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Where the eyes fixate during search is not random; rather, gaze reflects the combination of information about the target and
the visual input. It is not clear, however, what information about a target is used to bias the underlying neuronal responses.
We here engage subjects in a variety of simple conjunction search tasks while tracking their eye movements. We derive a
generative model that reproduces these eye movements and calculate the conditional probabilities that observers fixate,
given the target, on or near an item in the display sharing a specific feature with the target. We use these probabilities to
infer which features were biased by top-down attention: Color seems to be the dominant stimulus dimension for guiding
search, followed by object size, and lastly orientation. We use the number of fixations it took to find the target as a measure
of task difficulty. We find that only a model that biases multiple feature dimensions in a hierarchical manner can account for
the data. Contrary to common assumptions, memory plays almost no role in search performance. Our model can be fit to
average data of multiple subjects or to individual subjects. Small variations of a few key parameters account well for the
intersubject differences. The model is compatible with neurophysiological findings of V4 and frontal eye fields (FEF)
neurons and predicts the gain modulation of these cells.
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Introduction

When we are looking for a known item in a cluttered
scene, our eye movements are not random. Rather, the
path our eyes travel on during search reflects an estimate
of where the item is most likely located. How these
locations are chosen by the visual system remains poorly
understood. The visual system needs to combine the
retinal input with knowledge about the target in some way
to estimate the most probable target location. One
possibility would be to disregard the information about
the target and to only use the visual input to guide search
(a pure bottom-up strategy as in saliency-based models of
attention; Itti & Koch, 2001). Clearly, this strategy is not
appropriate for searchVdepending on the task, different
locations are fixated. The other possibility is to combine
the incoming image with information about the target, that
is, top-down information modulating a bottom-up strategy
(Navalpakkam & Itti, 2005; Rao & Ballard, 1997; Tsotsos
et al., 1995; Wolfe, 1994). This is the approach we take
here. For any such strategy, a crucial decision is which
feature(s) of the target guides the search. There are
many theoretical models (Najemnik & Geisler, 2005;
Navalpakkam & Itti, 2005; Rao, Zelinsky, Hayhoe, &

Ballard, 2002; Treisman & Gelade, 1980; Verghese, 2001;
Wolfe, 1994) of which features the visual system should
use; however, this leaves open the question of which
features are actually used. Here, we provide a quantitative
estimate of which features guide search (e.g., if the target
is defined by multiple features, such as color and
orientation, which ones are used to bias search). Note that
in this paper, top-down attention refers to the mechanism
of selectively biasing the weights of specific feature
channels regardless of spatial location (Desimone &
Duncan, 1995; Itti & Koch, 2001; Muller, Heller, &
Ziegler, 1995; Palmer, 1994). We construct a computa-
tional model in close analogy to the neuronal processes
underlying saccade planning that generates realistic eye
movements and compare these against our own data.
We used conjunction search arrays (Figure 1) that

contain 49 elements, one of which was the target. Except
for some control experiments, the target was uniquely
defined by two features. The 48 distractors were chosen
such that one half (24) shares one of the features of the
target, whereas the other half shares the other. This choice
of distractors assures that potential biases in subselecting
items (e.g., all of same color vs. same orientation) do not
change the number of elements that need to be processed.
We used three feature dimensions (color, size, and
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orientation) with two variations each (red/green, big/
small, and horizontal/vertical). In any task, only two of
the feature dimensions were varied whereas the other was
kept constant. This yields three different task conditions:

color and orientation (CO, Figure 1A), color and size (CS,
Figure 1B), and size and orientation (SO, Figure 1C).
Visual search paradigms are widely used for both

behavioral experiments in humans (Palmer, Verghese, &
Pavel, 2000; Wolfe, 1998) as well as electrophysiological
experiments in nonhuman primates (Bichot, Rossi, &
Desimone, 2005; Chelazzi, Miller, Duncan, & Desimone,
1993; Motter, 1994; Motter & Belky, 1998; Ogawa &
Komatsu, 2006). It is thus of great importance to under-
stand the underlying neuronal mechanisms of this process.
Information about the target (location or identity)
improves search performance and detection accuracy
(Burgess & Ghandeharian, 1984; Muller et al., 1995;
Swensson & Judy, 1981) and therefore can be utilized to
structure the search process. How this a priori information
about the target is used, however, remains unclear. How
knowledge of a particular feature benefits search perform-
ance has been traditionally measured by how long it takes
to find a target among a varying number of distractors
(Treisman & Gelade, 1980; Wolfe, 1994). Although such
reaction time (RT) measurements as a function of set size
allow quantification of search efficiency (Treisman &
Gelade, 1980; Wolfe & Horowitz, 2004), it remains
unclear why certain features are inefficient and why others
are not. Similarly, RT measurements have demonstrated
that knowledge about a target defined by multiple features
improves search performance (conjunction search). How-
ever, it is not clear how this improvement in performance
is achieved. Imagine, for example, an artificial search
array where items are defined by orientation and color
only. Behavioral experiments indicate that monkeys that
search for a unique target in such a display selectively
fixate near items that have the same color as the target
(Motter & Belky, 1998). This occurs despite the fact that
the orientation of the target was shared by equally many
distractors and is equally easy to distinguish. This implies
the monkey made a choice, explicit or implicit, to use
color as the guiding feature. Does this mean that the other
piece of information about the target, the orientation, was
not used to guide the search? Here we will show that both
are used, but differently.
It is well known that activity in the frontal eye fields

(FEF) is sufficient to trigger eye movements (Bruce &
Goldberg, 1985; Schall, Hanes, Thompson, & King,
1995). This is demonstrated convincingly by microstimu-
lation (Bruce, Goldberg, Bushnell, & Stanton, 1985).
Some V4 neurons respond selectively to the color,

Figure 1. Examples of search paths in three different conditions.
Shown are all data points recorded at 250 Hz from three different
subjects. Fixations are indicated with a circle or a rectangle (last
fixation) and always start out at the center. (A) Color and
orientation (CO) condition, the target is red horizontal. Note the
color bias. (B) Color and size (CS), the target is red small. Note
the color bias. (C) Size and orientation (SO) condition, the target
is small vertical. Note the size bias. The units of both x and y axes
are in degrees of visual angle as seen by the subject.
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orientation, and shape of visual stimuli (Gallant, Connor,
Rakshit, Lewis, & Van Essen, 1996; McAdams &
Maunsell, 1999a; Motter, 1994). For the same physical
input and eye location, these feature selective neurons
respond differently based on top-down information
(Bichot et al., 2005; Motter, 1994). V4 projects to both
inferior temporal cortex (IT) as well as FEF (Schall,
Morel, King, & Bullier, 1995). The opposite is also true:
FEF neurons project directly into V4 (Stanton, Bruce, &
Goldberg, 1995). This allows direct modulation of V4
activity by microstimulation of the FEF (Moore &
Armstrong, 2003).
The firing activity of FEF neurons needs to reach a

particular threshold until an eye movement is initiated
(Brace to threshold[). Using this mechanism, FEF neurons
are thought to accumulate evidence in favor of initiating a
saccade (Hanes & Schall, 1996) or an attentional shift
(Moore & Fallah, 2004), to a particular location. It is
therefore likely that the locations receiving most input
from V4 reach threshold fastest. We point out parallels of
this neuronal architecture with our model of saccade
generation that allows us to predict how V4 and FEF
neurons will respond during visual search.
We first present eye tracking data recorded while

subjects performed our search task. Subsequently, we
construct a computational model to demonstrate that these
eye movements are dominated by two parameters which
closely resemble the top-down gain modulation of V4 and
FEF neurons. Other parameters commonly implicated in
search performance are of much less significance. This is
especially true for memory capacity (Horowitz & Wolfe,
1998; McCarley, Wang, Kramer, Irwin, & Peterson,
2003).

