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Section Introduction
Figure S1: Schematics of the flow dynamics in a far field approximation (not to scale). Blue color marks

the planar interface (dashed) and the perturbed interface (solid).
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Section Methods
Sub-section Governing equation
The governing equations in the bulk
3
Op/ot+0pv, /ox; =0, Opv, [ot+ ) opv,v; /ox; +0PJox, =0, OE/ot+d(E+ P, /dx, =0 (Sl-la)
j=1

and the boundary conditions at the interface

[7 . n]: 0, {(Pjt(i-n)z/p)nJ =0, [(7 - nXG - T) p)‘l.']: 0, [G-nXW+72/2p2) =0 (SI-1b)
are applicable for both compressible and incompressible fluids. Boundary conditions Eqs.(SI-1b) are
derived by representing the flow fields as (p,v,P,E)=(p,v,P,E),H(0)+(p,v,P,E)H(-0) in
Egs.(SI-1a), where H(0) is the Heaviside step-function, and 6H/00 = §(0) with 5(0) being the Dirac
delta-function.

We use the physics definition of W and e [5,6]. Particularly, the specific internal energy e refers

to energy per unit mass contained within a system, excluding the kinetic energy and the potential energy

of the system as a whole. The initial conditions are the initial flow fields at the interface. They define the

characteristic scales of length 1/k and time 1/kV), for the dynamics [5,6].

PNAS #2017-14500 SI-3
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Sub-section Linearized dynamics

The boundary conditions (SI-1b) can be linearized. To the leading order and the first order

[1,1 =0. [, +72/p)n,J=0. or)/p)c I=0. LW, +1 /207 ]=0. (st
[Qﬂ+2l]n/p)no] 0. [0t +j7)pl=0. [l,@+0-j)/p*)]=0. (sr1a)

Expansions Eqgs.(SI-1c,d) are applicable for both compressible and incompressible dynamics. In

the incompressible case, Egs.(SI-1¢,d) can be further simplified. Particularly, for ideal gases, the speed of

soundis ¢ = ,/y P/p , where 7 is the fluid’s adiabatic index. In the incompressible case the speed of sound
: . . 2

is the largest velocity scale, with (c/ Vh(l))_) oo, and values approach (Po +], / p)h(l) - (Po )h(l) and
(Wo + ]2 /2p2 )h(,) - (Wo )h(l) transforming Eqs.(SI-1c¢) to

=0, [P,n,]=0, [J,(( -, )Pk, ]=0. [J.W,]=0, (Sl-le)

where the specific enthalpy is (Wo )h(z) = (WO +c pT)h(l). Here (C P )h(l) is the specific heat at constant

pressure, (T)h(l) is temperature, and the values (Wo )h(,) have a constant jump at the interface [Wo ] =Q,

where Q is the heat release per unit mass. In reactive fluids, the value Q is considered as the specific

heat release of a chemical reaction at the absolute zero temperature. In Eqs.(SI-1d) the incompressible

condition leads to enthalpy perturbations w;, = P, /Pua)

This derivation is similar to that in Landau-Lifshitz Theory Course V6 Hydrodynamics #128,
Eqs.(128.3, 128.4) with appropriate change of variables.

Note the difference in definitions of enthalpy W in physics sense and W in engineering sense.

PNAS # 2017-14500 SI-4
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Sub-section Fundamental solutions

a. Solutions structure

* T
The governing equations are reduced to a linear system M1 =0, where r = (q)h,@l,VhZ ,‘I’l) is
a vector and M is a 4x4 matrix. The matrix M is defined by the boundary conditions at the interface. Its

clements are functions of ®,R and G. We find eigenvalues ®, by using condition

detM(coi,R,G)ZO and identify the associated eigenvectors €. by reducing matrix

1

M = M((Di , R,G) to row-echelon form. For a non-degenerate 4x4 matrix with rank 4, the expected

number of eigenvalues ®; and associated eigenvectors €; is4, with i =1...4, corresponding to 4 degrees

i
of freedom and 4 independent variables obeying 4 equations. The solution r is a linear combination of

fundamental solutions ¥, = ri(('oi/ ei) as r= Z‘C 1., where C; are the integration constants set, e.g., by

the initial conditions.

Note that the linear system Mr =0 with M = M(w, R, G) results from a linear system Pt = Sr
where P,S are 4 x4 matrixes with P = P(R,G),S =S(R,G), under assumption that vector I' varies in
time as r ~ e . This leads to M = (S — ®P). In a non-degenerate case, the inverse P exists, and the

system Pr=Sr can be reduced to a standard form i = P"'Sr . The eigenvalues o, of the dynamics can
then be found from the conditions det(PJS - (DI): 0, where ® = {(Dl- } , I is the unit matrix, and index

i marks the independent degrees of freedom. Equations det(P‘l'S - (DI)= 0 and detM(o,R,G)=0

have the same eigenvalues ;

because linear combination of differential equations preserves the
dynamical properties.

