Numerical Recipes: Does This Paradigm Have a Future?
William H. Press, and Saul A. Teukolsky

Citation: Computers in Physics 11, 416 (1997); doi: 10.1063/1.4822583
View online: https://doi.org/10.1063/1.4822583

View Table of Contents: http://aip.scitation.org/toc/cip/11/5

Published by the American Institute of Physics

Articles you may be interested in

Fine Fare
Computers in Physics 11, 403 (1997); 10.1063/1.4822575

http://aip.scitation.org/author/Press%2C+William+H
http://aip.scitation.org/author/Teukolsky%2C+Saul+A
/loi/cip
https://doi.org/10.1063/1.4822583
http://aip.scitation.org/toc/cip/11/5
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4822575

galaxy velocities, the other with the corresponding magnitudes. We want to
ow the upper-quartile value of the magnitude for galaxies whose velocity is in
he range 100 < v < 200. (Astronomical magnitudes decrease as objects get
brighter, and so this corresponds to finding the lower-quartile magnitude numeri-
cally.) In Fortran 77 the code is something like the first example shown in the box
(this page). While not difficult code, it does contain potential “gotchas™ that are
difficult to avoid, mostly having to do with array-index arithmetic.

The second example in the box shows the same task accomplished in two
lines, using Fortran 90 language intrinsics, plus routines from our NR in Fortran 90
book. While the lines are each fairly dense, they are completely free of index fussi-
ness: indeed, they are —
much closer to the under-
lying conceptual task. In .) . .
tﬂisixampﬁ pack and Box. Coding of the same example in Fortran 77 and in three “higher
ceiling are Fortran 90 lan- level” languages: Fortran 90, Mathematica, and IDL.
guage intrinsics; array_
copy and select are Nu-

merical Recipes proce- Fortran 77, with external sort:
dures.

The same task, ac- n=0
complished in Mathe- do j=1,ndat
matica,® is shown as the if (vels(j).gt.100..and.vels(j).le.200.) then
third example in the box; B =ioTl :
in IDL the task is i n), =omage(3)

endif

shown as the fourth exam- ARG
ple. (Note that Select in call sort(n,temp)
Mathematica has a com- answer = temp((n+3)/4)
pletely different meaning
from select as a Numeri-
cal Recipes routine Fortran 90, with Numerical Recipes procedures:
name!) Mathematica
lacks the “data parallel” call array_copy (pack(mags, (vels>100..and.vels<=200.)), temp,n,nn)
constructs of Fortran 90 answer = select(ceiling(n/4.),temp(1l:n))
but has powerful list-
handling intrinsics in Miithbititioa:

stead. In this example,
Mathematica’s main
weakness is the awkward-
ness of its component ad-
dressing. IDL’s formu-

Select[Transposel{vels,mags}], (#[[1]] > 100. && #[[1]] <= 200.)&]
Sort[%, (#2[[2]1] > #1[[2]])&] [[Ceiling[Length[%]/4]11]1 [[2]]

lation is almost crystal- IDL:

line in its clarity. (To un-

derstand it, note that_the temp = mags(where(vels le 200. and vels gt 100., n))
where and sort functions answer=temp ((sort (temp)) (ceil(n/4)))

return arrays of indices,
not of values.)

Programming languages versus total environments

In the preceding example, IDL, Mathematica, and “Fortran 90 plus N
cal Recipes” emerged as comparably high-level languages. Indeed, syntactica
and semantically, all are of comparable complexity. In particular, all are “large”
languages, requiring a serious investment in learning. In almost every other re-
spect, however, Fortran 90, as a direct programming language, is really quite a dif-
ferent beast from the other two. This brings us finally to the question posed by the
title of this article.

Just as the “central dogma” of the mathematical-software community turned
most program libraries of the 1970s and 1980s into black boxes with defined inter-

COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997 421

faces, there is a similar emerging dogma of the 1990s, that scientific programmers
should move to high-level “total environments” (here called “TEs”) such as
Mathematica, Matlab, IDL, and similar. As already discussed, we agree com-
pletely with the necessity of moving to higher-level languages. But we strongly
disagree with the new dogma.

The key problem in working with any TE, we find, is the user’s lack of con-
trol over scalability in the TE’s internals. For example, a programmer can easily
write a piece of code that works splendidly for 10 data points, but fails for 10°
data points. Sometimes the problem is simply that the TE is just too slow. Other
times, its memory requirement goes through the roof.