Methods

Subjects

Nine subjects (first experiment) and three subjects
(second experiment) were paid for participation in the
experiment. None of the subjects were aware of the
purpose of the experiment. The experiments were
approved by the Caltech Institutional Review Board, and
all subjects gave written informed consent.

Experimental setup

Eye movements (Experiment 1) were recorded with a
headmounted EyeLinkII (SR Research, Canada) system.
We recorded binocularly (250 Hz sampling) but only used
the information of the more reliable eye. Experiments
were implemented in Matlab using the psychophysics and
Eyelink Toolbox extensions (Brainard, 1997; Cornelissen,
Peters, & Palmer, 2002). Subjects were seated 80 cm in

front of the screen using a chin rest to assure minimal
head movements. The search display area was 25- � 20-.
The only manual interactions with the experimental
system were by pressing a button on a gamepad. For
calibration, the built-in 9-point calibration grid was used.
Calibration was repeated as necessary during the experi-
ment. The effective radial resolution was 0.6- after
calibration. Fixation locations were obtained with the
built-in fixation detection mechanism. Each subject
typically performed 2 blocks of the same condition and
8–12 blocks in total (see below). Thus, each subject
performed only a subset of all experimental conditions (of
which there were 8).
We recorded additional control subjects (Experiment 2)

on an EyeLink 1000 System (SR Research, Canada). We
recorded movements of the right eye with 1,000 Hz.
Subjects in these experiments conducted all tasks in one
session.

Experiment

Before the start of each trial, the actual target was
displayed at the center of the screen for 1 s. After a 1-s
delay (blank screen), the search display was shown until
the subject found the target or a time-out (20 s) occurred.
The subject knew that the target was always present in the
search display. This is to exclude possible effects of
absence trials. The trial automatically terminated as soon
as the subject fixated for at least 320 ms in a radius of 1.5-
around the target. Thus, no manual interaction was
necessary to terminate the trial. This excludes movement
artifacts and speeds-up the search process. Trials were
administered in blocks of 24 (Experiment 1) or 36
(Experiment 2) trials. Within a given block, the same
two feature dimensions were used.
In any search array, two of the three feature dimensions

(color, size, and orientation) were modified whereas the
other was kept constant. Thus, there were three different
possible tasks: CO, CS, and SO. For any given condition,
there are four different search items (e.g., all combinations
of red/green and horizontal/vertical for the CO task).
Search arrays contained 1 unique target and 48 distractors.
The 49 elements were distributed randomly on a 7 � 7
grid, with 3.25- and 2.25- spacing on the x and y axes,
respectively. Noise was added to each grid position
(uniformly distributed between T1- and T0.5- on the x
and y axes, respectively). There were two types of
distractor items, each sharing one feature with the target.
Each of the distractor items was present 24 times. Thus, a
given search display consisted of three unique items out of
the four possible. The left-out item shares no features with
the target. Each item occupied between 0.5- and 1.0- (see
Figure 1). Items were presented on a light grey back-
ground to reduce contrast.
Additionally, we ran several control tasks: three pop-out

tasks where the target was unique in one dimension (color,
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size, and orientation), one task where only orientation was
available (elongated Ts) as a feature, and rotated corners
(none of the features available). The elongated Ts task
consisted of a long rotated (2-) bar with a small bar at one
of its ends (thus looking like elongated Ts). The rotated
corners task consisted of corners of equal edge length
(four possible corners). We used this task as an upper
bound on search performance in the case where none of
the three features, color, orientation, and size, was
available to guide search. For all control tasks, the target
was always shown at the beginning of the trial.

Data analysis

Trials with a time-out (target not found) or eye move-
ments outside the screen were excluded (5.6% of all
trials). We analyzed the eye movements in two ways:
(i) number of fixations to find the target and (ii) conditional
probabilities.
The number of fixations to find the target was used to

quantify the degree of difficulty. All fixations made
between search screen onset and offset were counted.
We find that the average saccade and fixation duration
was quite stereotypic for all conditions and subjects
(average fixation duration 208 T 188 ms and average
saccade duration 37 T 14 ms, both TSD). Thus, the number
of fixations to find the target was equal (up to a scale
factor) to the time it takes to find the target. This was the
case for all subjects except one who was excluded
(different fixation durations are dependent on task; thus,
this relationship does not hold).
Each fixation was assigned to the item closest to it

(distance of fixation location to center-of-mass of the
item). We estimated the conditional probability of fixating
close to distractors defined by a certain feature, given the
target (blue bars in Figures 2B–2D). We calculated these
probabilities by counting, for all fixations, how many
items (nearest neighbor) shared a certain feature with the
target. We repeated the same procedure on data where we
randomized the order of trials to estimate chance perfor-
mance (red bars in Figures 2B–2D). If there was no item
within 2- of the fixation, the fixation was classified as
Bblank[ (Figures 2B–2D). We also calculated the condi-
tional probability that the second or the third nearest
neighbor of a fixation shares one of the features with the
target. For this analysis, the search radius was 5- (instead
of 2-, see above).
In some fraction of trials, subjects looked directly at

the target but failed to see it; their eyes move away
from the target without having rested for the 320 ms
required to successfully conclude the trial (see the
Results section). We defined trials where this happened as
trials where there was a fixation on the target, followed
by at least one (often more) fixation away from the
target. To exclude small corrective saccades around
the target, we excluded trials with less than 4- of the

integrated saccade amplitudes between the last fixation
and the on-target fixation.

Computational model

The model (Figure 3) consists of three modules: a first
stage that extracts and represents features in the visual
scene followed by two parallel stages, one for saccade
planning and one for target detection (see sections below).
There are six 2-D feature maps corresponding to the two
attributes of three feature dimensions each. Each element
at location x in the jVfeature map, I j(x), is set to either 0
(absent) or R (present), where R = 10 is the baseline rate.
The feature maps are combined linearly to yield a rate of a
Poisson process at each location:

1ðxiÞ ¼ ~
6

j¼1

wjI
jðxiÞ: ð1Þ

1 can be thought of as a simplified saliency map
representation (Itti & Koch, 2001) of the search array,
modulated by knowledge about the target. The weights wj

are set based on the knowledge about the target (Wolfe,
1994). By default wj = 1, except for the two feature maps
which define the target (red and horizontal in Figure 3).
The feature map that represents the primary feature
(primary with regard to the hierarchy of features that we
report; red in the example of Figures 1A and 3) is set to
p + 1, and the feature map that represents the other feature
of the target (secondary; here horizontal) is set to sp + 1.
Thus, w1 = p + 1 and w3 = sp + 1 for the example in
Figure 3; p and s are positive parameters. We refer to the
weighted sum of all feature maps 1(x) as the target map. It
combines top-down target knowledge with bottom-up
visual information and is the basis for all further
processing. Each element in the target map is the mean
of a Poisson process from which a sample is drawn every
time the target map for x is used. In the following,
reference to 1(x) refers to sampling a number from a
Poisson process with mean 1(x). Such a random sampling
is an important property of any neurobiological circuit and
has important consequences.

Computational modelVsaccade planning

At every fixation, saccade planning decides where to
fixate next. This is done by calculating a value F(x)
(Equation 2) for every element x and choosing the item x
that has the highest value of F(x).

