
Numerical Recipes: Does This Paradigm Have a Future?
William H. Press, and Saul A. Teukolsky

Citation: Computers in Physics 11, 416 (1997); doi: 10.1063/1.4822583
View online: https://doi.org/10.1063/1.4822583
View Table of Contents: http://aip.scitation.org/toc/cip/11/5
Published by the American Institute of Physics

Articles you may be interested in
Fine Fare
Computers in Physics 11, 403 (1997); 10.1063/1.4822575

http://aip.scitation.org/author/Press%2C+William+H
http://aip.scitation.org/author/Teukolsky%2C+Saul+A
/loi/cip
https://doi.org/10.1063/1.4822583
http://aip.scitation.org/toc/cip/11/5
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4822575

In recent
years, the C

version of NR has
outsold the Fortran

version by about
two to one.

Fortran 90, para111ttrQbl•
producti\1it1r

The newest vcrsio
2 of the Fortran book, is
tran 90: The Art of Parallel "enti.fic Com ting.9

The word "parallel" added in tli ubtitl<;i highly
significant, but perhaps not in the !fat you might
first imagine.

Michael Metcalf, a distinguished computer pro
fessiona l at CERN and co-author of one of the best
manuals on Fortran 90, 10 introduced us to Fortran 90
through a set of lectures given in a very beautiful set
ting at the International Centre for Theoretical Phys-

ics in Trieste, Italy, in May 1993. Soon after that we apprenticed ourselves for a
time to Gyan Bhanot, a computational scientist at Thinking Machines Corp. and
expert programmer in CM Fortran, a Fortran 90 precursor developed for TM C's
Connection Mach ines.

It was, for us, as ifthe sky had opened up and all heaven stood revealed.
Well, perhaps not quite. We did (and do) see in Fortran 90, however, some

thing much more important than its superficial traits of being (i) a much-needed
updating of Fortran to a modern computer language and (ii) a language designed
to produce code that can be parallelized on computers with multiple processors.
To explain what that something is, we must digress briefly on the subject of pro
grammer productivity.

It is a commonplace (see, for example, Ref. I I) that the average productivity
of a professional programmer (that is, lines of fina l, debugged, and documented
code divided by total programmer effort) is on the order of four lines per day.
This is sometimes rendered as "two lines of code before lunch, two lines after." ln
research science our standards for documentation and debugging are much lower,
and our graduate students work harder, and so our average productivity, in lines,
may be as much as two or three times higher.

Another commonplace, as emphasized by Mary Shaw, 12 is that a single indi
vidual, without specialized software-engineering tools or training, can write and
master a program of length about 3000 lines, but not longer. Since we physicists
offer no such specialized training or tools to our graduate students, this sets a life
ime limit on the complexity of any single scientific project that they can undertake.

We are convinced by the evidence that these limits on productivity are funda-
1. However, it seems to be a fact 11 •12 that a programmer has about the same

· :vity (in lines per day or "mastered" lines) independent of the level of the
:ver a range as wide as, for example, assembly language to, Mathematica.

the thought is not original to us, that the only way projects in com
of larger scope can be done by individual researchers (as opposed
ering teams) is by the use of intrinsically higher- level languages.

s, was the revelation of parallel programming in Fortran 90. The
el and higher-level constructions- wholly independently of whether

xecuted on tomorrow's parallel machines or today's ordinary worksta
expresses more science per line of code and per programming workday.

ed on our own experience, we think that productivity, or achievable complex
of project, is increased a factor of two or three in going from Fortran 77 to For

tran 90- if one makes the investment of mastering Fortran 90's higher-level
constructs.

We give a simple example: Suppose we have two match ing arrays, one with a

galaxy velocities, the other with the corresponding magnitudes. We want to
ow the upper-quartile value of the magnitude for galaxies whose velocity is in

the range 100 < v ~ 200. (Astronomical magnitudes decrease as objects get
brighter, and so this corresponds to finding the lower-quartile magnitude numeri
cally.) In Fortran 77 the code is something like the first example shown in the box
(this page). While not difficult code, it does contain potential "gotchas" that are
difficult to avoid, mostly having to do with array-index arithmetic.