Our approach for the boundary value problem and initial value problem systematically applies the
standard rigorous methods of applied mathematics and theoretical physics. Specifically, we consider the
conservation laws of mass, momentum and energy in the inertial reference frame; derive the boundary
conditions; linearize the dynamics; expand the perturbations of the flow fields by using scalar and vector
potentials; derive the linear system; find the fundamental solutions for the linear system; employ the

eigenvalues and eigenvectors of the fundamental solutions; study the formal, qualitative and quantitative

properties of the dynamics.

PNAS #2017-14500 SI-5
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b. Derivation details
In accordance with PNAS Policy on Materials and Data Availability, the authors report that the
algebraic calculations of matrices, eigenvalues, and eigenvectors were done using standard linear algebra
procedures, as described in the text. These can be done manually and/or with standard computer algebra
software such as Wolfram Mathematica. The plots were generated in Wolfram Mathematica by assigning

numerical values to variables, as described in the text.

PNAS #2017-14500 SI-6
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Section Results — Inertial dynamics
Sub-section Conservative dynamics

a. Fundamental solutions

For inertial conservative dynamics, with Mr=0 and t = (CDh,CD l,th*,‘Pl), matrix M =M is

-R -1 —-ow+Ro i
1 -1 1-R io/R

M= _
R-Row R+® 0 —2iR

® -® o—-Ro iR

Fundamental solution r,(w,, e, ) has the eigenvalue , and eigenvector e, :

i_1+R
i+JR
-1+R
o,=iWR, =" pVR
1

0

Fundamental solution r,(w,, e, ) has the eigenvalue ®, and eigenvector e, :

-1+R
(Dzz—i/\/i, e2: - . \/E

Fundamental solution r, (0)3, e3) has the eigenvalue ®, and eigenvector e, :

0
o, =R, e; = 0
1

Fundamental solution r,(c,,e,) has the eigenvalue ®, and eigenvector e, :

2i
Civn)
=1+

©=7Roe= TR

0

1

PNAS #2017-14500 SI-7
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b. Figure captions and Figures

Figure S2: Flow fields’ structure for the inertial conservative dynamics, fundamental solution

Yo ((DCD ,eCD) with ¥ = (1‘1 +r, )/ 2. Plots of the perturbed velocity vector fields U, the
perturbed velocity streamlines S, the contour plot of the perturbed pressure Py, (;y, and the interface
perturbation z in the (x,z) plane. For this solution, the vortical fieldis Vx ¥, =0, Vxu, =0.

Density ratio is R=5, time f=7/2, [t]= 1/kV, . Values are | P, |max(min)/| }£)h|max(min =1. Red (blue)

)

marks positive (negative) values in contour plots. Real parts of fields and functions are shown.

Figure S3: Flow fields’ structure for inertial conservative dynamics, fundamental solution ¥, (0)1 ,€, )

Plots of the perturbed velocity vector fields u,,;, the perturbed velocity streamlines s, , and the contour
plot of the perturbed pressure p,,, and the interface perturbation Z in the (x,z) plane. For this
solution, the vortical field is VxW, =0,V xu, =0. Density ratio is R=5, time t=m/2,

max(min)/| ph

contour plots. Real parts of fields and functions are shown.

[t]=1/kV, . Values are P,

)= 1. Red (blue) marks positive (negative) values in

max (min

Figure S4: Flow fields’ structure for inertial conservative dynamics, fundamental solution I, (CO3 ,€5 )

(a) Plots of the perturbed velocity vector fields u,,;), the perturbed velocity streamlines s, and the

contour plot of the perturbed pressure p,,(;y, and the interface perturbation Z in (x, Z) plane. (b) Plots
of the perturbed velocity vortical filed V X W, and the contour plot of vorticity V X, in (x , Z) plane.

max(min)/| ph

marks positive (negative) values in contour plots. Real parts of fields and functions are shown.

Density ratio is R=5, time t=m/2, [t]=1/kV, . Values are |P|

=1. Red (blue)

max (min )

Figure S5: Flow fields’ structure for inertial conservative dynamics, fundamental solution ¥, ((x) 4,€ 4).

(a) Plots of the perturbed velocity vector fields u,,,), the perturbed velocity streamlines s, and the
contour plot of the perturbed pressure p, ;) , and the interface perturbation z " in (x , Z) plane. (b) Plots

of the perturbed velocity vortical field V x W, and the contour plot of vorticity V XU, in (X, Z) plane.

max(min)/| ph

marks positive (negative) values in contour plots. Real parts of fields and functions are shown.

Density ratio R=5, time t = 1/2, [t]= 1/kV,, . The values are |p,

=1. Red (blue)

max (min )

PNAS #2017-14500 SI-8
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c. Non-degeneracy of conservative dynamics

For matrix M = M for conservative dynamics, the associated matrices S =S,, and P = P,, are
-R -1 0 i 0 0 1-R 0
1 -1 I-R 0 0 0 0 —-i/R

S, = , P, =
M R R 0 -2R M7 R -1 0 0
0 0 0 iR -1 1 -1+R 0

Determinant is det(P‘15 - Q)I) =(0-R)(o+ R)((D2 + R),
The solutions of equations det(P'ls - COI) =0 and det M(w,R)=0 vyield the same

eigenvalues: ®;(,) =+ivR, w; =R, o, =—R.
For conservative dynamics, there are 4 eigenvalues, 4 fundamental solutions, and 4 degrees of

freedom. The conservative dynamics is non-degenerate.