But is the problem not the same for a programming language such as Fortran
Sometimes yes, if the scaling with size of data is truly intrinsic to the underly-
erical algorithm, as inverting a matrix for example. But very often, the an-
; the runaway scaling in the TE is not fundamental to the user’s

t is rather a “feature”™ of the generality of the data structures used in
als, or the internal algorithms used to manipulate those structures.
ing language like Fortran 90, when you encounter such a problem,
ften by a bit of messy, lower-level programming, in which you create
ind of specialized data structure or more highly optimized “inner loop.”
¢ options are not available within a TE.

Imagine the different “levels” of programming spread out vertically on some
kind of logarithmic scale. In Fortran 77 or C. you spend all your time at the bottom of
the scale, down in the mud. In Mathematica, Matlab, or IDL, you spend almost all
your time (generally quite productively!) at the top of the scale, but it is practically
impossible to dig down when you need to. Neither of these paradigms is optimal.

We conjecture that an optimal programming model is one in which the pro-
grammer has approximately equal access to each logarithmic level, and we think
that a skilled programmer will spend roughly equal programming time in cach
logarithmic level, laying out bold strokes in the top levels. clever optimizations in
the bottom ones. Fortran 90 is by no means a perfect language. But augmented by
a good set of utility routines and an accessible source-code library (you can guess
which we favor), it seems to us to be closer to the ideal than any other choice
available right now.

There is a possible rejoinder that our objections to TEs simply reflect today’s
technological limitations, and that they will get much better in the future. No
doubt true. However, TEs, because of their very generality, will always be much
slower than the execution of native arithmetic operations on simple data structures
that are “close to the machine.” The latter capability is exactly what a modern
compiled language—one that contains a broad mixture of high-level and lower-
level constructs—provides.

If there is a single sentence in the Numerical Recipes books that has annoyed
more people than any other, it is this one: “The practical scientist is trying to solve
tomorrow’s problem on yesterday’s computer: the computer scientist, we think,
often has it the other way around.” We stand by this statement.

And what about (++?

Indeed, what about C++? This language would seem to meet all our require-
ments: It allows arbitrary high-level constructions through the mechanism of a
class library, yet its underlying C syntax is even more primitive, and closer to the
machine, than old Fortran 77.

We have spent a lot of time in the last five years scratching our heads over
C++ (and over Java in the last couple of years). Probably a Numerical Recipes in
C++ would have value. There are several reasons, however, that we have not pro-
duced such a version.

First, the original “democratic” dream of object-oriented programming, that
every programmer would accumulate an idiosyncratic collection of useful object
classes whose reusability would allow moving to ever higher levels of program-
ming abstraction in the course of a career—this dream seems dead. Instead, to-
day’s trend is toward a fixed, universal object-class library (Microsoft’s MFC,

422 COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997

more or less) and is discouraging of more than a
minimal amount of idiosyncratic programming at
the object-class-definition level. The result is that
C++ has become essentially a large, but fixed, pro-
gramming language, very much oriented toward
programming Microsoft Windows software. (For-

)
tran 90, on the other hand, is strongly biased to- Id“g“ﬂgﬁ
ward scientific computing—it is a poor language

in which to write native Windows applications!) ’ “SBI‘S] must m

Second, there is a genuinely unresolved de-
bate regarding what should be the fundamental h' h I I I t t
structure of a scientific programming library in lg er' 0“5 U““S r“ﬁ S
C++. Should it be true to the language’s object-ori-
ented philosophy that makes methods (that is, algo- ﬂm] t(] I]ﬂl'ﬂl Iel-
rithms) subsidiary to the data structures that they
act on? If so, then there is a danger of ending up 176 t'
with a large number of classes for highly specific IZd m“.
data structures and types, quite complicated and
difficult to learn, but really all just wrappers for a
set of methods that can act on multiple data types
or structures. There exist some ambitious class li-
braries for scientific computing (see, for example,

Ref. 14) that suffer, to one extent or another, from this problem.

Confronting just this issue, a competing viewpoint, called “generic program-
ming with the Standard Template Library (STL)™'317 has emerged. Here algo-
rithms and data structures (“containers”) have more-equal claims to primacy, with
the two being connected by “iterators™ that tell the algorithm how to extract data
from the container. STL is implemented as C++ template classes that naturally al-
low for multiple data types (for example, single versus double precision).