The second example in the box shows the same task accomplished in two
lines, using Fortran 90 language intrinsics, plus routines from our NR in Fortran 90
book. While the lines are each fairly dense, they are completely free of index fussi
ness; indeed, they are
much closer to the under-
lying conceptual task. In
this example, pack and
ceiling are Fortran 90 lan
guage intrinsics; array_
copy and select are Nu
merical Recipes proce
dures.

The same task, ac
complished in Mathe
matica, 6 is shown as the
third example in the box;
in IDL13 the task is
shown as the fourth exam
ple. (Note that Select in
Mathematica has a com
pletely different meaning
from select as a Numeri
cal Recipes routine
name!) Mathematica
lacks the "data parallel"
constructs of Fortran 90
but has powerful list-
handling intrinsics in
stead. In this example,
Mathematica's main
weakness is the awkward
ness of its component ad
dressing. IDL's formu
lation is almost crystal
line in its clarity. (To un
derstand it, note that the
where and sort functions
return arrays of indices,
not of values.)

Box. Coding of the same example in Fortran 77 and in three "higher
level" languages: Fortran 90, Mathematica, and IDL.

Fortran 77, with external sort:

n = 0
do j=l,ndat

if (vels(j).gt . 100 •• and . vels(j).le . 200 .) then
n = n+l
temp(n) = mags(j)

endif
end do
call sort(n,temp)
answer= temp((n+3)/4)

Fortran 90, with Numerical Recipes procedures:

call array_ copy(pack(mags,(vels>100 •. and.vels<=200.)),temp,n,nn)
answer= select(ceiling(n/4.),temp(l:n))

Mathematica:

Select[Transpose[{vels,mags}], (#[[1]] > 100 . && #[[1]] <= 200.)&
Sort[%, (#2[[2]] > #1[[2]])&] [[Ceiling[Length[%]/4]]] [[2]]

IDL:

temp= mags(where(vels le 200. and vels gt 100., n))
answer=temp((sort(temp)) (ceil(n/4)))

Programming languages versus total environments
In the preceding example, IDL, Mathematica, and "Fortran 90 plus Nu

cal Recipes" emerged as comparably high-level languages. Indeed, syntactical
and semantically, all are of comparable complexity. In particular, all are "large"
languages, requiring a serious investment in learning. In almost every other re
spect, however, Fortran 90, as a direct programming language, is really quite a dif
ferent beast from the other two. Th is brings us finally to the question posed by the
title of this art icle.

Just as the "central dogma" of the mathematical-software community turned
most program libraries of the 1970s and 1980s into black boxes with defined inter-

COMPUTERS IN PHYSICS, VOL. 11 , NO. 5,SEP/OCT 1997 421

faces, there is a sim ilar emerging dogma of the I 990s, that scientific programmers
should move to high-level "total environments" (here called "TEs") such as
Mathematica, Matlab, IDL, and sim ilar. As already discussed, we agree com
pletely with the necessity of moving to higher-level languages. But we strongly
disagree with the new dogma.

The key problem in working with any TE, we find, is the user's lack of con
trol over scalability in the TE's internals. For example, a programmer can easily
write a piece of code that works splendid ly for I 0 data points, but fai ls for l 06
data points. Sometimes the problem is simply that the TE is just too slow. Other
times, its memory requirement goes through the roof.

But is the problem not the same for a programming language such as Fortran
Sometimes yes, ifthe scaling with size of data is truly intrinsic to the underly

nerical algorithm, as inverting a matrix for example. But very often, the an
; the runaway scaling in the TE is not fundamenta l to the user's

tis rather a "feature" of the generality of the data structures used in
als, or the internal algorithms used to manipulate those structures.
ing language like Foriran 90, when you encounter such a problem,

ften by a bit of messy, lower-level programm ing, in which you create
kind of specialized data structure or more highly optimized "inner loop."

e options are not available within a TE.
Imagine the different " levels" of programming spread out vertically on some

kind of logarithmic scale. In Fortran 77 or C, you spend all your time at the bottom of
the scale, down in the mud. In Mathematica, Matlab, or lDL, you spend almost all
your time (generally quite productively!) at the top of the scale, but it is practically
impossible to dig down when you need to. Neither of these paradigms is optimal.

