b) reduces to (2.4a) when one uses 8& as
the coordinates x&, but if one preferred to continue the
discussion in explicitly covariant language, it would
only be necessary to replace references to "g p in the
preferred frame" by references to "the scalars g p defined

by the equations

g„.=g v(88'/Bx&) (88~/Bx") =gsv—„v&,„, , (2.5)

where g„„and x& are the metric and coordinates of an
arbitrary frame. " For any other coordinate condition,
those unique coordinate functions e& satisfying it are
clearly scalar functions of the metric (by the assumed
uniqueness), and statements like Eq. (2.5) can be
used to emphasize the covariance of discussions
employing coordinate conditions. In what follows, we
use the language of coordinate conditions for simplicity,
and write x~ for v~.

Returning now to the generator, we see that the
h, (N, x)»& term is related only to space-time translations
and would be the T',8x& of the theory if the remaining
part of the generator were found in the canonical form
44'8N'+N'8N4 (to within a total variation). In fact, it
can be shown (see Appendix A) that for any choice of
gauge variables v& there exists an appropriate set of
N&= (pi,pq, qi, g2) in terms of which G has the canonical
form
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a simple theory and how one recovers the nonvanishing
stress tensor T'„upon eliminating constraints and
imposing coordinate conditions. In the 6rst order action
for the scalar meson theory

d' L ~o4 l( —'+4' 40—"+24, 0")j, (27)

we introduce four parameters r& by writing x&=x&(r).
The action then becomes

I= d'r [rr8$/Br'+rr„Bx&/Br'+Nl'(rr„P„) ),—(2.8)

where

Pp= 22r(8$/Or )Ek0™tp~j~x~,(x
1pl (gy/g kr) &20m+& Xu Xrr—'(~2+y2 —y,y")~0™"~~„.&,~,.x~,„x~,„, (2.9)

and 2r in Eq. (2.9) is to be expressed in terms of the
variable t through

chosen, x=m. and I'„ is the T'„of conventional scalar
meson theory as can be seen from Eqs. (2.10) and (2.9).

The situation in general relativity corresponds to
being given the theory in already parameterized form
analogous to Eq. (2.8) and the associated generator
(2.11). One must "de-parameterize" the theory by
imposing coordinate conditions and choosing I&

variables such that the generator is left in canonical
form. A second condition which must be simultaneously
satisfied is that one must choose one's u& and v& variables
in such a fashion that the Hamiltonian density, —T'0,
does not depend explicitly on the coordinates, T~.

For example, in scalar meson theory, the coordinate
conditions x"= (1+/)r" would lead. to T „2expli ictly

depending on the coordinates v&, although it is still
easy to recover canonical form by de6ning rr+P„r& as
the new momentum conjugate to p. While in scalar
meson theory it is obviously incorrect to mix p and x&

by choosing v"=xI"/(1+&) as the gauge variables, in
general relativity we have no a priori criteria to
determine when a particular choice of gauge variable
has involved some canonical parts.

3I —-'P'~"'"~io x' x,*"a. (2.10)

III. REDUCTION TO CANONICAL FORM

The generator arising from the Lagrangian (2.2) has
the form

G= d'r (~by+rr„hx~+T'„'br&). (2.11)

The T'„' vanish as a consequence of the constraints
and hence the generator has only 1+4 terms. If we
now impose coordinate conditions x&= 7&, the generator
reduces to standard canonical form

The x&,„mean Bx"/Br" and the Nl" (r) are four Lagrange
multipliers introduced in order to call the coefficients
of Bx&/Br' new momenta 2r„. In this Lagrangian we
regard 2r, @, 2r„, x", @2 and N" as Geld variables in r
space. The resulting Lagrange equations break up
into four constraint equations, ten equations involving
first time derivatives and three algebraic constraint
equations which will serve at the end to eliminate p2
in terms of p, z. The constraint equations (from varying
N") allow us to choose 2r„as w& variables to be eliminated
according to ~„=E'„.The ten remaining equations are
equatiOnS fOr the r' deriVatiVeS Of 2r, p, X& and vr„.

Thus the Brr„/Br equations are the Bianchi identities
while the Bx&/Br2 equations serve to determine Nl'.

Since this leaves the x& undetermined we recognize them
as a set of vp gauge variables leaving two dynamical
21& variables, i.e., p and 2r.