PNAS #2017-14500 SI-15
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Sub-section Classic Landau’s dynamics

a. Fundamental solutions

For classic Landau’s dynamics, with Mr=0 and r = (CDh,d)l,th*,‘Pl), the matrix M =L is

-R -1 -—-o+Ro 1

| 1 1-R  io/R
L=l R_Ro R0 0  —2iR

S T 0 i

Fundamental solution r,(w,, e, ) has the eigenvalue , and eigenvector e, :

.(1+\/R(—1+R+R2))
U C1R)14R)
CR+J-RiR+ R Z,(R2+\/R(—1+R+R2))
o I+R @@= (F1+RN1+R)
.(R2+\/R(—1+R+R2))
T (C14RPR
1

Fundamental solution r,(c,, e, ) has the eigenvalue ®, and eigenvector e, :

.(—1+\/R(—1+R+R2))
" C1R(1+R)
CR-J_R+R+R i(RZ—\/R(—1+R+R2))
> I+R » @@= (F1+R)1+R)
. Rz—\/R(—1+R+R2))
T (C1+RPR
1

Fundamental solution r, (033, e3) has the eigenvalue ®, and eigenvector e, :
0

o, =R, e; =

R o =

PNAS #2017-14500 SI-16
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b. Figure captions and Figures

Figure S6: Flow fields’ structure for the classic Landau’s dynamics, fundamental solution

L S ((DLD ;€D ) with ¥;, = ;. (a) Plots of the perturbed velocity vector fields U,;, the perturbed
velocity streamlines S, , the contour plot of the perturbed pressure Py, (;) , and the interface perturbation
z" in (x, Z) plane. (b) Plots of the perturbed velocity vortical component V x W | the contour plot of
vorticity V xu,, and the interface perturbation z in the (x,z) plane. Density ratio is R=>5, time is

max(min)/| Py

values in contour plots. Real parts of fields and functions are shown.

t=m/2, [t]=1/kV, . The values are |p,

= 1. Red (blue) marks positive (negative)

max (min)

Figure S7: Flow fields’ structure for the classic Landau dynamics, fundamental solution , (0)2 ,€, ) (a)

Plots of the perturbed velocity vector fields u,,;), the perturbed velocity streamlines s,;, the contour

plot of the perturbed pressure p,(;y, and the interface perturbation z" in (x P Z) plane. The values are

max(min)/| Ph

contour plot of vorticity V x 1, and the interface perturbation Z in the (x, Z) plane. Density ratio is

|pI )= 1. (b) Plots of the perturbed velocity vortical component VX W, and the

max (min

R=5,timeis t = n‘/ 2, [t] = 1/ k V,, . Red (blue) marks positive (negative) values in contour plots. Real

parts of fields and functions are shown.
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c. Degenerate character of Landau’s dynamics
The classic Landau dynamics has smaller than expected number of fundamental solutions. This

paradox can be understood from the following consideration. The linear system Lr =0 results from a linear

system P i =S, as L=(S, —®P, ), assuming r ~ e . The associated matrices S; and P, are

~R -1 0 i 0 0 I-R 0

1 -1 1-R 0 0 0 0 -iR
SL: . , PL:

R R 0 =-2R R -1 0 0

-1 -1 O i 0 0 0 0

In matrix P, , the fourth row only has null elements, det P, = 0. The inverse matrix P," does not exist.
This suggests the degeneracy of the classic Landau’s dynamics, and a singular and ill-posed

character of the Landau-Darrieus instability. Eliminating this degeneracy may lead to appearance of a

neutrally stable solution with a ‘seed’ vortical field, triggering the Landau-Darrieus instability. We address

detailed consideration of this issue to the future.
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Comparative study

Table S1: Properties of the inertial conservative dynamics (CD) and

the classic Landau-Darrieus (LD) dynamics in the linear regime

PNAS

CD

LD

Conserves mass and momentum,

interface as a whole

constant value

Conservation Conserves mass, momentum and
_ _ has zero perturbed mass flux at the
properties energy at the interface )
interface
Velocity of the Slight stable oscillations near the

Constant value (postulate)

Flow field

Potential velocity fields

Vortical structures in the light fluid

Inerfacial shear

Shear-free

Shear-free

Formal properties

Non-degenerate; 4 fundamental

solutions and 4 degrees of freedom

Degenerate; 3 fundamental

solutions and 4 degrees of freedom

Stability

Stable; stabilized by inertial effects

Unstable
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Sub-section Mechanisms of stabilization and destabilization
a. Stabilization mechanism

Our work identifies a new stabilization mechanism of the conservative dynamics due to inertial
effects that cause the reactive force to occur. In mechanics the ‘reactive force’ is also known as ‘propulsion
force’. It appears in inertial systems due to momentum conservation and it is the force that propels a rocket
(hence the title).

