
Supplementary Data for "Single-trial learning of novel stimuli by individual 

neurons of the human hippocampus-amygdala complex" 

 

Figure S1.  Behavioral performance of all subjects. Recognition performance (Old/New) 

was close to 90% (chance 50%) whereas spatial recollection, in which the subject reports 

the quadrant in which the images was presented for all images classified as "Old", was 

49%. All performance levels are significantly different from chance (p<0.05).  
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Figure S2. Population statistics for all neurons (A) as well as the subset of significantly 

responsive neurons (B-F). (A) The mean firing rates of all neurons recorded (n=244) was 

1.96±0.14 Hz. The mean firing rate was not significantly different among different brain 

areas (1-way ANOVA, p<0.05). (B) The mean firing rate of all responsive neurons 

(n=40) was 2.17±0.30 Hz, with no significant difference amongst different brain areas. 

(C)  The mean firing rate for novelty and familiarity neurons was not statistically 

different from all other neurons recorded (1-way ANOVA, p<0.05) during either learning 

or recognition. (D) Considering all sessions, 16.5% of all recorded neurons indicated 

novelty or familiarity in every session (2 sessions each in 6 patients). There were slightly 

more novelty neurons (9.2%/per session) than familiarity neurons (7.3%/per session). (E) 

We found a total of 40 significant neurons, 18 of which signaled during the stimulus 

period, 13 during the post stimulus period and 9 during both;  (F) There were 24 novelty 

and 18 familiarity neurons.  

Abbreviations: RH, right hippocampus; RA, right amygdala, LH, left hippocampus; LA, 

left amygdala; hippo, hippocampus; amygd, amygdala. All error bars are ±s.e and n 

always specifies number of neurons. 
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Figure S3. (A) Histogram of the single-trial prediction probabilities for all 40 significant 

neurons. The mean probability was 0.72±0.02. The prediction probability is equal to the 

area under the curve of the ROC of each neuron and specifies the ratio of recognition 

trials in which novelty or familiarity is successfully predicted on a trial-by-trial basis by 

observing a single neuron. Randomly shuffling (scrambled) the spike counts of new and 

old trials results in a mean of 0.5 (red in A, error bars are s.d.). The ROC for the same 

neuron as shown in figure 2 is shown in (B) (blue=real trials, red=randomly shuffled). 

(C) Latency of response for all neurons. Shown are, for each time following stimulus 

onset, the percentage of neurons which became significant for the first time in this time 

bin. 
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Figure S4. Example of a novelty-sensitive neuron which increases firing to novel stimuli 

during both learning and recognition. (A) Raster for all spikes during learning (green), 

recognition old (red) and recognition new (blue). (B) Histogram summarizing the 

response. Note the decrease to familiarity. (C) Comparison of the number of spikes fired 

during the 4s stimulus period (white in B). The number of spikes fired for familiar items 

is significantly different from the number of spikes fired during learning and recognition 

of new items. (p< .001 for both comparisons, 1-way ANOVA with posthoc multiple 

comparison. n=12 (number of trials)). 
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Table S1. Electrode position in stereotactic coordinates (Talairach).  

Patient Amygdala (r/l) Hippocampus (r/l) 
P2 -20,1,-19 

26,-2,-20 
 

-26,-9,-11 
28,-11,-20 

P3 -20,-3,-15 
18,-4,-15 

 

-23,-13,-12 
33,-12,-16 

 
P4 -19,4,-26 

28,7,-26 
-21,-9,-25 
27,-7,-26 

P6 -23,-2,-14 
23,-6,-13 

 

-25,-13,-12 
29,-18,-12 

 
 
 
Table S2. Location of resected tissue (temporal lobe lobectomy in each case) 

Patient Side of temporal 

lobe lobectomy 

P1 left 

P2 left 

P3 right 

P4 left 

P5 left 

P6 right 

 



Supplemental experimental procedures 

Electrophysiology 
 
 Recordings were conducted using a commercial (Neuralynx Inc, Arizona) acquisition 

system with specially designed, head-mounted pre-amplifiers.  Signals were filtered and 

amplified by hardware amplifiers before acquisition.  The frequency band acquired was either 1-

9000Hz or 300-9000Hz, depending on the noise levels.  Great care was taken to eliminate noise 

sources.  This included using batteries to power the amplifiers, experimental computers, IV 

machines and heartbeat monitors.  Recordings commenced the second day after surgery and 

continued for 2-4 days for about 1 hour per day.  The experiments reported in this paper were 

done on two consecutive days for all 6 patients (12 sessions in total). 