The generator can easily be obtained to be

G= d'x ('g)&( g'&bE;; bE—+T'„'8x—l'). (3.1)

G= — d'x g; bm'~ (3.3)

where we had dropped the T'„' terms since they vanish
by the constraint equations. While the generator is
now a sum of six terms, the dynamic and gauge char-
acter of the variables has not yet been established.
Because of the bilinear form of the generator in (3.3),
an orthogonal decomposition of the tensors g;; and x'&

into transverse and longitudinal parts maintains this
simple form while allowing the NI', e&, m& character of
the variables to be recognized. For a general symmetric
a,rray f,;=f;; we write

where

~ ~ ~ oX~ or~ ~ ~ ~ ~ (3 4)

As seen from' Eq. (2.6) the achievement of canonical
form requires that 6 be written as a sum of six terms.
To this end let us introduce the variables

~"=—('g) '(&"—g"&). (3 2)

The generator then becomes

G= d'r (~5y+P„br~), (2.12) f T 1[(,fT (. \/q2)fT . —..j.
f' T. 0 f'. TfT. . ,

(3.5)

E„now being the nonvanishing stress tensor components
T'„. Notice that in the special frame that we have

and
f.TT . P.f TT P.(3.6)
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G= ~d'xf~g"' "»+gr "~L '(1/&') —'-j

—2or" bg;). (3.8)

In obtaining this form, we have freely integrated by
parts and discarded surface terms as well as total
variations. Note that the generator of Eq. (3.8) is
still a sum of six terms. This result could not be obtained
by applying our decomposition to g" and K;; in
Eq. (3.1) as that generator is not bilinear in these
variables.

The constraint equations in terms of these variables
read:

'g 'R+-,'n' —or'iorg=0, (3.9a)

(3.9b)

When these are expressed according to the above
decomposition, one sees that the leading term, i.e.,
the only linear term, in Eq. (3.9a) is g",;; and the
leading term of (3.9b) is or', ;,+or', @=or", ;.By aperturba-
tion argument as given in II, one verihes that the
constraint equations may be solved for these four
quantities and hence we may choose them as our m&

variables. That this is advantageous follows from the
fact that these quantities appear directly in the
generator (3.8).

Turning next to the identification of the remaining
eight variables, one observes that g;;~~ and x'3~~ are
the dynamical N& variables of linearized theory, ' while

g, and —~~(1/V')~r are the v' there. Again following

the perturbation interation scheme of II, we see this
characterization maintained in the full theory, i.e.,
the BoI ——', (1/V')or~j and Bo(g;) equations serve to
determine X and p', respectively, in a perturbation
series. In accordance with the discussion of Sec. II,
we may regard these quantities as the e& which serve
as the basic independent variables by imposing the

Thus f;,rr is the transverse traceless part of f;; and so
has only two independent components while fr is the
trace of the transverse part. The remainder, f;,;+f;,;,
contains the longitudinal parts of f;;. Each of the six
independent quantities fp ~, fr, and f, can be uniquely
obtained as a linear functional of f,;.For instance,

(3.'la)

f'= (1/~') Lf* .i—-'(1/~') f», »'1 (3 &b)

Note that this decomposition is coordinate dependent
and involves only ordinary derivatives. Thus 1/V' is
the inverse of the Oat space Laplacian operator, and
the decomposition ignores the position of tensor indices.
This use of ordinary derivatives permits one to commute
the decomposition and the variation in the generator,
e g P (or~i&) —(g~'i) &

Upon applying this decomposition to g;; and ~'&, the
generator becomes

coordinate conditions

gq=X .
(3.10a)

(3.10b)

These coordinate conditions are discussed in more
detail below. Our generator now reads

G= ' d'x (m' &rrbg', '»+"gr;,bx' —2'" bx') (3.11)

pion ..—gnat, .—pion, .—gi3
$3 $3 3'4 t@n) (3.15R)

(3.15b)

gmn. (r r~) , 0
8$

(3.15c)

The functions 8"";,(r) are thus independent of the
metric.

In terms of the x'3' variables, the action integral
becomes

I= d4x L
—g; Boor'i+X('g) '('g 'R+ '~' ~ ~' )-i— "

4
+2$$1r'i(, —2 ( g) '*(F[; rf'K g) ~ 'q. (3.16)—

where g~, ;; and x'3', ; are to be viewed as functions of
g;;~~ and m'3'~~ and possibly ~&=x& according to the
solutions of Eqs. (3.9).