FðxÞ ¼ 1ðxÞ þ EðrÞk1j %ðx; ct; ctj1Þk2: ð2Þ

In our search task there were 49 elements; thus, x = 1I49.
The saccade planning process has a memory that has
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the capacity to store the last m fixated locations (with
m = 0 corresponding to no memory). If the item with the
highest F(x) is currently stored in memory, the next
highest value is chosen (iteratively).
The first term in Equation 2 corresponds to the input

from the target map and reflects the bottom-up visual
signal modulated by target information. The other two
terms ensure realistic eye movements. Subjects made
saccades that were gamma distributed with a mean of

5.3- T 8.0- (TSD), which is larger than the mean interitem
distance of (2.1- T 2.1-). To reproduce saccades with such
an amplitude distribution, we use a Gaussian Benergy[

constraint, E(r) = exp

�
jðr j mSADÞ2

k0

�
, with r the

distance, in degrees, between the current fixation and the
location of x. E(r) is maximal at the preferred saccade
length mSAD and is smaller for all other values. mSAD is
set equal to the median of the measured distribution of

Figure 2. Experimental results and quantification of the search process in terms of difficulty (number of fixations) and conditional
probabilities. (A) Number of fixations N to find the target for all conditions. n is the total number of trials. One-way ANOVA with task type
(y axis) shows a highly significant effect (F = 22.43, P G 7e j 11). (B) Conditional probabilities (given the target) of fixating close to a
distractor that shares the color or the orientation with the target in the color and orientation (CO) task. A clear color bias is present. Blank
corresponds to those fixations when there was no distractor within 2-. (C) Same for the color and size (CS) task. (D) Same for the
orientation and size (SO) task. Here, distractors of the same size are preferentially fixated. In panels B–D, n is the number of subjects.
Note the high consistency across subjects. The insets in B–D show the difference between the probability of the primary and secondary
feature, as a function of the N nearest neighbor. N = 1 is the nearest neighbor and is equal to the data shown in the main part of panels
B–D. Note that the probabilities are quickly dropping and not significant anymore if the third nearest neighbor is considered (see text for
the Discussion section). Error bars in insets are TSD; all other error bars are TSEM. ** and *** corresponds to a significance of G.01 and
.001, respectively.
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the saccade amplitudes (Figure 6C). Furthermore, sac-
cades tend to continue in the same direction as the previous
saccade. To reproduce this inertia, we added the term
%(x, ct, ctj1), corresponding to the angular difference in
orientation of two lines: (i) the line connecting the
previously fixated location ctj1 and the current fixation
and (ii) the line between the current fixation location ct
and x. It is normalized, such that the maximal difference

(180-) is equal to 1. That is, %(x, ct, ctj1) =
j!1j !2j

180
. !1 e

180 and !2 e 180 are the orientation of the two lines
relative to the horizontal line measured at the origin of the
saccades (ct and ctj1). k0, k1, and k2 are constants that set
the weight of the two mechanistic terms, relative to the
target map.

Computational modelVtarget detection

The target detection process evaluates, at every fixation,
whether an item is the target or not. It has the capacity to
evaluate C items within D degrees (radius) of the current
fixation (both are parameters). If there are more than
C items to evaluate within the given area, it evaluates the
C items with the highest values of 1(x). The capacity
limitation does not imply either a parallel or a serial
detection process. Whether the detection process has a
capacity limitation at all is determined by the value of C:
if C is bigger or equal to the number of items within the
radius D, the capacity of the process is effectively infinite.
We here assume that the target detection process has no
memory; that is, it does not take into account any
information from previous fixations.

Fit of model to data

We fit the parameters p and s of the model such that
both the number of fixations as well as the conditional

probabilities are reproduced as best as possible. The other
parameters were kept constant (see the Results section).
To find the values of p and s, we calculated the number of
fixations N(p,s) and the conditional probabilities P(p,s) for
all combinations of p and s between 0.1 and 1 in steps of
0.1. We then used a least squares error measurement to
simultaneously fit the two functions N(p,s) and P(p,s).

Results

We first describe the experimental results, followed by
the computational model and its application to the
experimental data.

Difficulty of search

Figure 1 illustrates typical scanpaths for our display.
We quantified task difficulty by how many fixations were
required to find the target (Figure 2A). The number of
fixations needed to find the target (N) was statistically the
same for the two tasks where color was available (CO and
CS) (8.19 T 0.85 and 7.85 T 0.75; P = .48, t test), whereas
the SO condition required significantly more (13.18 T
1.72; P G 10j6, t test). Although this might indicate that
orientation cannot be used at all as a feature, additional
controls confirm that it can be used if necessary. The two
control conditions were rotated Ts (letter T) and rotated
corners with equal length of both edges (see Figure 2A
and the Methods section). In the Brotated Ts[ condition,
only orientation was available. Although performance was
worse than during a conjunctive search, it was clearly
better than in the Bcorners[ condition where search
appears to be random (none of the three features
available). Also, if any of the three features uniquely

Figure 3. Structure of the model. A feature map is constructed for each of six features (red, green, horizontal, vertical, big, small),
containing either a 0 or R for each element. These can be thought of as representing neurons in V4 and in nearby regions of the ventral
visual stream. The weighted sum of all feature maps results in the target map (right), with one value for every element in the search array.
Its value is the mean of a Poisson process from which a number is sampled every time the target map is accessed. The most likely
candidate for the target map are neurons in the FEF. Target detection and planning are assumed to be separate processes that receive
input from the target map.
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defined the target (e.g., pop-out), the item was quickly
found (right three bars in Figure 2A). This demonstrates
that the subjects were able to detect all targets, no matter
how they are defined. Note, however, that even in pop-out
a substantial number of fixations were required until the
target was found (on average 4.45 T 0.45 fixations, TSE
with n = 445 trials, for all three pop-out tasks).

Guidance of search

Why did certain conditions require more fixations than
others (e.g., CS vs. SO)? The items in all three tasks were
identical (colored oriented bars). What was different is
only which features defined the target. This implies that
subjects were able to utilize different features to a different
degree. To address this, we estimated the conditional
probability of fixating near distractors defined by a certain
feature, given the target (blue bars in Figures 2B–2D). We
repeated the same procedure on data where we randomized
the order of trials to estimate chance performance (red bars
in Figures 2B–2D). That is, a scanpath associated with
one search array for one subject was randomly reassigned
to a different search array of the same subject. This
procedure was repeated 10 times for each search array.
All measured probabilities were different from chance and
highly consistent across subjects. For any search con-
dition, the target was defined by two features and there are
thus two different conditional probabilities (e.g., P(share
color ª Target) and P(share orientation ª Target) for the
CO condition). These two conditional probabilities are not
independent because (by design) if an item does not share
the color with the target, it shares its orientation and vice
versa. We find that subjects primarily used one of the two
features in all three search conditions (Figure 2). If color
was available, it was strongly preferred (CO and CS
condition, Figures 2B and 2C, respectively); if color
defined the target, most eye movements were close to
targets whose color was identical to the color of the target.
On the other hand, there was a preference for size over
orientation in the SO condition (Figure 2D).
From this, we conclude that there is a strict hierarchy of

features: color, size, and orientation. The first feature that
defines the target is used to primarily guide search. Thus,
color is always used regardless of the other features if it is
available. Does this imply that the other features lower in
the hierarchy are not used to guide search? This does not
seem to be the case because in the two conditions where
color was available (CO and CS) the conditional proba-
bility for using the other feature (orientation or size) was
different (0.24 T 0.03 vs. 0.37 T 0.02; P = .01, t test;
Figures 2B and 2C). If it were ignored, these probabilities
should be equal. It thus seems that the primary feature is
not the sole factor for determining the fixation probability.
Also note that the search difficulty (number of fixations) for
the two conditions was not different, despite the different
conditional probabilities. On the other hand, the conditional