We conjecture that an optimal programming model is one in which the pro
grammer has approximately equal access to each logarithmic level, and we think
that a skil led programmer will spend roughly equal programming time in each
logarithmic level, laying out bold strokes in the top levels, clever optimizations in
the bottom ones. Fortran 90 is by no means a perfect language. But augmented by
a good set of ut ility routines and an accessible source-code library (you can guess
which we favor), it seems to us to be closer to the ideal than any other choice
available right now.

There is a possible rejoinder that our objections to TEs simply reflect today's
technological limitations, and that they wi ll get much better in the future. No
doubt true. However, TEs, because of their very generality, wi ll always be much
slower than the execution of native arithmetic operations on simple data structures
that are "close to the machine." The latter capability is exactly what a modern
compiled language- one that contains a broad mixture of high-level and lowcr
level constructs- provides.

If there is a single sentence in the Numerical Recipes books that has annoyed
more people than any other, it is this one: "The prnctical scientist is trying to solve
tomorrow's problem on yesterday's computer; the computer scientist, we think,
often has it the other way around." We stand by this statement.

1nd \\·hat about C ++ ·!
Indeed, what about C++? This language would seem to meet a ll our require

ments: It allows arbitrary high-level constructions through the mechanism of a
class library, yet its underlying C syntax is even more primitive, and closer to the
machine, than o ld Fortran 77.

We have spent a lot of time in the last five years scratching our heads over
C++ (and over Java in the last couple of years). Probably a Numerical Recipes in
C++ would have value. There are several reasons, however, that we have not pro
duced such a version.

First, the original " democratic" dream of object-oriented programming, that
every programmer would accumulate an idiosyncratic collection of useful object
classes whose reusabil ity would allow moving to ever higher levels of program
ming abstraction in the course of a career- this dream seems dead. Instead, to
day's trend is toward a fixed, universal object-class library (Microsoft's MFC,

422 COMPUTERS JN PHYSICS, VOL. 11 , NO. 5, SEP/OCT 1997

more or less) and is discouraging of more than a
minimal amount of idiosyncratic programming at
the object-class-definition level. The result is that
C++ has become essentially a large, but fixed, pro
gramming language, very much oriented toward
programming Microsoft Windows software. (For
tran 90, on the other hand, is strongly biased to
ward scientific computing- it is a poor language
in which to write native Windows applications!)

Second, there is a genu inely unresolved de
bate regarding what should be the fundamental
structure of a scientific programm ing library in
C++. Should it be true to the language's object-ori
ented philosophy that makes methods (that is, algo
rithms) subsidiary to the data structures that they
act on? If so, then there is a danger of ending up
with a large number of classes fo r high ly specific
data structures and types, quite complicated and
difficult to learn, but really all just wrappers for a
set of methods that can act on multiple data types
or structures. There exist some ambitious class li-
braries for scientific computing (see, fo r example,
Ref. 14) that suffer, to one extent or another, from this problem.

comp
language
users) must m
higher-le\iel constructs
and to parallel
ization.

Confronting just this issue, a competing viewpoint, called "generic program
ming with the Standard Template Library (STL)"15 17 has emerged. Here algo
rithms and data structures ("containers") have more-equal claims to primacy, with
the two being connected by " iterators" that tell the algorithm how to extract data
from the container. STL is implemented as C++ template classes that naturally al
low for multiple data types (for example, single versus double precision).

We do not feel ready to choose one of these C++ methodologies, and we
have only just begun thinking about what we might conceivably propose as an al
ternative. One possibility wou ld be to define a generic, very-high-level, interface
that encapsulates a set of objects and methods comparable to everything in For
tran 90, but not in itself dictating any particu lar template or c lass-inheritance struc
ture for its implementation. Then, a variety of compatible implementations could
be written, optimized quite differently for today's serial or tomorrow' s paral lel
machines. Our preliminary efforts along these lines are at http://nr.harvarcl.edu/
nr/cpp, and we would be grateful for thoughts and comments from our readers.