The generator is now clearly in canonical form with
m'3~~ the momenta canonically conjugate to g;;~~.
Similarly we have that the Hamiltonian density, R, is

2'0 — gT . ,fg, TT ~ijTT x,gj (3 12)

and the momentum density is

To;= —2 (~' "+ori;;)=—2~'i . (3.13)

since the generator is in the form of Eq. (2.6). It should

perhaps be emphasized that the quantities g~, ;; and
or",;, appearing in Eqs. (3.11), (3.12) and (3.13), are
abbreviations for their values in terms of g;;~~, x'3'~~

and x& as obtained from solving the constraint equations
(3.9). Thus the solutions of Eqs. (3.9) for gr, ;;, etc. ,
in terms of the canonical variables are not in general
divergences, i.e., the Hamiltonian and momentum
densities are not divergences, just as they are not in

other physical systems.
From the definition of the generator, one may now

read off the Poisson brackets. The fundamental

LordinaryJ Poisson brackets for the two independent
canonical pairs of variables are

t'g »(r t) or~»~"(r' t)5=6"";;(r—r') (3.14a)

I:g "(«) g "(r' )3=0 (3.14b)

~~v»(r t) ~~»r(r' t) j=0, (3.14c)

where h ";,(r—r') is the transverse traceless 8 function
defined as in linearized theory by
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Inserting the diR'erential constraints and the coordinate
conditions (3.10), the action reduces, to within
divergences, to

d4g (rrijTT3 g, TT . g(&)gTT ~ij, TT go/} (3 17)

Equation (3.17) represents the action for a system of
two unconstrainted degrees of freedom and no longer
makes reference to the originally redundant number of
variables. The Lagrange equations of motion arising
from varying (3.17) are clearly consistent with the
Poisson bracket equations of motion arising from
Eqs. (3.14) with K playing the role of the Hamiltonian
density. This verifies the internal consistency of the
Poisson bracket relations (3.14) for the theory. "This
result was of course guaranteed since the Lagrangian
of Eq. (3.17) is in the standard pj H(p, q) fo—rm.

The coordinate conditions of Eq. (3.10) can be
restated in a form in which the coordinates xI' do not
appear explicitly:

+~=0

2 (g& t+k i)

(3.18a)

(3.18b)

Alternately, one may re-express Eqs. (3.18) in terms of
conditions on the g;; and x'&'. Thus we have

V g;=—g;;,;=0
(3.19a)

(3.19b)

These di8erential conditions involve Laplacian operators
acting on Eqs. (3.10). They are equivalent to Eqs.
(3.10) only when one retains the appropriate boundary
conditions. To recover Eq. (3.18) from Eq. (3.19) one
must invoke the condition that the metric be asympto-
tically flat at spacial infinity. Similarly Eq. (3.10a)
can be recovered from Eq. (3.18a) by the same require-
ment. Thus the equation giving the time derivative of
m~ in terms of X reduces asymptotically to G= — d'x g'&bX" (3.22)

and hence p, is a constant vector which for simplicity
we choose to be zero. With this choice, our coordinates
x~ are rectangular at infinity.

The coordinate conditions we use are given in a form
analogous to Eq. (2.4a), not Eq. (2.4b). Consequently,
the equality ~'=g; holds only in the preferred frame.
A deeper investigation of the existence and uniqueness
of coordinates satisfying Eqs. (3.19), leading to a
construction of these e& from the g„, of an arbitrary
frame, would be desirable though perhaps quite difficult.
However, it is easy to see that these coordinate condi-
tions are consistent with Einstein's equations in the
sense that, given initial values of gg and m'& at time
t= 0 compatible with Eqs. (3.19), a unique solution for

g;; and x'&' at later times is obtained by integrating the
Einstein equations. The proof would employ a perturba-
tion argument, as in the discussion of the constraint
equations in II.