probability was approximately equal for the CS and SO
tasks, but their difficulty was very different (8 vs. 13
fixations). This is a further indication that multiple features
are used to guide the search.We will explore this seemingly
contradictory fact with our computational model.
The conditional probabilities reported above are calcu-

lated based on the item closest to each fixation (the nearest
neighbor). How do these probabilities change if they are
calculated for the second or third nearest neighbor? The
motivation for this analysis stems from the fact that some
models propose that saccades are targeted toward groups
of items rather than individual items (for example, the
center-of-mass). If this were the case, these probabilities
should stay similar to the nearest neighbor statistic. We
calculated the difference between the conditional proba-
bilities of fixating the primary feature and the secondary
feature. This value is high if there is bias toward one
feature and approaches zero if there is no bias. Here, we
find that this value was positive for nearest neighbors
(see above), was barely positive for the second nearest
neighbors, and was not different from chance for the
third nearest neighbor (Figures 2B–2D, insets; signifi-
cance for a t test between data and chance control for CO,
CS, SO, respectively, for third nearest neighbor: P = .34,
.45, .14). Thus, only the nearest neighbor seems to induce
a strong bias and therefore saccades seem to be primarily
targeted toward specific items (see the Discussion
section).

Structure of computational model

We constructed a simple model that reproduces our data
and that relates to the known physiological properties of
neurons in areas V4 and FEF (Figure 3). It consists of 2-D
feature maps representing the input and the target map,
which combines information about the target with the
visual input. In the feature extraction stage, an independent
map is constructed for every feature (Figure 3, left). These
feature maps are combined, biased by information about
the target, to create the target map (Figure 3, right). The
target map is used to plan where to saccade next and to bias
the detection process (for details, see the Methods section).
The model has five parameters: strength of primary and

secondary top-down modulation (p and s), memory
capacity (m), detection capacity (C), and detection radius
(D). The first two parameters (p and s) modulate the target
map. Memory capacity determines how many fixations,
relative to the current one, the saccade planning process
remembers (and thus does not revisit). The other two
parameters influence the detection process (C, D). The
saccade planning process is thus parameterized by three
parameters only (p, s, and m). Below, we evaluate each
parameter in terms of search performance (Figure 4),
quantified by number of fixations (N) as well as condi-
tional probabilities (P). We only plot the conditional
probability of the primary feature P = P(primaryªT) for
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each condition because the conditional probability of the
secondary feature is approximately 1 j P (except for
blank fixations, which are G1%).

Top-down factors determine search
performance and strategy

We vary the strength of top-down modulation by the
primary and secondary feature by varying p and s each
from 0 (no modulation) to 1 (doubling the object’s rate in
the target map) while keeping all other parameters
constant (m = 1, C = 2, D = 6). We specify s as a fraction
of p to ensure that primary attention is always stronger
than secondary attention; thus, s = 0.5 means that s is
equal to 50% of p. For example, if p = 0.6 and s = 0.5, the
weights for primary and secondary attention are set to 1.6
and 1.3, increasing the mean amplitude of these two
features in the target map by 60% and 30%, respectively.
p and s have a strong, but differential, influence on

search performance (Figure 4A). If only one feature is
modulated (i.e., s = 0), the model cannot be fitted to
the data (red line in Figure 4A). For example, for p = 1
and s = 0, N 9 15 whereas subjects routinely required less
fixations for any of the three tasks (e.g., È8 for the CO
and CS task). This is the case despite the very high
conditional probability of p = 1.0 (higher than measured).
Two conclusions can be drawn at this stage: Attentional

modulation to only one feature is not sufficient and strictly
fixating on elements that share the primary feature with
the target does not guarantee high performance. This also
implies that it is necessary to combine the feature maps
with a sum instead of a Max operation: The Max method
only allows deployment to one feature. In our model,
replacing the sum with a Max operation in Equation 1 is
equal to setting s = 0. As can be seen in Figure 4A,
realistic levels of performance are impossible to reach
with this setting.
Increasing s while keeping p constant (Figure 4B)

increases the number of fixations N and decreases the
conditional probability P, reproducing our data. Note that
s is a fraction of p and not an absolute value to ensure that
p 9 s at all times (see above). The tradeoff between low
and high values of s can be visualized in terms of the
target to distractor ratio (TDR) and target visibility. Here,
TDR is defined as the ratio between the mean value of
the target divided by the mean value of all distractors. The
mean value of an item x is equal to the mean value of the
Poisson process 1(x) in the target map. No secondary
attention (s = 0) results in maximal difference between the
values of the items that share the primary feature with the
target and those who do not, but the target is indistin-
guishable from any other of the 23 distractors of the
attended type (TDR = 1). On the other hand, increasing s
reduces the difference between the two dimensions of the
primary feature map but makes the target more visible

Figure 4. Performance of the model. Only p and s matter. For each of the five model parameters (left to right), two plots are shown
(columns): the number of fixations to find the target (N; top row) and the conditional probability, P, of fixating on the primary feature of
the target (bottom row). Only one of the parameters is changed, whereas the others are kept constant. The constant values were p = 1,
s = 0.5, D = 6, C = 2. See text for more details.
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(TDR 9 1). This tradeoff explains why lower conditional
probabilities for the primary feature do not necessarily
result in lower search performance (e.g., CO vs. CS).

Memory capacity of saccade planning only
plays a minor role

Varying memory capacity of saccade planning while
keeping all other parameters constant (Figure 4C) shows
that memory only has a minor influence on search
performance. Note that we assume that the detection
process has no memory. Changing the value of m only
affects the planning process. Increasing the memory
capacity from m = 0 to m = 1 improves performance
strongly (Figure 4C). However, further increases in
memory capacity (m 9 1) have a negligible influence on
performance. Even perfect memory (m = 49) hardly
improves performance. See the Discussion section for an
explanation of this finding.

Detection capacity and radius

Target detection is executed at each fixation; thus, it only
influenced N but not P. First, we explored the influence
of C and D on performance under the assumption that the

detection process is capacity limited. Increasing detec-
tion capacity while keeping the detection radius constant
(D = 6) increases performance (Figure 4E), but only until
C = 3. The detection radius with constant capacity (C = 2)
only has a minor influence (Figure 4D). Both results can
be explained by the properties of the search array: Given
even a moderately sized search radius, there are more
elements than can be processed within the detection
radius. However, only a few (G4) of those candidates are
likely to be the target (e.g., share the primary feature) and
thus search performance does not increase if C and D are
increased further.
Above, we used small values of C and D because we

assume that the serial nature of the detection process
does not allow more covert attentional shifts within the
time of a single fixation. Next, we explored performance
in cases of a more capable (possibly parallel, see the
Discussion section) detection process (C 9 2, D 9 6). We
find (Figure 5) that a higher capacity process leads to large
performance improvements if the detection radius is
sufficiently large. Realistic detection thresholds are typi-
cally below 10- (D e 10, see the Discussion section).
Assuming an infinite detection capacity (C 9 number of
items within radius D), we find that increasing the
detection radius from 2 to 10 increases search perfor-
mance dramatically (Figure 5, C = 49). Thus, the model is
capable of reproducing a wide range of possible fixation
and detection behaviors.