Where \rn end up
We think that compiled languag giving the user direct access to mach ine-

level operations acting on simple ~~)J~1ctures ("close to the machine"), con-
tinue to have an important futur programming. The Numerical
Recipes paradigm is not, we extinction. Total environments
like IDL or Mathematica Jl to have. There is therefore
room for improved inte · b dologies.

Nevertheless, to uages (and their users)
must move to hig , both in the computer
and in the proo of the future,
whether For ortran or C fami -

1, tightly struc-
o us that any

d c.

OMPUTERS IN PHYSICS, VOL. 11. NO. 5, SEP/OCT 1997 423

ute problems over multiple processors; from computer vendors, optimizing com
pilers for a multiprocessor environment; and from users, a willingness to change
our way of doing business. We need to move away from a coding style suited ti
serial machines, where every microstep of an algorithm needs to be thought
and explicitly coded, to a higher-level style, where the compiler and libra
take care of the details. And the remarkable thing is, if we adopt this h.
approach right now, even on today's machines, we will see immedi
our productivity.

Re[erences
I. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and

Recipes in C: The Art of Scientific Computing, 2n
Press, Cambridge, England, 1992).

2. W. H. Press, S. A. Teukolsky, W. T. Vetterling, a
Recipes in Fortran: The Art of Scientific Compu .
University Press, Cambridge, England, 1992).

3. A. !series, Mathematical Gazette 73(464), 167 (June 198
4. P. Horowitz and W. Hill, TheArt of Electronics, 2nd ed. (Ca

Press, Cambridge, England, 1989).
5. F. S. Acton, Numerical Methods That Work(Harperand Row, New

reprinted edition (Mathematical Association of America, Washington,
6. S. Wolfram, The Mathematica Book, 3rd ed. (Cambridge University

Cambridge, England, 1996).
7. D. E. Knuth, TeX and Metafont: New Directions in Typesetting (Digital Pres

Bedford, MA, 1979); see also the Preface in D. E. Knuth, The TeXbook (Ad
d ison-Wesley, Reading, MA, 1984).

8. J. C. Sprott, Numerical Recipes Routines and Examples in BASIC, in association
with Numerical Recipes Software (Cambridge University Press, Cambridge,
England, 199 1).

9. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in Fortran 90: The Art of Parallel Scientific Computing, Volume 2 of
Fortran Numerical Recipes (Cambridge University Press, Cambridge, England, I 996).

10. M. Metcalf and J. Reid, Fortran 90195 Explained (Oxford University Press,
Oxford, England, 1996).

11. F. P. Brooks, The Mythical Man-Month, revised ed. (Addison-Wesley, Reading,
MA, 1995).

12. M. Shaw, Journal of Computer Science Education 7, 4 (1993).
13. Interactive Data Language, Version 4 (Research Systems Inc., Boulder, CO, 1995).
14. J. J. Barton and L. R. Nackman, Scientific and Engineering C++ (Addison

Wesley, Reading, MA, 1994).
15. A. Stepanov, Byte (October 1995); available on the World Wide Web at

http:/ ww .byte.com/art/9 51O/secl2/art3 .htm.
16. M C++ Programmer's Guide to the Standard Template Library (IDG

City, CA, 1995).
nd A. Saini, C++ Programming with the Standard Template

Wesley, Reading, MA, 1996).

William fl. Press is a pr<i(essor of
astronomy and physics at Harvard

University and a member of the
Theoretical Astrophysics Division of the
Harvard-Smithsonian Center/or Astro

physics, Cambridge, MA 02138.
E-mail: wpress@cfa.harvard.edu

Saul A. Teukolsky is a professor of
physics and astronomy at Cornell

niversity, Ithaca, NY 14853. E-mail:
saul@astrosun.tn.comell.edu