The canonical formalism obtained above is very
similar to that of linearized theory as discussed in I,
with of course a more complicated expression for the
Hamiltonian. Thus x" linearizes to I';; while x
linearizes to the purely longitudinal part of I';;, i.e.,
I';;~. The "radiation gauge" in I was defined precisely
by the transversality condition on g;;, i.e., Eq. (3.19b)
and the vanishing of I';,~. Similarly, as was discussed in
II, a solution of Eq. (3.9a) for gr, ;; to quadratic order
yields the linearized Hamiltonian. However, if in the
full theory one simply imposed the coordinate conditions

g;;,;=0 and I';;~=0, one would not obtain a canonical
form for the generator. Thus the introduction of the
x'~ variables, with the consequent reduction of the
generator to a sum of six terms, was essential to obtain
a canonical form. It is easy to exhibit other forms of
the generator which also only involve six terms. For
example, an infinite class of these is

a.t —;(1yw).~=X=1, (3.20.) „h„,
since N=( —g") '*=1 for flat space. Similarly, the
equation for g; reduces, at spacial infinity, to

gij (sg)Xgij (3.23a)

&';=('g)'I &';—:()+-:)g.,g-&-j (3 23b)

(3.20b)rt;,,+rt;, ,=Be(g;,t+g;„)=0, for any ). Further, the class of generators formed from
that of (3.22) by raising and lowering indices, i.e.,

(3.24)G — d'x 0- 6K'~

differs from (3.22) only by a total variation. The
generator we have discussed corresponds to the case
) = —~. If one were to make the orthogonal decomposi-
tion of Eq. (3.4) on these new generators and impose
coordinate conditions analogous to Eqs. (3.10), one
would again obtain a canonical form. The new canonical
variables g;,~~ and X'&~~ are related to the ones
discussed here by a canonical transformation which in-
volves a coordinate transformation.

"Pote added irt proof. The primary consisten—cy check is that
the equations of motion obtained froin Eq. (3.17) be equivalent to
the Einstein equations. It is indeed possible to show this by insert-
ing the constraints and coordinate conditions into the Einstein
equations [obtained by varying Eq. (3.16)j and comparing with
those from Eq. (3.17). This shows that the Hamiltonian, Jd'xx,
consistently generates, for general relativity, translations in the
chosen time coordinate. Similarly, the canonical momentum den-
sity Lwhich arises from Eq. (3.17)j, To';= rr"'rrgiP r;gene—r-,
ates space translations. By 6rst showing that T '; divers from—2(g, s~&'), ;—= —2s;&', ;parr, s.rr] by a divergence of the canonical
variables, one then sees that T0;= —27f-'&', ; obtained from the
generator (3.11) differs from T~'; only by a divergence. Thus T;
consistently generates translations in x'.

Also, it might be noted that the elmerical value of the standard
Einstein-Tolman and Landau-Lifshitz surface integral forms for
the energy and momentum agree with ours, as derived by the
canonical formalism.
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M'», =0.sP (4.3)

The above results were established without recourse
to Lorentz covariance. The latter is needed to establish
the remaining conservation law for M'~'. We hope
to discuss later the Lorentz transformation properties
of the canonical formalism.

V. DISCUSSION

In the previous sections, general relativity has been
cast into a canonical form. Explicit canonical variables

'The apparent appearance of explicit x' dependence in the
integral representation of (1/V') Li.e., in (4n-) 'J"tPz' (1/ ( x—x'

~ )j
is spurious since the V'~ operator is invariant under rotations and
translations.

IV. CONSERVATION LAWS

In the preceding section we have seen that the first
half of the problem stated in Sec. II, namely the
reduction of the generator to canonical form, has been
solved. We shall see in this section (and in more detail
in Appendix 8) that the second half of the problem,
namely the coordinate independence of the Hamiltonian
and momentum densities, has in fact, also been solved.
Since functionals of g;, and ~'& have been used as
coordinates, one would expect a priori that they appear
in the expressions for T'„. In broad outline, the reason
why this is avoided with our coordinate conditions is
that the coordinates themselves do not appear explicitly
in g;, and z. '&'. Thus while g, =x', only sr (g;,,+g;,;)=8;;
appears in g;;. Similarly, only m~= —2V'x'=0 appears
in the decomposition of x'&. In fact, as the constraint
equations (3.9) contain only g;; and z'&' and no explicit
x&, it becomes difficult at first sight to imagine how an
explicit x" dependence can appear in their solutions. '
However, the process of solving the differential equa-
tions introduces operators such as 1/Vs, which if
applied to z."=z. +2m' leads to a term (1/V')err
= —2xo. Similarly, (1/V') g;;,; would lead to the term x'.
As is shown in the explicit proof in Appendix B,
however, terms of this sort never appear and the struc-
tures that do actually arise are coordinate independent.