Figure 5. Performance of the model for different parameters of the detection process. Only the number of fixations is plotted because the
conditional probabilities are not influenced by the detection process (see Figures 4C and 4D, second row). The green line corresponds to
Figure 4D for C = 2.8. Note that C = 49 is equal to an infinite capacity (= parallel) model. For large values of D, the infinite capacity model
has access to all items on the display but still requires a significant number of fixations to find the target. This is due to mechanistic eye
movement constraints against unrealistically long saccades.
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Fit of model to data

To reproduce our data as shown in Figure 2 (population
average of nine subjects), we assume that the last item that
was fixated is remembered (m = 1), a detection capacity of
C = 2 and a search radius of D = 6. As shown in Figure 4,
the exact choice of these parameters is not critical. k0 =
15, k1 = 10, and k2 = 5; these constants are adjusted such
that the eye movements have realistic properties (saccade
length and angle). Their exact values are not crucial and
changing them only affects the mechanistic properties of
the generated eye movements.
We reproduced the measured values for N and P for all

tasks (CO, CS, SO) by finding values for the parameters
p and s that fit the experimental data (see the Methods
section). We find that the averaged data can be fit well:
Running the model with the identified parameters on the
same data that the subjects saw reproduces both the
number of fixations as well as the conditional probabilities
observed (Figures 6A and 6B). Also, the distribution of
the saccade amplitudes is similar to the experimental data
(Figure 6C), indicating that the model produces realistic
eye movements. Note that the shape of the SAD is not
explicitly specified by the model description (Equation 2).
Rather, it is a result of the interaction of the term E(x) in
Equation 2 and the target map. If evidence for a given
item (given by 1(x)) is strong, long saccades are made.
This leads to the long tail of the SAD.
The p/s values for the three tasks (CO, CS, and SO)

were 0.9/0.7, 0.9/0.8, and 0.45/0.7. Thus, the increases

in firing rate (mean of Poisson process in model) for
the primary and secondary features are 90%/63%,
90%/72%, and 45%/32%, respectively. These values,
which were fitted independently for each task, confirm
the hierarchy of features that we observed experimen-
tally. Color is the strongest feature (with P = .9),
followed by size (P = .45). Orientation is never the
primary feature.

Fixating on the target without seeing it

In some instances (Figure 7A), subjects fixated on the
target without seeing it (that is, not stopping the search).
To investigate such Breturn saccades[, we quantified the
percentage of trials in which the subjects fixated on the
target without stopping the search. We find that, on
average, in 12% of all trials of the three tasks (CO, CS,
and CO) the target was fixated but the search was not
stopped (Figures 7A and 7B). The incidence of such
Breturn to target[ trials was higher for the two control
conditions and generally seems to be higher for more
difficult tasks (Figure 7B). We additionally quantified the
number of fixations between an Bon-target[ fixation and
the final target fixation that lead to the trial being
successfully concluded (Figure 7B, inset). We find that
for most trials, the target was found within a few fixations
of the Bon-target[ fixation (for 77% of on-target trials,
three or fewer fixations were between the on-target
fixation and the last fixation).

Figure 6. The model fitted against the averaged search performance data of nine subjects. Only p and s were varied whereas all other
parameters were kept constant for all simulations (see text). (A) Number of fixations, N. Compare to Figure 2A. (B) Conditional
probability, P, of fixating to a distractor sharing the primary feature with the target (here: color, color, size). Compare to Figures 2B–2D.
p and s were chosen as following. CO: 0.9, 0.7; CS: 0.9, 0.8; SO: 0.45, 0.7. Thus, the percentage increase in the rate 1(x) in the target
map was (secondary/primary): CO: 90%/63%; CS: 90%/72%; SO: 45%/32%. (C) Comparison of the SAD distribution of the model and the
data.
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Fitting the model to individual subjects

What is the variance of the fitted model parameters for
individual subjects? In the above analysis, we used the
aggregate data from nine subjects to achieve high
statistical confidence. Also, we note that the intersubject
variability is remarkably small (e.g., error bars in Figure 2
are TSE over subjects). In a second experiment, we reran
all tasks on three additional subjects on an eye tracker
with higher temporal resolution (1,000 Hz, see the
Methods section). This enabled us to individually fit the
model to each subject and to compare parameters. We find
that the individual subjects required a comparable number
of fixations for the three tasks CO, CS, and SO. This is
illustrated in Figure 8A with error bars as TSEM. The
number of trials for each task that each subject completed
successfully varied between 60 and 70. The comparison
with the population average (black, from Figure 2A)
shows that the individual subjects behaved similarly to the
mean of nine subjects (note that the three additional
subjects are not part of the population average). One
difference, however, is that all our individual subjects were
significantly faster for the CS task compared to the CO task
(CO vs. CS, P G .02 for all 3 subjects, t test). Although the
same was the case for the population average, this
difference was not significant (number of fixations 8.19 T
0.85 vs. 7.85 T 0.75; P = .48, t test). This indicates that the
population average masked an important difference due to
intersubject variability. The conditional probability of
fixating on the primary feature in each task (color, color,

size for CO, CS, and SO, respectively) was more variable
between subjects (Figure 8B). However, the mean values
of each conditional probability are well compatible with
the population average (black). Next, we will explore
differences between individual subjects with our model.
We fit the model parameters p and s (strength of top-

down modulation of primary and secondary feature) to
each task of each subject (Figures 8C and 8D). All other
parameters were kept constant with the values established
above: D = 6, C = 2, and m = 1. The mean absolute error
between the experimental data and the data produced by
the model was small: The difference for the number
fixations (N) was 0.16 T 0.55 fixations (TSD) and 0.02 T
0.02 (TSD) for the probabilities (P). We find that the
individual differences between subjects (Figures 8A and
8B) can be accounted for with small variations of the
parameters (Figures 8C and 8D). This confirms that
individuals are highly consistent for each task, generally
having differences in p and s of 10–20%. For example,
Subjects 2 and 3 (red, green) have an approximately 55%
probability of fixating color instead of size in the CS task
(Figure 8B, middle). This is reflected in the parameters in
an approximately equal increase for the primary and
secondary feature (Figures 8C and 8D), which leads to a
lower probability of fixating the primary feature (because
both features are modulated equally). However, primary
attention is slightly larger in both cases, reflecting the
above chance probability of 9.5 for both. On the other
hand, Subject 1 (blue) had a high preference for color
in the same task (CS, Figure 8B), which in turn is

Figure 7. In some trials, the fixation landed on the target, but the subject did not stop the search. Only in a subsequent fixation was the
target found. (A) Example of a return to target trial. The first fixation landed on the target, but the subject continued the search. In
general, when queried, subjects did not report seeing the target the first time their eyes landed on it. (B) Incidence of fixations on the
target in terms of the percentage of all trials (of 1,083 total trials). n are number of subjects. Inset: Distribution of the number of fixations
between the on-target fixation and the final target fixation. Seventy-seven percent of all instances had 3 or fewer fixations in between
(67% had only 2 or 1). (C) The incidence of return to target trials is faithfully reproduced by the model. Here, the incidence is plotted as a
function of the detection capacity. The inset shows the histogram of the number of fixations between the on-target fixation and the final
target fixation (as in panel B) at C = 2. In most cases (63%), the target is found within three fixations of the on-target fixation. The
percentage of trials in the insets in panels B and C are expressed in terms of percentage of all trials with less than 20 fixations between an
on-target fixation and the final target fixation.
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reflected in a higher value of p than s (Figures 8C and 8D;
blue in CS). This confirms that our model can be fitted to
individual subjects as well as to populations of subjects.