 The amplifier gain settings, set individually for each channel, were typically in the range 

of 20000-35000 with an additional A/D gain of 4 (2 in some cases). The raw data was sampled at 

25 kHz and written to disk for later filtering (300-3000Hz bandpass), spike detection and spike 

sorting.  Spikes were detected using a local energy method (Bankman et al., 1993) and sorted by 

a template matching method (Rutishauser et al., 2006).  Great care was taken to ensure that the 

single units used passed stringent statistical tests (projection test (Pouzat et al., 2002)) . It is thus 

likely that we underestimate the number of single units present. Only neurons with mean firing 

rates ≥ 0.25Hz were included in the analysis. 

 



Electrodes 
 
 In each macroelectrode, 8 microwires were inserted (Fried et al., 1999). One microwire 

was used as local ground and the other 7 were used for recordings. The impedance of a total of 

56 microwires in 2 patients was, on average, 135±62kOhm (±s.d.) with a range of 38-245kOhm. 

  Electrode position was determined by an experienced neurosurgeon (ANM) from 

structural MRIs taken 1 day after electrode implantation on a clinical 1.5 Tesla MRI system 

(Toshiba, Inc).  We always recorded from 3 macroelectrodes simultaneously: left/right 

Hippocampus and either left or right Amygdala (total of 24 channels, 8 channels for each 

macroelectrode with 1 channel used as local ground). 

 

Localization of electrodes 

 We localized the position of each macroelectrode in a standardized stereotactic 

coordinate system (Talairach) in a subset of 4 patients for which high resolution 

structural MRIs were available (Supp Table 1).  We transformed each structural 1.5T 

MRI scan to Talairach space by manually identifying the anterior-and posterior 

commisure as well as the anterior, posterior, superior and inferior points of the cortex. 

We used BrainVoyager (Brain Innovation B.V.) for this procedure. After co-registration 

we identified the Talairach coordinates by finding a consensus from the different 

structural scans.  For each patient, we performed 4 different scans with 1x1mm resolution 



in the following plane: coronal, sagittal and 2 axial with different pulse sequences (2TW 

and FLAIR). 

 

Behavioral Task 
 
 The experiment consisted of a learning block (Fig 1C) and a recognition block 

(Fig 1D). In each learning block 12 unique natural pictures were presented for 4 seconds 

each.  Each of the 12 images was presented in one of 4 different positions (4 quadrants) 

on the screen. To facilitate learning and allow for subsequent spatial recollection, after 

each presentation the patient was asked to indicate where the image was presented (e.g. 

quadrant 1, 2, 3 or 4). After a ~30min delay (during which different tasks were 

performed: a virtual reality spatial memory and a reaction time task), the recognition 

block was administered.  Twenty-four images were presented, in random order, for 4 

seconds at the center of the screen. 12 of these images were previously presented during 

the learning block (“Old”) and 12 of the images were novel (“New”).  After each image 

(2sec delay after offset), the patient was asked to indicate whether the image was Old or 

New (2 alternative forced choice). If the answer was Old, the patient was then asked to 

indicate where the image was presented (quadrant 1-4) during learning.  For each patient, 

prior to beginning the above experiment, a short version of the task (with unique stimuli) 

was administered to familiarize subjects with the procedural aspects of the task. 



 

 The task was implemented using Psychophysics Toolbox (Brainard, 1997; Pelli, 

1997) in Matlab (Mathworks Inc) and ran on a notebook PC placed directly in front of the 

patient.  Distance to the screen was approximately 50cm and the screen was 

approximately 30 by 23 degrees of visual angle. The pictures used were approximately 9 

by 9 degrees. Specially marked keys ("New", "Old") on the keyboard were used to 

acquire subject responses. We chose to use natural pictures as stimuli rather than words 

or faces because it has been shown that pictures reliably result in bilateral fMRI 

activation of the MTL whereas words and faces result in primarily unilateral (left) 

activation (Kelley et al., 1998). 

 

Data analysis 

 We conducted all statistical analysis using bootstrap tests (see methods of main text). To 

be thorough, we repeated the same analysis using a two-tailed t-test (p<0.05) and found 

reasonable overlap with the pool of neurons determined to signal novelty or familiarity using the 

above bootstrap method.   We found, however, that using the t-test more neurons were classified 

as novelty/familiarity detectors, some of which (by visual inspection) were likely false positives.  