We may now use this coordinate independence of
T'0 to establish a set of conservation laws, Since, in
Eq (3.17.), X does not depend explicitly on x", the
standard techniques of Lagrangian field theory allow
one to derive a stress tensor T&„satisfying

TI"„I„=0.

We have given an expression in this paper for To'=
T's. The Lagrangian of Eq. (3.17) is furthermore
manifestly covariant under three dimensional rigid
rotations. This implies that T'~'=—T'; is a symmetric
three-tensor and hence a conservation law for three
dimensional angular momentum holds. Thus if we
define

(4.2)

where T'&'=—T'; then one has

have been obtained. Since these are grouped as two
pairs of unconstrained conjugate variables, the funda-
mental Poisson bracket relations follow just as in
ordinary field theories. The Hamiltonian density was
shown to have no explicit dependence on the coordinates.
The energy of the field is defined as the numerical
value of the Hamiltonian for any solution of the
equations of motion. Thus one has

t'd, r
„.. gr.dg

where dS~=dx'dx', etc., are the rectangular elements of
a surface at spacial infinity. The transition from a
volume integral to a surface integral cannot of course
be made for the Hamiltonian where g, ;; is expressed
in terms of canonical variables Laccording to the
solutions of the constraint equations (3.9)$ and hence
is not then a divergence. The energy, however, may be
directly evaluated from the knowledge of g~ on the
surface. A similar expression holds for the spacial
components of the momentum four-vector. A fuller
discussion of these formulas for momentum and
energy will be given in a following paper, ' where the
results obtained here are extended to include a matter
system coupled to the gravitational field. The criteria
for the existence of gravitational radiation will also be
given there.

One of the principal purposes of this classical investi-
gation is, of course, to serve as a basis for a quantum
theory of relativity. One might suppose that a quantum
theory could now be obtained by merely replacing the
Poisson bracket relations of Eq. (3.14) by the corre-
sponding commutators. One could do this, presumably,
by choosing some Hermitian ordering for the Hamilton-
ian, though this is highly non-unique. Indeed, one
would obtain in this manner a quantum theory for
the two canonical degrees of freedom. However, these
two degrees of freedom do not represent the full
statement of general relativity: one also has equations
to determine go„, for example, which are not part of
this canonical theory as such. Furthermore, one
encounters these variables as soon as one makes a
Lorentz transformation from the initial frame, 4 an
operation that must be allowed for any sensible
quantum theory. Since the equations defining go„are
now quantum ones, one must establish the consistency
of the ordering of the Hamiltonian and the go„equations
in one frame with those in another frame. Finally,
classically we saw, that there was an infinite number of
a priori equivalent sets of simple canonical variables
[Eq. (3.22)) with conserved Hamiltonians, each of

3 R. S. Arnowitt, S. Deser, and C. W. Misner, Phys. Rev, 118,
(1960) (to be published).

4 In electrodynamics, one similarly has that the gauge functions
(i.e., the scalar potential and longitudinal part of the vector
potential) mix with the dynamical variables (i.e., the transverse
part of the vector potential) when a Lorentz transformation is
made.
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which could of course be used as a basis for such a
quantum scheme; quantum mechanically, however,
the relation between these sets of variables need no
longer be one of a unitary transformation, due to the
operator character of the variables. Hence these are no
longer equivalent starting points for quantization.
Further, the classical canonical transformations among
these sets may well make the coordinates associated
with one set functions of both the canonical variables
and coordinates of the other. This would lead to the
phenomenon in the quantum theory of the coordinates
of one set being q-numbers when expressed in terms of
the variables of the other set, as was discussed in II.