Discussion

With a simple model, we could generate realistic eye
movements for a visual search task. The five model
parameters correspond to variables which are commonly
assumed to be important in visual search (Motter, 1994;
Motter & Belky, 1998; Wolfe, 1994). Two had a major
influence on search performance: the strength of atten-
tional modulation for the primary and secondary feature
(p and s). The strength of attention to the primary feature
dominates the number of fixations it takes to find a target,
whereas the strength of secondary attention primarily
determines the conditional probability of fixation.

Neurophysiological relevance

The structure of the model resembles what we know
about saccade generation during visual search. The values
in the feature maps can be thought of as representing the
mean firing rates of neurons in V4 or nearby regions that
are tuned to either color, orientation, or size of the
individual bar stimuli. Shortly after stimulus onset, the
response of V4 neurons is determined by the visual input,
regardless of task relevance. Approximately 150–200 ms
afterward, neurons representing relevant stimulus attrib-
utes have a higher firing rate (Motter, 1994; Ogawa &
Komatsu, 2006). Neurons representing some features of
the stimulus (e.g., color) are modulated stronger than
others (e.g., orientation) (Bichot et al., 2005; McAdams &
Maunsell, 1999a; Motter, 1994). Here, this process is
modeled by multiplication with the weights set by p and s.
There is good neurophysiological evidence for multi-
plicative gain control by top-down attentional modulation

Figure 8. Data and model fits of three individual subjects. (A) Nunber of fixations for the three tasks CO, CS, and SO for three individual
subjects (blue, red, green) and the average population of nine subjects as shown in Figure 2 (black). Note the high consistency between
these three subjects. Error bars for individual subjects are TSEM with n equal to the number of successfully completed trials for each
condition (different for each subject and block, approximately 60–70). Error bars for the population data are TSEM with n the number of
subjects. (B) Conditional probability of fixating on the primary feature of each of the three tasks (color, color, orientation for CO, CS, and
SO, respectively). All probabilities are significantly different from a chance control established by random shuffling (see Figure 2B–2D, red
bars). (C and D) Fits of the parameters p and s for each subject (blue, red, green) as well as the population average (black, from Figure 2).
Both are specified in terms of absolute increase (%) in firing rate of units representing this feature (here modeled by a mean Poisson rate).
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of visual cortical neurons (McAdams & Maunsell, 1999a,
1999b; Reynolds, Pasternak, & Desimone, 2000; Treue &
Martinez Trujillo, 1999).
Top-down attentional deployment and shifts of gaze are

tightly linked (Bichot & Schall, 1999; Corbetta et al., 1998;
Moore & Armstrong, 2003; Rizzolatti, Riggio, Dascola, &
Umilta, 1987; Schall & Hanes, 1993). Here, we used eye
position (gaze) as an indirect measurement of where
attention is currently deployed in space. However, we do
not assume that during a fixation attention is restricted to
the closest nearby item. In fact, the detection part of our
model processes a number of elements (determined by C)
in parallel at every fixation, as long as they are within the
radius of detection (D parameter). Planning where to fixate
next does assume that focal attention shifts to the new
location. These assumptions are supported by a number of
neurophysiological studies. In particular, neurons located in
the FEF are known to be closely related to the initiation of
eye movements (Bruce & Goldberg, 1985; Bruce et al.,
1985; Schall, Hanes, et al., 1995). The response of FEF
neurons is dominated by the visual input that is task
relevant, whereas all other input is only weakly repre-
sented (regardless of their visual features). The firing rate
of an FEF neuron is higher if the item in the RF shares
features with the target compared to an item that shares
no features with the target (Bichot & Schall, 1999). FEF
neurons thus signal, for each item, the estimated
probability that this position contains the target. Based
on this, it has been proposed that FEF represents an
integration of the visual input together with top-down
information about the task (Thompson & Bichot, 2005;
Thompson, Bichot, & Schall, 2001). Looking at our model,
FEF neurons can be thought of as implementing our target
map (Figure 3). Thus, each value 1(x) in the target map
corresponds to the mean firing rate of neurons coding for
a particular movement vector (relative to the current
fixation). Also, the process of making a saccade where
1(x) is maximal has a close neuronal analogy: FEF
neurons integrate their input until a threshold is reached
(race-to-threshold model; Hanes & Schall, 1996). Thus,
the neuron with the largest 1(x) will (on average) reach
threshold fastest and evoke a saccade.
V4 neurons project directly to FEF and also receive

direct feedback from FEF (Schall, Morel, et al., 1995;
Stanton et al., 1995). These two areas are tightly linked as
demonstrated by microstimulation of neurons in the FEF,
which causes changes in the receptive fields of V4
neurons in the same manner as deployment of covert
attention to the location spatial location does (Armstrong,
Fitzgerald, & Moore, 2006). Thus, neurons in V4 can be
thought of as representing the values Ij(x), used in the
feature maps of our model.
Also, object selective neurons in IT receive direct input

from V4 and are modulated by attention (Chelazzi et al.,
1993). These neurons can thus be thought of as represent-
ing the detection aspect of the model. Because the input to
IT neurons is already attentionally modulated (from V4),

the detection part of the model preferentially evaluates
objects which have a high value of 1(x).
Psychophysical data also support the notion that the two

processes of detection and saccade planning share neuro-
nal pathways: Detection thresholds (measured as dV) are
the same for both detection (at fixation) and saccades over
a wide range of signal-to-noise values as well as tasks
(Beutter, Eckstein, & Stone, 2003).

Relationship to visual search

It is well known that knowledge about which features
define the target improves search performance and/or
accuracy (Burgess & Ghandeharian, 1984; Motter &
Belky, 1998; Rajashekar, Bovik, & Cormack, 2006; Rao
et al., 2002). Frequently, the time required to find the
target is used as a measure of difficulty. This is done by
comparing the rate of growth (slope) of the RT as a
function of the size of the search array (Treisman, 1988,
1998; Wolfe, 1998). If the time it takes to find a given
target is less than to find some other target, it is reasonable
to infer that it was easier to search for the target that was
found quicker. Because there are many reasons why some
targets can be located faster than others, RT measurements
alone are not sufficient to constrain mechanistic models.
Here, we used a computational model to investigate why it
is that some targets are easier to find than others (e.g., CO
compared to the SO task). This allowed us to infer that
some features (e.g., color) can be used more efficiently for
the deployment of top-down attention than others (e.g.,
orientation). These differences in strength of top-down
modulation explained the different amounts of time
required to find the target. Thus, recording eye movements
during visual search tasks provides additional information
that is otherwise not available. Importantly, calculating
conditional probabilities (given the target) makes it
possible to investigate which feature(s) defining the target
were used to guide search to what extent. This is important
because this is one of the crucial pieces of information in
any model of visual searchVgiven a target, what informa-
tion about the target is used to bias search? Another
approach to answer this question is to embed the targets in
1/f noise and extract a small patch of the image around
each fixation. This patches are then prewhitened (de-
correlated) and averaged to yield a classification image
(Rajashekar et al., 2006). The classification image shares
some (but not all) features with the target. This supports
our contention that some features of the target are used
preferentially to bias the search.