Physically, the inertial effects are identified as a stabilization mechanism of the conservative
dynamics on the basis of the following considerations. When the interface is slightly perturbed, the parcels
of the heavy fluid and the light fluid follow the interface perturbation, thus causing the change of
momentum and energy of the fluid system. Yet, the dynamics is inertial. To conserve the momentum and
energy, the interface as a whole should slightly change its velocity. This causes the reactive force to occur
and stabilize the dynamics, Figure S8.

Mathematically, slight oscillations of the interface as a whole are the property of the solution for
the governing equations — the conservations of mass, momentum and energy. Our governing equations and

their solution are derived in the inertial reference frame. This inertial reference frame can be referred to the
reference frame moving with a constant velocity V, = (0,0, Vo) of the planar interface separating the
fluids. If in the laboratory reference frame the heavy fluid is at rest, then the velocity of planar steady

interface is \~70 =-V,, with \~70 = (0,0,—Vh ) In general case of the unsteady non-planar interface the

velocity \% obeys the relation Von=-v- n| oot = —G / p)- n‘e o and V = \70 . For a slightly perturbed

~ ~

dynamics, in the laboratory reference frame the interface velocity is V =V, +V to the zeroth and first

orders, with constant V|, and with v- n,= —(u ‘n, + 91 . » where n; = (0,0,—l).
6=0

+iv/Rt

For the conservative dynamics with solution I, the values are u-n0| ~e and

0=0"

0 - eiz\/ﬁt

- e:ri\/ft
e:O+ +

- eii\/ﬁt

, leading to (u ‘n, + 9] and V-n, . Thus, for the perturbed dynamics

0=0

~

the velocity of the interface as a whole V =V, + V experiences small stable oscillations near the steady
value V, with (\7 —\70)- n, ~ eV*'  Figure S8.

The classic Landau’s dynamics postulates the boundary condition [u . no] =0, leading to the

~ ~

velocity to be constant V =V, because V=0, associated with (u-no+91970+ =0 and with

v-n =—lun,+6 =(0. Note that while in the classic Landau’s dynamics each of the terms
0 0 0=0* Y
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u-n0| ~e”"  and 99 o e " grows exponentially in time, due to the condition

0=0"

(u n,+0 = 0, their combination is precisely balanced to zero, (u n, +0 =0, Figure S8. The
0 6=0" 0 6=0"

Landau’s solution is a beautiful perfect match!

The difference in the boundary conditions leads to distinct interfacial dynamics. For the inertial
conservative dynamics, the mass, momentum and energy are conserved in the bulk and at the interface.
This flow is the superposition of two motions — the background motion of the fluids following the interface
as a whole with the velocity slightly oscillating near its steady value, and the stable oscillations of the
interface perturbations. For the Landau-Darrieus dynamics, the mass and momentum are conserved in the
bulk and at the interface, and the normal component of the perturbed velocity is conserved at the interface,
leading to the precise constancy of the velocity of the interface as a whole. This flow is the superposition
of two motions — the background motion of the fluids following the interface with the constant velocity,
and the growth of the interface perturbations, Figure S8.

In the presence of acceleration, the difference in the boundary conditions leads to the new
hydrodynamic instability. Particularly, for the conservative dynamics, the velocity fields are potential in
the bulk and are shear-free at the interface. The interface stability is set by the interplay of the inertia and
buoyancy. The interface is unstable when the acceleration value exceeds a threshold. The growth-rate and
the flow fields of this new instability differ quantitatively and qualitatively from those of the accelerated
Landau-Darrieus instability and Rayleigh-Taylor instability. For large acceleration values, the new
instability has the largest growth-rate.

In other hydrodynamic instabilities, such as the Richtmyer-Meshkov instability, one can also
observe the flow as being the superposition of the two motions - the background motion of the fluids and

the interface as a whole, and the growth of the interface perturbations [24,25].

b. Energy imbalance
For ideal incompressible fluids the solution ¥;, for the classic Landau’s dynamics is incompatible
with the condition for energy balance at the perturbed interface [20]. Indeed, let us substitute the condition
[u-n]=0,0r j, =0, in the condition for energy balance []n (w +(J- ])/ p’ )] = 0. In this expression the
scalar product term is J-j=],j, + J,J, where ],, ], are respectively the zero-order and the perturbed
components of the mass flux tangential to the interface. This term is zero, J-j=J,7, + J,J; =0, because
J, =0 and j, = 0. Thus the balance equation is []n (w +(7-7)/p? )]: [J,w]=0, and, with []n] =0,itis

reduced to [w]=0.