In view of the many ambiguities which could arise
in an attempt to quantize consistently at this level,
it would seem more fruitful to return to the action in
four dimensional form, i.e., g""R„,(F ~,) and try to
repeat our reduction to canonical form within the
framework of quantum theory. There, one can use the
manifest Lorentz covariance of the original Lagrangian
as an aid in proving the Lorentz covariance of the
canonical quantum form that should arise. Further,
the ordering ambiguities are drastically reduced. Since
at most cubic terms enter in this Lagrangian, one can
show easily that there is at most a simple three param-
eter family of available quantum Lagrangians, allof
which are generally covariant. These diferent orderings
of the Lagrangian dier from each other only by
double commutators, i.e., effects of order A2. The basic
requirement of consistency between the Lagrange and
Heisenberg equations of motion should single out one
of these forms since the double commutators do not
contribute to the Lagrange equations but presumably
affect the Heisenberg ones. In an investigation based
on the four dimensional form of the quantum Lagrangian
one ultimately expects to arrive at canonical forms
very similar to those obtained here. Thus the classical
results represent an excellent guide in formulating
the quantum theory.

APPENDIX A

We show here that for any choice of gauge variables,
v~, the canonical form (2.6) can be reached from the
generator

where a= 1, 2 and p, q are functions of m~ and x~. To
reinstate total variations, therefore, we write

and obtain
(A.3)

where the total variation 85' has been discarded in G.
When the u' have been eliminated in terms of p„q.,
and x" in the coef5cient of bx" of Eq. (A.4), one has
reached the desired result, Eq. (2.6). However, the
T „so obtained (i.e., the coefficient of bx") will in general
depend explicitly on x&.

APPENDIX B

We demonstrate here the independence of the
Hamiltonian and momentum densities on the coor-
dinates we have chosen. These functions arise as
solutions of the constraint equations (3.9). We will
make use of a perturbation interation solution in our
proof similar to the one discussed in II.

The care that is required in the analysis is illustrated
by the apparent contradiction between the equations
—-', (1/V )n.r =x' and m =—2V'x'=0. This would lead
to difhculties in the generator where the term g~&r~

arises, which we have rewritten as gr, ;;5[(1/Vs)xrj.
(As we shall see below, setting m. r to zero in the con-
straint equations leads to correct results since effectively
no structures such as (1/Vs)a~ appear in their solutions. )
To give these operations meaning we shall therefore
introduce a convergence factor such as exp( —er) to
multiply the x" in Eqs. (3.10):

—;(1/V')~'=x'exp(—nr),

g;=x'exp( —nr).

(B.ia)

(B.ib)

The limit e ~ 0 will of course be taken at the end of
the analysis. This means that neither mr nor g;,,+g, ,;
are independent of x& and thus g;; and m'& regain their
explicit coordinate independence only in the limit
n —+ 0. We will use in the discussion the formulas

G=
i

d'x fp.bq.+{A„p—.(Bq./Bx~)
~J

—BW/Bxe)bxef, (A.4)

G= "d x Ef'(~,x)b"e+&,(~,x)» j, (A.1) lim (1/V')Pm. rf(r)j=0, (B.2a)

f,bu'=p b q+8 W(g, x), (A.2)

e See, for example, J. M. Thomas, Deferential Systems, Am.
Math. Soc. Colloq. Pub. XXI, 1937, and the appendix in II.

where we have chosen coordinates v~=x~. The first
four terms, f,bN', can always be reduced to a sum of
two terms by a classical theorem in differential forms. s

In applying this theorem, it is necessary to view x~ as
parameters, not to be varied. Thus we have

if f(r) approaches zero at infinity as r ", N)0, while

lirn (1/V')$g;, f(r))=0, (B.2b)

if f(r) approaches zero as r ", e)2. Similar theorems
hold when higher derivatives act on g; or m~ and when
products of these functions occur. The f(r) that will

arise, actually go to zero much faster than the minimal
limits stated in the above theorems.



1602 ARNOWITT, DESER, AN D M ISNER

where
g'~=@+a'gTT+g'gT+h', g+~;,;, (8.5)

egg; =g;—x'= x'[exp (—rrr) —1]. (8.6)

The purpose of this rearrangement is to extract the
leading term —gT, ;; in 'R Eq. (3.9a) then takes the
form

p= gT . .—g(& (g, ghT. Tgrig)+Xg(g, T. T j'g.grig).
+fr(gT g, TT Q, i )gr+gfg(gT g, TT ./g, ~ig) (8 7),

Here K~ contains all quadratic terms independent of
p and K3 the cubic and higher terms independent of
p,' fg contains the other quadratic terms while fg