Also, the chance performance determined by random shuffling was high (~ 10%). We thus 

decided to exclusively use the bootstrap method since it yielded the most consistent and 



conservative results.   Post-Stimulus Histograms (PSTH) were created by binning the number of 

spikes into 250ms bins. To convert the PSTH to an instantaneous firing rate, a Gaussian kernel 

with standard deviation  = 300ms was used to smoothen the binned representation.  Population 

averages (Fig 3C and 3D) were constructed by averaging the normalized firing rate of each 

neuron.  Firing rates were normalized to the mean firing rate of the neuron during the particular 

part of the experiment (learning block or recognition block). We averaged the raw normalized 

PSTH of each neuron (above PSTH smoothening is not applied to normalized PSTH of each 

neuron nor to the population average). 

 

Spatial recollection analysis 

 To investigate whether the response observed during familiarity/novelty recognition 

required later successful spatial recollection we conducted additional data analyses.  Based on 

several pieces of evidence we find that successful spatial recollection is not required for 

emergence of novelty/familiarity cells: i) In 4/12 sessions spatial recollection performance was at 

chance levels (mean 21.7±7.9%) and yet we found that 14.8% of the recorded neurons in these 

sessions signaled novelty/familiarity during recognition and showed single-trial learning. This 

percentage is remarkably similar to the percentage of all neurons that signal novelty or 

familiarity (Fig S2). Thus despite the fact that these patients weren't able to correctly recollect 

the spatial location in any of the trials the same percentage of cells signaled novelty as in the 



other sessions. ii) In the 8 sessions with above chance spatial recollection performance (mean 

63.91±7.02%), 28 neurons were found (17.2% of all recorded neurons). Repeating the analysis as 

described above, but only including trials with successful recollection, results in 26 of those 30 

neurons remained significant. The number of selective neurons is thus decreased if only trials 

with successful spatial recollection are included and error trials are thus contributing valuable 

information. iii) In 9 sessions there were at least 4 spatial recollection error trials (correctly 

recognized as Old, but location wrong). Considering only these error trials (disregarding trials 

with correctly remembered locations), 20 out of originally 26 (77%) neurons remain significant. 

A high proportion of all originally identified neurons thus signal novelty/familiarity even in the 

absence of successful spatial recollection. 

 
Single-neuron ROC analysis 
 
 To determine how well the response of a single neuron during recognition predicts 

whether the patient is currently viewing a familiar or novel stimulus we conducted an ROC 

(receiver-operator characteristic) analysis (Britten et al., 1996; Green and Swets, 1966). This 

analysis assumes that an ideal observer, who only has access to the number of spikes fired by a 

single neuron during the presentation of the stimulus and the post-stimulus period (6s period), 

should be able to correctly classify individual neurons as signifying novelty vs. familiarity.  Only 

trials where the subject correctly replied with "Old" or "New" were used for this analysis (this 

was 88.5% of all trials). We quantify the ROC for each neuron recorded by integrating the area 



under the curve (AUC) of the ROC.  This number equals the probability of correctly predicting, 

on a single-trial basis, whether the “subject” has viewed a novel or familiar stimulus. An AUC of 

0.5 equals chance.  We confirmed the validity of our analysis by randomly shuffling the labels 

"New" and "Old" while leaving the spike trains intact.  Repeating this procedure 50 times for 

each neuron resulted in AUC values clustered around 0.5 (Fig 5A,B). 

 We conducted this ROC analysis without preclassifying neurons into novelty/familiarity 

detectors. This results in a cluster of neurons with a prediction probability significantly below 0.5 

and one significantly above 0.5. Since Old/New is a binary state, this contributes equal 

information and we thus subtracted 1-x for all ROC values x<0.5 to get an unimodel distribution, 

as shown in Fig 5A. 

 We repeated the analysis above for different time bins following stimulus onsets 

(step size 500ms), e.g. counting spikes in bins 2000-2500ms, 2000-3000ms, 2000-

3500ms, etc. Using this analysis we defined for each neuron when it's ROC value became 

significantly above chance the first time (Fig 5C). 

 

Epileptic v. non-epileptic tissue 

 One concern regarding the neurons described in this paper is that they were 

recorded from epilepsy patients. To confirm that our findings are also valid for "healthy" 

tissue, we repeated our analysis but excluded all electrodes which were in tissue that was 



later resected (Table S2). Of the total 244 recorded neurons, 138 were in tissue which 

was not resected. Of these 138 neurons, 22 signalled novelty or familiarity (15.9%).  
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