PNAS #2017-14500 SI-25
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The energy imbalance can be scaled with kinetic energy ~ Vh2 , by presuming that p ~ [p V? ], with

P~ (Plez - pthz) and [w]= [P/p]N (PzV12 - phvlzle/pl - l/ph)= so that [w]~V,”(R—1). This

scaling may be important for fluids with very different densities, R — oo . The energy imbalance can also

be scaled zero-order enthalpy ~ WV, , as [w] ~ W, . This scaling may be important for fluids with close

densities, R ~ 1", Dimensionless parameter IT= V(R 1)’ / W, , separates these two cases.

c. Conservative dynamics with energy fluctuations
The energy imbalance required for the Landau-Darrieus instability to develop can be induced by
energy fluctuations. In realistic fluids, the effect of energy fluctuations can be self-consistently derived
from entropy conditions with account for chemical reactions. In ideal fluids, to quantify the effect of energy
imbalance on the interface stability, we introduce an additional artificial energy flux. The appropriate term

may appear in the energy equation only to the first order, because the zeroth order changes are accounted

for with the transformation W, — WO. With modified first-order energy equation as

[]n (w-l—(] ])/ 2p2)— an]z(), and with Q) =¢,)V, » We obtain the conservative system with energy

fluctuations matrix M is M =M :

-R -1 -0+ Ro i
- 1 -1 1-R io/R
M= ]
R-Rw R+w 0 —2iR

g,R+Ro gq,-Ro gqo+Ro-R*0-q,Ro i(-g,+R?)
Its rank is 4. It has 4 eigenvalues o, and 4 eigenvectors €; . With g, —g,=¢, its determinant is
det M =i(R —1)*(0— R)w+ R)(@® + R)+ig(0— R)(R +1)o* + 2Ro— R(R —1)). The parameter
g, q>0, describes the strength of energy fluctuations.
Note that det M = Rdet M — q(R/(R - 1))d€tL , where =4, —¢,. Thus, det M — Rdet M for
g — 0 leading to the conservative dynamics, and det M — —q(R/(R-1))detL for g — o leading to
the Landau dynamics. For convenience, we scale = f (R—I)ZR/(R+ 1) with constant f . The equation

det M =0 takes the form
(@-R)[(@+R)o* +R)+ f(0* + o2R/(R +1))- (R(R-1)/(R+1)R]=0.

PNAS #2017-14500 SI-26
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Figure S9 shows solutions for this equation — the eigenvalues ®, with 1 =1,2,3,4 fora fixed R -
as a function of f , illustrating the transition from the stable to unstable dynamics with the increase of the
fluctuations strength f . Forsmall f, f =0.01, values Im [(’31(2)] and O, are indistinguishable from the

corresponding values in the conservative dynamics. For large f, f =100, values ®; with i=1,2,3 are

indistinguishable from the corresponding values in the classic Landau system. The flow fields experience

appropriate changes with the increase of fluctuations’ strength.

d. Figure captions and Figures
Figure S8: Schematics of the flow dynamics in a far field approximation (not to scale) for the inertial
conservative dynamics (left) and the classic Landau’s dynamics (right) in the inertial reference frame.
Blue color marks the planar interface (dashed) and the perturbed interface (solid). For the conservative
dynamics the blue double arrows mark the oscillations of the interface perturbations (solid) and the
interface velocity as a whole (dashed) with the latter occurring due to inertial effects and causing the
reactive force to occur. For the classic Landau’s dynamics the single blue arrows mark the growth of the

interface perturbations; the velocity of the interface as a whole is postulated constant.
Figure S9: Dependence of eigenvalues ®;, 1=1,2,3,4, on f in a broad range of values f for

conservative system with fluctuations. Density ratio is R=5.
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Section Results — Accelerated dynamics
Sub-section Accelerated conservative dynamics

a. Fundamental solutions

For the conservative dynamics, with Mr=0 and r = (CDh,CD l,VhZ*,‘I’l), the matrix M = M, is

-R -1 -o+Ro i
1 -1 1-R iR
Me=lR_Ro R+o GR-1) -2R
® - ®—Ro iR

Fundamental solution r,(w,, e, ) has the eigenvalue , and eigenvector e, :

(R-1)+(R-1Y-R(R-1)+G(R +1))
o :\/—R(R—1)+G(R+1) o - -R(R-1)+\/(R—S(jz(R—l)m(Rn))
! R-1 S R+1
1
0

Fundamental solution r,(c,, e, ) has the eigenvalue ®, and eigenvector e, :

—(R-1)+(R-1)-R(R-1)+G(R+1))
o, Z_\/—R(R—l)+G(R+1) R(R—1)+\/(R—1§E—+1%(R—1)+G(R+1))

. €
R-1 R+1
1

0

Fundamental solution r, (0)3,e3) has the eigenvalue ®, and eigenvector e, :
0
o, =R, e; =
1
Fundamental solution r,(c,,e,) has the eigenvalue ®, and eigenvector e, :
2i

1+R
_iU%—l)

1+R
0

1
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Sub-section Accelerated Landau-Darrieus dynamics

a. Fundamental solutions

PNAS

For accelerated Landau’s dynamics, with Mr=0 and t = (CD WD l,VhZ*,‘P,), matrix M =L is

-R -1 -o+Ro i
L -1 1-R  iw/R
© |R-Ro R+w G(R-1) -2iR

-1 -1 0 i

Fundamental solution r,(,, e,) has the eigenvalue ®, and eigenvector e, :