Models of the detection process

Our detection process is executed at every fixation.
There are two principled ways of how the detection
process could decide whether the item was present or not:
either serially (by deploying covert attention, as in guided
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search; GS) or in parallel. Our data do not address this
issue and we do not make an assumption as to which
process is used. The only assumption is that the items to
be processed are within a radius D around the current
fixation and that no more than C items can be considered.
For large values of C (C larger than the number of items
that fit within D), this is equal to a parallel model
(Eckstein, Thomas, Palmer, & Shimozaki, 2000; Palmer,
1994; Palmer et al., 2000). For values of C that are smaller
than the number of items within the radius D, the model is
serial in the sense that it only processes a subset of all
possible items. However, we do not make assumptions as
to whether the C items processed at every fixation are
processed serially (covert attentional shifts) or in parallel.
The restricted search radius D is motivated by the fact that
the ability to correctly detect the presence or absence of
items decreases as a function of distance from the current
fixation (Bouma, 1970; Carrasco, Evert, Chang, & Katz,
1995). Depending on the size of the items and signal-
to-noise ratio, detection accuracy degrades quickly over
a few degrees and is typically smaller than 10-.

Fixating on the target but not seeing it

We found that fixating near the target does not necessa-
rily mean seeing the target (and thus stopping the search).
The same phenomena has been observed in monkeys
searching for known targets in artificial (Motter & Belky,
1998) and natural scenes (Sheinberg & Logothetis, 2001).
This effect can be explained by the capacity limitation of
detection. Which items are evaluated is defined by the
target map. Because the target map is stochastic, it is
possible that the target is not evaluated at fixation even if
it is closest to the fixation. One would, however, expect
that the target is found within a few fixations of this
happening. Indeed, both our subjects as well as the model
find the target quickly after the occurrence of such an
Bon-target[ fixation (see the Results section). If the above
effect is due to the capacity limitation of the target
detection process, one expects the incidence of Breturn
saccades[ to decay as a function of the detection capacity
of the model (C). Indeed, we find (Figure 7C) that the
incidence of such trials is related to C. Assuming that the
underlying detection model is a capacity limited model,
values of C can be found that produce the same incidence
of Breturn to target[ trials as observed experimentally. We
used C = 2, which somewhat overestimates the incidence
of on-target trials.
The incidence of return saccades for C 9 7 drops to zero

(Figure 7C). This occurs because our model does not have
an activation threshold (Wolfe, 1994). Thus, arbitrary
small activation values in the target map still attract
attention. Thus, it is necessary to introduce an activation
threshold below which an item is never considered for
detection to account for all aspects of the data with a large
(possibly infinite) capacity model. The value of this

activation threshold could be fit to the data such that the
same Bon-target fixation[ incidence is reproduced by the
model. Our data do not allow us to conclude which is
the valid model of detection.
Either model (capacity limited or parallel) is compatible

with single cell recordings of object selective cells in
inferior–temporal cortex (IT) during such Bdouble-take[
trials (Sheinberg & Logothetis, 2001): the IT neuron
selective for the search target fails to respond, despite the
fact that the monkey is fixating on the object. However,
shortly after a saccade is made to another location, the
neuron starts responding and the monkey quickly returns
to the previously fixated location. The neuron could not
have responded either because the serial capacity limited
process did not attend to that particular region or because
the neurons activity was below the activation threshold.

Bottom-up mechanisms

We did not include lateral interactions (such as center
surround inhibition) into our model, preventing us from
reproducing the control data that rely on bottom-up
effects (e.g., pop-out if a feature is unique). During search
(Bacon & Egeth, 1994; Einhauser & Konig, 2003),
however, bottom-up effects are generally weak and top-
down factors dominate. Furthermore, our model does not
take account of interactions among oriented line elements
of the sort that will enhance the saliency of contours and
other global geometrical arrangement and lead to contour
integration and figure-ground segregation (Braun, 1999;
Itti, Koch, & Niebur, 1998; Li, 1998; Motter & Holsapple,
2000; Peters, Iyer, Itti, & Koch, 2005).

Comparison with other models

There are many models that attempt to explain how
visual search proceeds fixation-by-fixation. We here limit
discussion to models that are quantitative and can be used,
at least in principle, to generate real eye movement paths.
Parts of our model are similar to GS (Wolfe, 1994; Wolfe,
Cave, & Franzel, 1989) and related models (Cave, 1999),
based on Wolfe’s crucial insight that a bottom-up
saliency-like mechanism must be modulated by top-down
influences (see, also Bacon & Egeth, 1994; Bacon &
Egeth, 1997). Note, however, that GS is a model of covert
attention (at fixation). It does not describe eye movements.
We model both covert attention (the planning component
of our model) as well as overt attention (the detection
component). Thus, GS could be used as the detection
component of our model (executed at every fixation; see
below). In GS, a weight determines how much a particular
channel contributes to the activation map; the decision of
which weights to change for a particular target are made
on grounds of optimality. In contrast, we infer the weights
for each feature channel based on the empirically
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measured conditional probabilities. There are several
crucial differences. (i) Wolfe’s activation mapVwhat we
call target mapVis calculated once for each search trial
(no eye movements). Noise is added and the peaks are
rank ordered and visited sequentially (covert) until the
target is found or the values are smaller than an activation
threshold. Noise is a crucial component of GS: If no noise
is added, the target is found immediately on every trial if
its activity is higher than the activation threshold (pop-
out). In our model, removing noise would eliminate
Breturn saccades[ but not lead to pop-out. (ii) GS assumes
perfect memory (or inhibition of return) because of the
rank ordering (see, however, Horowitz & Wolfe, 1998)
whereas memory plays almost no role in our case (see
Figure 4C). (iii) Most importantly, our model takes into
account several aspects of eye movements. This includes
recomputing the target map at every fixation (because the
visual input changes) as well as mechanistic constraints of
eye movements (typical saccade length and smoothness).
(iv) We assume that the information in the target map is
represented by a stochastic Poisson process. This has
important consequences because different modules (e.g.,
detection and planning) accessing the same item of the
target map do not see the same values. (v) Our model does
not include an activation threshold. In contrast to GS, it is
thus not capable of generating false alarms nor does it
have a systematic way of aborting the search.
Here, a restricted set of features (color, orientation, size)

defines each item uniquely. An alternative approach is to
use a large set of features defined by a bank of filters (Rao,
Zelinsky, Hayhoe, & Ballard, 1996; Rao et al., 2002). In
this case, the target is found by fixating the location with
the minimal difference in response of the filters to the
target and the image patch at each possible location. This
process is repeated at each scale (coarse-to-fine) until the
target is found. The crucial difference to our approach is
that top-down guidance involves every possible feature
(fine grained). This also implies perfect memory of the
target instruction. In contrast, we only require memory for
two features during execution of the task.
The next point that is fixated during the search is the

item with the maximal activation in the target map (with
some constraints). This approach is in common with most
other models of eye movement generation. However, this
is not always the case for ideal observer models that take
into account the variable dVas a function of eccentricity
(Najemnik & Geisler, 2005).
The target map is equal to the weighted linear sum of

the feature maps. This approach is commonly used in at-
fixation search models (Baldassi & Verghese, 2002;
Eckstein et al., 2000; Palmer et al., 2000; Wolfe, 1994).
Here, the weights are provided by what we refer to as top-
down attention. A precursor to this approach is dimen-
sional weighting, which suggests that different dimensions
can be weighted and combined linearly to produce higher
activity for relevant items (Kinchla, Chen, & Evert, 1995;
Krummenacher, Muller, & Heller, 2001; Muller et al., 1995;

Murray, Sekuler, & Bennett, 2003). Note, however, that
this approach weights dimensions (e.g., Bcolor[) rather than
specific features (e.g., Bred[). Our data, as well as other
psychophysical evidence, suggest that top-down attention is
more specific than just the dimension (Navalpakkam & Itti,
2006).