We do not feel ready to choose one of these C++ methodologies, and we
have only just begun thinking about what we might conceivably propose as an al-
ternative. One possibility would be to define a generic, very-high-level, interface
that encapsulates a set of objects and methods comparable to everything in For-
tran 90, but not in itself dictating any particular template or class-inheritance struc-
ture for its implementation. Then, a variety of compatible implementations could
be written, optimized quite differently for today’s serial or tomorrow’s parallel
machines. Our preliminary efforts along these lines are at http:/nr.harvard.edu/
nr/cpp, and we would be grateful for thoughts and comments from our readers.

Where we end up

We think that compiled languages. giving the user direct access to machine-
level operations acting on simple ctures (“close to the machine™), con-
tinue to have an important futur programming. The Numerical
Recipes paradigm is not, we “extinction. Total environments
like IDL or Mathematica to have. There is therefore
room for improved inte

Nevertheless, to uages (and their users)
must move to hig
and in the prog
whether Fo ortran or C fami-
lies. will

"OMPUTERS IN PHYSICS, VOL. 1'1. NO. 5, SEP/OCT 1997

423

ute problems over multiple processors; from computer vendors, optimizing com-
pilers for a multiprocessor environment; and from users, a willingness to change
our way of doing business. We need to move away from a coding style suited fg
serial machines, where every microstep of an algorithm needs to be thought
and explicitly coded, to a higher-level style, where the compiler and libra
take care of the details. And the remarkable thing is, if we adopt this hi
approach right now, even on today’s machines, we will see immedi
our productivity.

References

1. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
Recipes in C: The Art of Scientific Computing, 2
Press, Cambridge, England, 1992).

2. W. H. Press, S. A. Teukolsky, W. T. Vetterling, a
Recipes in Fortran: The Art of Scientific Compu
University Press, Cambridge, England, 1992),

3. A. Iserles, Mathematical Gazette 73(464), 167 (June 198

4. P.Horowitz and W. Hill, The Art of Electronics, 2nd ed. (Ca
Press, Cambridge, England, 1989).

5. F.S. Acton, Numerical Methods That Work (Harper and Row, New
reprinted edition (Mathematical Association of America, Washington,

6. S. Wolfram, The Mathematica Book, 3rd ed. (Cambridge University
Cambridge, England, 1996).

7. D. E. Knuth, TeX and Metafont: New Directions in Typesetting (Digital Press
Bedford, MA, 1979); see also the Preface in D. E. Knuth, The TeXbook (Ad-
dison-Wesley, Reading, MA, 1984).

8. J. C. Sprott, Numerical Recipes Routines and Examples in BASIC, in association
with Numerical Recipes Software (Cambridge University Press, Cambridge,
England, 1991).

9. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in Fortran 90: The Art of Parallel Scientific Computing, Volume 2 of
Fortran Numerical Recipes (Cambridge University Press, Cambridge, England, 1996).

10. M. Metcalf and J. Reid, Fortran 90/95 Explained (Oxford University Press,
Oxford, England, 1996).

11. F.P.Brooks, The Mythical Man-Month, revised ed. (Addison-Wesley, Reading,
MA, 1995).

12. M. Shaw, Journal of Computer Science Education 7, 4 (1993).

13. Interactive Data Language, Version 4 (Research Systems Inc., Boulder, CO, 1995).

14. J. J. Barton and L. R. Nackman, Scientific and Engineering C++ (Addison-
Wesley, Reading, MA, 1994),

15. A. Stepanov, Byte (October 1995); available on the World Wide Web at

http:/fmww.byte.com/art/9510/sec]2/art3.htm.

, C++ Programmer’s Guide to the Standard Template Library (IDG

City, CA, 1995).

nd A. Saini, C++ Programming with the Standard Template

Wesley, Reading, MA, 1996).

William H. Press is a professor of
astronomy and physics at Harvard
University and a member of the
Theoretical Astrophysics Division of the
Harvard-Smithsonian Center for Astro-
physics, Cambridge, MA 02138.
E-mail: wpress(@cfa.harvard.edu
Saul A. Teukolsky is a prqfesson}f
physics and astronomy at Cornell
iniversity, Ithaca, NY 14853. E-mail:
saul@astrosun.tn.comell.edu