_—R+[R*+R*-R)+G(R* -1

1

2

1+R

l.(R—\/R(RZ +R-1)+ G[R" ~1)|(R? + 2R)~ JR(R? + R—1)+ G(R? — 1))
R(R+1)|(R? +2R -1)-2{/R(R* + R—1)+ G(R* - 1))
(R- 1)(12(\/13(112 +R-1)+G(R?-1)-(R* + 2R))+ G(R + 1))
T RER+ D[R+ 2R—1)-2JR(R2 + R 1)+ G(R* 1))
(R? +2R)—-{R(R? + R—1)+ G(R? —1))
R|(R? +2R-1)-2R(R* + R—1)+G(R* - 1))
1

Fundamental solution t,(c,, e, ) has the eigenvalue ®, and eigenvector e, :

0,

_-R—(R*+R*-R)+G(R*-1)

2

1+R

l.(R +JR(R? + R-1)+G(R? —1)X(R2 +2R)++/R(R* + R—1)+G(R? —1))
R(R+1)|(R? +2R - 1)+ 2/R(R* + R—1)+ G(R* - 1))
(R-DIRWYR(R* +R-1)+G(R* - 1) +(R* + 2R) —G(R+1))
T RER+ (R 2R 1)+ 2JR(RE + R 1)+ G(R® 1))
(R? +2R)++/R(R* +R—1)+G(R*> -1)

R(R?+2R-1)+2JR[R? +R-1)+ G(R* - 1))
1

Fundamental solution r,(c,, e, ) has the eigenvalue ®, and eigenvector e, :

0

PNAS #2017-14500 SI-31
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b. Figure captions and Figures

Figure S10: Flow fields’ structure for the accelerated Landau’s dynamics, fundamental solution

| e ((DLDG/eLDG) with X5 =1 (a) Plots of the perturbed velocity vector fields U, the
perturbed velocity streamlines S, the contour plot of the perturbed pressure P, (;) , and the interface
perturbation z in (x,Z) plane. (b) Plots of the perturbed velocity vortical component V x W, | the
contour plot of vorticity V xu,, and the interface perturbation Z inthe (x ,Z ) plane. Gravity value is
G= (G* +G, )/2 ,with G, =R(R-1)/(R+1) and G = (Rz - 1)/4 . Density ratio is R=5, gravity
value is G=14/3, time is t =m/2, [t]=1/kV, . The values are p,

max(min)/| ph|max(min) z1/5 . Red

(blue) marks positive (negative) values in contour plots. Real parts of fields and functions are shown.
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Sub-section Accelerated Rayleigh-Taylor dynamics

a. Fundamental solutions

For the Rayleigh-Taylor dynamics, with Mr=0 and r= (q)h ,CDI,VhZ*), the matrix M =T, is

-R -1 -0+ Ro
T.=|-R-Ro -R+wo G(R-1)
-1 -1 0

Fundamental solution r,(w,, e, ) has the eigenvalue ®, and eigenvector e, :

/GR
R
G

-1
+1
R-1

R-1
e e ||
1 R+1° & R+1

1

Fundamental solution t,(c,, e, ) has the eigenvalue ®, and eigenvector e, :

B /GR—l
R+1
R-1
1

o [oR-T -
2 R+1 7| V"R

b. Figure captions and Figures

Figure S11: Flow fields’ structure for the Rayleigh-Taylor dynamics, fundamental solution

g (coRT,e RT) with ¥p; =1; . Plots of the perturbed velocity vector fields V), the perturbed

velocity streamlines s,;), and the contour plot of the perturbed pressure p,,(;y, and the interface
perturbation z " in the (X,Z) plane. The velocity vortical component is V x W, =0 and vorticity is
Vxv,;y=0. Gravity value is G= (3/2)(G* + Gcr), with G, =R(R-1)/(R+1) and
G = (Rz —1)/4. Density ratio is R=5, gravity value is G=7, time is t =7/2, [t]= 1/kV, . The

max(mm)/| Ph

Real parts of fields and functions are shown.

values are |pI )& 1/5. Red (blue) marks positive (negative) values in contour plots.

max (min
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c. Degenerate character of Rayleigh-Taylor dynamics

For Rayleigh-Taylor dynamics, for matrix M =T, the associated matrices S = STG and

P =P are
-R -1 0 0 0 1-R
S;.=|-R -R G(R-1)|,P_ =R -1 0
-1 -1 0 0 O 0

Determinant det P =0, the inverse matrix PT; does not exist.

This suggests the degeneracy of the dynamics, and a singular and ill-posed character of the RTIL.
Eliminating this degeneracy may produce a neutrally stable solution with a ‘seed’ velocity shear at the fluid

interface, triggering the RTI. We address detailed consideration of this issue to the future.
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Table S2: Properties of growth-rates of the new conservative dynamics instability o, , the Landau-

Darrieus instability o, , and the Rayleigh-Taylor instability w,, in gravity field G, G € (0,+») .