Targeting of saccades

Are fixations attracted by single items or groups
thereof? We used the nearest neighbors to estimate the
conditional probabilities. However, the conditional prob-
abilities could be biased in two different ways: Either
because the fixation was attracted by a single item or
because the fixation was attracted to the center-of-mass of
a number of items (possibly of the same feature). If
fixations would be attracted toward groups of elements
sharing the same feature, one would expect that the
saccadic bias is (on average) similar for all items which
are close to a fixation. However, we found that this is not
the case: The conditional probability of the Nth nearest
neighbor (e.g., N = 1 is nearest, N = 2 is second nearest)
quickly approaches chance for N 9 1 (Figures 2B–2D,
insets). For N = 3 the bias is entirely erased and both types
of distractors are equally likely to be the third nearest
neighbor. Although this does not exclude targeting of
saccades toward more complicated ways of grouping, it
shows that saccades in our search displays were primarily
targeted to single items and not to the center-of-gravity of
multiple items. This is particularly relevant in the context
of the optimal searcher (Najemnik & Geisler, 2005),
which predicts center-of-gravity fixations. However, a
suboptimal searcher that always fixates the location with
maximum posterior was likewise found to be nearly equal
in performance (Najemnik & Geisler, 2005). One exten-
sion of GS that takes into account eye movements is the
area activation model (Pomplun, Reingold, & Shen,
2003). Here, the activation map is convolved with a 2-D
Gaussian to account for the typical Barea[ that can be
processed at every fixation. This model is built on the
premise that fixations are guided by groups of items that
share a feature with the target (rather than single
elements). The number of fixations is equal to the number
of peaks in the area activation map. This model assumes
that only one feature guides the search (e.g., color). Here,
we argue that guidance by both features is necessary to
simultaneously account for both the number of fixations
and the conditional probability.
An additional factor that influences targeting of sac-

cades is given by the physical limits of the muscles that
move the eye. There is a limit to how small or large a
saccade can be and typical SADs are distributed very
similarly across subjects (Bahill, Adler, & Stark, 1975):
the distribution peaks at approximately 2.5–3- and the
distribution has a very long tail (up to 20-, see Figure 6C).
To include this behavior in our model, we added a
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symmetric Gaussian energy term to our model (see
Equation 2). This term enforces the preferred saccade
length. Its weight, however, is sufficiently low so that it
can be overruled by strong items (thus the asymmetry in
the resulting SAD, see Figure 6C). Another approach is to
predict the SAD entirely from other factors such as limits
imposed by acuity (Najemnik & Geisler, 2005). Our
model does not attempt such a prediction. Rather, the
model assumes fixed physical constraints that partially
determine the shape of the SAD.

Comparison with models of visual cortex

Our model is compatible with a feed-forward architec-
ture of visual cortex where higher level processes can
modulate gains of certain neurons (Serre, Oliva, & Poggio,
2007). Following the onset of the visual stimulus, V4 and
FEF neurons are dominated by the visual input rather than
by task relevant information. However, here we have only
modeled the steady-state value of V4 and FEF neurons,
which is reached after approximately È100 ms in FEF
(Thompson, Hanes, Bichot, & Schall, 1996).

Memory

We found that memory beyond the last fixation is not
necessary. The memory for the last fixation manifests
itself as an inhibition-of-return effect rather than any
explicit memory (Klein, 1988; Klein & MacInnes, 1999).
Even a perfect memory with m = 49 hardly improves
performance. This counterintuitive result can be explained
by treating search as a random search from an array of n
elements with (m = 0) or without (m = n) replacement.
The expected number of draws to find a specific item is n
in the former and n/2 in the later case. Because the
number of fixations to find the target is typically G10, the
probability that an element that is currently in memory is
revisited is small. Thus, memory is not important for this
particular search array size and configuration. However,
this calculation also indicates that for search arrays with
many fewer items that still require a substantial number of
fixations, memory might well become important. Note
that the constraints of the eye movements (smoothness,
typical saccade length) also act as an implicit form of
memory. Thus, because saccades tend to follow each other
with minimal change in angle (see Figure 1), items
previously fixated tend to be avoided even if no explicit
memory exists. This additionally decreases the probability
of revisiting items without having an explicit form of
memory. This might explain some of the previous
contradictory results (Horowitz & Wolfe, 1998; Klein,
1988; McCarley et al., 2003). Our model recomputes the
entire target map for every fixation and does not have
memory for any of the decisions made at the previous
fixation. Thus, no trans-saccadic memory integration takes

place, in agreement with a recent Ideal Bayesian Observer
model (Najemnik & Geisler, 2005).

Comparison with other eye movement
recordings

Many studies recorded eye movements during visual
search to assess where fixations preferentially land
(Findlay, 1997; Motter & Belky, 1998; Williams &
Reingold, 2001; Williams, 1966; Zelinsky, 1996). In
agreement with previous studies, we found that color is a
feature that strongly guides gaze. One way to quantify
selectivity of fixations is to calculate the frequency by
which each type of distractor attracts fixations. Here, we
quantify the same effect by calculating the conditional
probability that, given the target, a certain feature will be
shared by the nearest neighbors of the fixations. Fixation
frequency and conditional probability are different in that
we allow the probabilities to change as a function of the
target (conditional). Indeed, we find that the probability of
fixating the very same distractor elements varies greatly as
a function of the target instruction. There has been some
controversy as to how strong certain features guide
attention: Most studies found that color is a strongly
guiding feature (Motter & Belky, 1998; Williams &
Reingold, 2001; Williams, 1966), whereas at least one
report the opposite (Zelinsky, 1996). Here, we find that
such differences can occur as a result of which features
define the target. In fact, in our model, weak preference for
one feature versus another does not necessarily imply
weak top-down attentional priors. Using the computational
model, we showed that this is because of strong top-down
attentional biases to multiple features, which results in
weak selectivity and high performance at the same time.

Prediction of gain modulation from eye
movement data

Our model predicts the strength of gain modulation of
V4 neurons during visual search; modulation will be
strongest for color and smallest for orientation, with
intermediate values for size. Using items defined by color
and luminance (Motter, 1994) found that the firing rate of
V4 neurons was approximately double when the stimulus
in the receptive field matched the target compared to when
it did not match the target. This corresponds to p = 1 in
our model. Using more complex items (cartoons of
objects) (Chelazzi, Miller, Duncan, & Desimone, 2001)
found a modulation by the search target of between 39%
and 63% (in terms of our model, this corresponds to a
variation of P of .39–.63). Others (Bichot et al., 2005)
discovered that the modulation for V4 neurons responsive
to color was much stronger than modulation of neurons
responsive to shape (e.g., mostly orientation). Another
study found that V4 neurons tuned to orientation increased
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firing by on average only 20% (McAdams & Maunsell,
1999a), which is much less compared to color. Although it
seems puzzling that some features are modulated less than
others, our model predicts exactly this situation. We also
show that this is the optimal strategy to use: Increasing
firing for one feature more than the other results in better
performance than strongly modulating only one feature. It
remains an open question why color rather than, say,
orientation has primacy in terms of strength of top-down
modulation.

Conclusions

Measuring human eye movements is considerably easier
and faster than recording neuronal responses in monkeys.
However, models of attention depend on how neurons in
areas such as V4 or FEF are modulated. Here, we use a
simple model that can be fitted to measured eye move-
ment data to deduct the gain modulation of V4 neurons.
This model can be used to predict the modulation of firing
rates of V4 (and FEF) neurons for arbitrary tasks where
the target and distractor items are defined by a well-
restricted set of features.
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