We begin by examining the m" constraint equation
(3.9b) which we rewrite as an equation for p'—=gr', ;;
+gr' "=gr'& "

V 2'

(~ AT TFi +~gmTFi ) f (1/+2)

&&[", +.-, -(1/~')",.])F'. (8.3)

We view this as an equation to be solved by iteration
on p'. Although these equations must eventually be
solved simultaneously with Eq. (3.9a), it is first
convenient to solve Eqs. (8.3) for p' in terms of F'g,

, m'~ . The zeroth step of the iteration, which is
just the first bracket on the right-hand side of Eqs.
(8.3), contains the linear theory's expression for T';
when one remembers that +~=0 in the limit n=0. The
parts of the first iteration involving m~ have the form

[(1/~')(~'F'-. )]F' g (8 4)

The coe%cient F'„ofm~ contains structures depend-
ing on g;;~~, g~, and g; . Both g;.~~andg~, ;must vanish
at inanity since g;; approaches 8,; there. The terms
containing any g;,~~ or g~ factor give no contribution
according to Eq. (8.2a). The remaining terms contain
only x~ and g;,; and can be seen to vanish by direct
insertion of Eq. (8.1). In higher iterations, gr always
appears in factors identical to those treated in the
first iteration, e.g. , (1/7')(grTF', „, ). Hence the argu-
ment goes through for all higher orders and x' does not
appear explicitly in the solution p'= p'[gr "TT,F' g].
Further, the only places where x' might appear in
the solution for p' are in the g~ arising in I'

~ and from
the I"

g in terms of the type (1/V')(gr 'TTF'~g). On
account of theorems of the sort given in Eqs. (8.2) the
latter type of terms are actually independent of x'.

Turning next to Eq. (3.9a) we will investigate its
solution for g~ in terms of g;,~~ and m.". We rewrite
here the orthogonal decomposition (Eq. 3.4) of g;; as

contains the other higher order terms. The zero'th
iteration on p is, of course, just K&+3Cg. This contains
as the leading term in the limit n=0 the linear theory's
Hamiltonian density. The next iteration then proceeds
by substitution of —(1/|7') (R&+BCg) for gT in fg and

fg We. first discuss the (1/P)BCg term. Those parts of
K~ depending on g;;~~ or x'&'~~ bring in no x& dependence
by virtue of Eq. (8.2b). We have used here the fact
that the canonical variables vanish very rapidly at
infinity for a system of finite energy. The terms in
(1/'7g)R& independent of canonical variables yield a
constant, C, in the limit cr=0 [using Eq. (8.1)] by
direct calculation with a Coulomb Green's function for
1/V'. However, the boundary condition that gT vanish
at infinity~ means that one must add to the Coulomb
integral solution a constant that cancels C. In (1/'P)Kg
the cubic and higher terms independent of canonical
variables vanish by direct calculation, in the limit
0.=0, while by theorems of the type quoted in Eqs.
(8.2) the remaining terms are independent of x".
Higher order iterations give rise to structures of the
form (1/V')(fg+fg) where in fg and fg, gT has been
replaced by its lower order value. That these possess
no explicit x& dependence follows in a fashion analogous
to the treatment, of (1/7%g)BCg.

The above discussion has established that the two
series

pi —pi [~ijTT
g . ,TT p]

p p[g TT grigTT pi].
(8.8a)

(B.gb)

m~=0, g;;;=0, (4.10)

without regard to the possible difhculties discussed at
the beginning of this appendix.

For example, if we have a packet of radiation con6ned to a
6nite domain one could assume that the canonical variables
went to zero exponentially at in6nity with no loss of generality
as the canonical variables are then rigorously zero there.

g In the orthogonal breakup (3.4) for gg, the boundary condition
g~= —2 at in6nity was employed so that, with g;=x', the metric
approach g;i. In the form (8.5), gT has been redefined (for con-
venience) to approach zero at in6nity to comply with the same
boundary condition. This does not, of course, a6'ect any results.

contain no explicit dependence on x~ in the limit n=0.
Also the total solution, obtained by cross iteration
between the p' and p equations, is found in dependent of
x&, establishing Anally the fact that T'„has no explicit
x& dependence.

The result that we have obtained implies that K
and T'; arise uriambiguously from the constraint
equations (3.9) by simply inserting there the coordinate
conditions