G—0 0<G<G, G,<G<G G>G G—>w
Re[(DCDG] 0 0 >0, Ocpg <Oppg | >0, Ocpg > Oppg \/W/Ga
Re[og, ] 0 >0 >0, Ocpg < Opy >0, Ocpg > Opy Oy
Re[(DLDG] >0 >0 >0, Opy <Oppg >0, Opr > O Opy

. G
Here ®q,g =ivR 1—G—, O pc =

_RR-1

T UR+1

PNAS #2017-14500
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Table S3: Properties of the accelerated conservative dynamics (CDG), accelerated Landau-Darrieus

(LDG) dynamics and Rayleigh-Taylor (RT) dynamics in the linear regime

CDG

LDG

RT

Conserves mass,

Conserves mass and

Conserves mass and

values below threshold;

unstable for large gravity
value above threshold;
largest growth-rate for

large gravity values

gravity values; smallest
growth-rate for large

gravity values

Conservation momentum and has zero
) momentum and energy at momentum and has zero
properties . perturbed mass flux at the _
the interface . mass flux at the interface
interface
Interface
velocity of the Time-dependent Constant Zero
as a whole
. . Vortical structures in the ) .
Flow field Potential velocity fields ) _ Potential velocity fields
light fluid
Interfacial shear Shear-free Shear-free Interfacial shear
Non-degenerate; Degenerate; Degenerate;
Formal . ) .
) 4 fundamental solutions | 3 fundamental solutions | 2 fundamental solutions
properties
and 4 degrees of freedom | and 4 degrees of freedom | and 3 degrees of freedom
Stability is set by the
interplay of effects of ]
o . Unstable for any gravity
inertia (reactive force) _ )
_ value, including zero
and buoyancy (gravity). ) )
. gravity value; largest Unstable for any gravity
i Stable for small gravity
Stability growth-rate for small

value, neutrally stable for

Zero gravity

PNAS #2017-14500
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Sub-section Mechanism of stabilization and destabilization
a. Critical and maximum wavevector values

For accelerated conservative dynamics the interface stability is defined by the interplay of the effect
of inertia and buoyancy (i.e., the reactive force and gravity). The eigenvalue is ;. = VR JG/G, 1.

For small acceleration values, G/Gcr <1, the inertial effects dominate and the dynamics is stable,

Ocpe =iVRJ1-G/G,, . For large acceleration values, G/G,, > 1, buoyancy effects dominate and the

dynamics is unstable 0, =R/G/G,, 1.

In dimensional units the growth-rate value is {2 = (k V, )OJ, and the gravity value is ¢ = (k th )G

. at which the interface is stabilized

For fixed values of V,,§,G,p,,p;, we find the critical wavevector k_

at which the unstable

from the condition QCDG|k:k =0. We further find the maximum wavevector k,,,,

interface has the fastest growth from the conditions 0Qp¢ / 8k|k= . =0, 0°Qepe/ 8k2‘ <0.

max k=K s

Table S4: For the accelerated conservative dynamics with fixed values of V,,¢,6,p,,,p;, the values of

the critical wavevector k_, , at which the interface is stabilized, and the maximum wavevector k. at

cr o

which the unstable interface has the fastest growth. The ratio is (k o/ K ) =2,
Critical r - g P, [ Py +P,
wavevector TV ew Npw—p

Maximum P _1 8P| Putr
wavevector "2 th Pn A\ P —P;
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Sub-section Effect of surface tension
a. Formalism

Our general framework enables systematic study of interfacial dynamics influenced by surface
tension, thermal conductivity, compressibility, viscosity, mass ablation, and flow geometry and
dimensionality, upon the corresponding modification of the governing equations. Here we briefly consider
the effect of surface tension. It is important in multi-phase flows, and is straightforward to account for.
Physically, for interfacial dynamics with interfacial mass flux, surface tension can be viewed as a tension
at the phase boundary between the flow phases. Mathematically, surface tension contributes to the dynamics

with an additional term modifying the pressure perturbation in the governing equations as
2% /A2
(2, —p)— (p, —pl)+0(8 z [ox )
For the inertial dynamics with the dimensionless surface tension T = (G/ Py, )(k/ th ) , the associated

eigenvalues are @, ®;p, CORT| o for the conservative dynamics, Landau-Darrieus dynamics and

Rayleigh-Taylor dynamics, respectively:

&dep = iNRI+T/(R-1), &, = (—R +(R® + R? —R)—TR(R+1))/(1 +R),
Oprleo =iTR/(R+1) (SI-2a)

where @ | o 1s understood as the frequency of the capillary wave [5]. The conservative dynamics ®cp

and capillary wave dynamics @, | o, are stable for T >0 ; Landau-Darrieus dynamics ®,, is stable for

T>R-1.
For the accelerated dynamics with surface tension T, the associated eigenvalues are

Ocpe, ®pe, Dp; for the accelerated conservative dynamics and the accelerated Landau-Darrieus and

Rayleigh-Taylor dynamics, respectively:

depe =VRYG/G,, —1, @ypg = (—R+\/(R3 +R?-R)+G(R? —1))/(1+R),

dpr =G (R-1)/(R+1) (SI-2b)

where G=G-T R/(R+1) and G =G-TR/(R-1). The accelerated conservative dynamics ®cpg
is stable for T>(G-G,)(R+1)/R. The accelerated LD dynamics @, is stable for
T >(G+R)(R-1)/R; RT dynamics &g, is stable for T >G(R-1)/R.
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b. Matrices

In the presence of gravity G and surface tension T the matrices for the conservative dynamics

M c» Landau’s dynamics EG and Rayleigh-Taylor dynamics fc have the form:

-R -1 -0+ Ro i
. 1 -1 1-R iw/R
Me=l R_Ro R+o G(R-1)-RT -2iR
) - T+o0-Ro iR
-R -1 -+ Ro i
) 1 -1 1-R io/R
“"|R-Ro R+o G(R-1)-RT -2iR
-1 -1 0 i
-R -1 —o+Ro
T.=|-R-Ro —R+o G(R—-1)-RT
-1 -1 0

PNAS # 2017-14500 SI-42
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c. Eigenvalues

Table S5: Eigenvalues for the conservative dynamics @y, the classic Landau’s dynamics @, , and the
Rayleigh-Taylor dynamics gy o in the presence of surface tension T at zero gravity G =0, and the

associated stability intervals. The eigenvalue ® RT | o 18 frequency of capillary wave.

Dynamics Eigenvalue Stability interval

CD ®cp = iVRJ1+T/(R-1) T>0

LD | é = R+(R*+R—R)-TR(R+1)J1+R) | T>(R-1)

RT Oprle o =iyT R/(R+1) T>0

Table S6: Eigenvalues for the accelerated conservative dynamics ®p,; , the accelerated Landau’s
dynamics @, , and the Rayleigh-Taylor dynamics @, in the presence of surface tension T and

gravity G, and the associated stability intervals.

Dynamics Eigenvalue Stability interval
CDG depe =VRLG/G,, -1 T>(G-G,)R+1)/R

LDG | Gype = R+(R+R2-R)+G(R 1)1 +R) | T>(G+R)I(R-1)R

RT dpr = /G (R=1)/(R+1) T>G(R-1)/R

Here the values are G=G—TR/(R+1), G=G-TR/(R-1), G, =R(R-1)/(R+1).
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d. Critical and maximum wavevector values

In dimensional units, for fixed values Vh ,8,6,p;,P;, we can find wavevector(s) k

cr(max)»

the interface is stable (the instability has the fastest growth). The outline of results is given below. The

details the dependence of k) on V,,8,06,p,,p,. will be discussed elsewhere. Note that stabilization

of the conservative dynamics by the inertial effect and by the surface tension are distinct mechanisms.

Table S7: The critical wavevector k_, at which the interface is stabilized in the presence of gravity and

surface tension for the accelerated conservative dynamics, the accelerated Landau’s dynamics, and the

Rayleigh-Taylor dynamics for fixed values of V,,¢,6,p,,,p;.

Dynamics Critical wavevector
2
e P 2 P |y
CDG |V (py =Py )+ [408(py +p)+| ViE| == ((py —p;)
! !
—
TP, _ 2{ Pu |y _
LDG > v, (ph pz)+ 403(911 p1)+ v, (ph pz)
c P P:
RT 30, -p1)
c

Table S8: The maximum wavevector k

max

at which the unstable interface has the fastest growth in the

presence of gravity and surface tension for the accelerated conservative dynamics, and the Rayleigh-

Taylor dynamics for fixed values of Vh ,8,0,Py,,P; . For the accelerated Landau-Darrieus dynamics, the

dependence of k.

on the (fixed) values V), §,6,p,, P, is cumbersome; we discuss it elsewhere.

Dynamics Maximum wavevector
1 2
CDG —| -2V (&](ph —P )+ 126g(ph TP )+ 2V, {&J(ph - pz)
60 ; P
1 /g
RT — %(p, —
5o (ph P )
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Section Figures
Captions and Figures 1-7

Figure 1: Dependence of eigenvalues on density ratio; (A) Conservative dynamics. (B) Classic Landau
dynamics.

Figure 2: Flow fields’ structure for the inertial conservative dynamics. Plots of real parts of the interface
perturbation, the perturbed velocity vector fields, the perturbed velocity streamlines, and the contour plot
of the perturbed pressure with red (blue) for positive (negative) values.

Figure 3: Flow fields’ structure for the classic Landau’s dynamics. Plots of real parts of the interface
perturbation, the perturbed velocity vector fields, the perturbed velocity streamlines, and the contour plot
of the perturbed pressure with red (blue) for positive (negative) values.

Figure 4: Dependence of eigenvalues on density ratio at some gravity value. (A) Accelerated conservative
dynamics. (B) Accelerated Landau dynamics.

Figure 5: Flow fields’ structure for the accelerated conservative dynamics. Plots of real parts of the interface
perturbation, perturbed velocity vector fields, perturbed velocity streamlines, and contour plot of
perturbed pressure with red (blue) for positive (negative) values.

Figure 6: Flow fields’ structure for the accelerated Landau’s dynamics. Plots of real parts of the interface
perturbation, the perturbed velocity vector fields, the perturbed velocity streamlines, and contour plot of
perturbed pressure with red (blue) for positive (negative) values.

Figure 7: Dependence of the growth rates of the instabilities on gravity value.
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