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Section    Introduction 

Figure S1: Schematics of the flow dynamics in a far field approximation (not to scale). Blue color marks 

the planar interface (dashed) and the perturbed interface (solid). 
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Section    Methods 

Sub-section   Governing equation 

The governing equations in the bulk 

0 ii xvt ,  0
3

1

 
j

iijii xPxvvtv ,    0 ii xvPEtE     (SI-1a) 

and the boundary conditions at the interface 

  0nj
~ ,   0

2













  nnj

~
P ,       0 ττjnj

~~ ,     02 22  jnj
~

W
~   (SI-1b) 

are applicable for both compressible and incompressible fluids. Boundary conditions Eqs.(SI-1b) are 

derived by representing the flow fields as           HE,P,,HE,P,,E,P,, lh vvv  in 

Eqs.(SI-1a), where  H  is the Heaviside step-function, and  H  with    being the Dirac 

delta-function. 

We use the physics definition of W  and e  [5,6]. Particularly, the specific internal energy e  refers 

to energy per unit mass contained within a system, excluding the kinetic energy and the potential energy 

of the system as a whole. The initial conditions are the initial flow fields at the interface. They define the 

characteristic scales of length k1  and time hkV1  for the dynamics [5,6]. 

Interface Dynamics Supporting Information PNAS

PNAS # 2017-14500 SI-3



Sub-section   Linearized dynamics 

The boundary conditions (SI-1b) can be linearized. To the leading order and the first order 

  0nJ ,    00
2

0  nnJP ,     000  ττJnJ ,    02 22
0  JWJn ,  (SI-1c) 

  0nj ,    02 0  nnn jJp ,    001  τjτJnJ ,     02  jJwJn , (SI-1d) 

Expansions Eqs.(SI-1c,d) are applicable for both compressible and incompressible dynamics. In 

the incompressible case, Eqs.(SI-1c,d) can be further simplified. Particularly, for ideal gases, the speed of 

sound is  Pc , where   is the fluid’s adiabatic index. In the incompressible case the speed of sound 

is the largest velocity scale, with    lhVc , and values approach  
 

   lhlhn PJP 0
2

0   and 

 
 

   lhlh
WW 0

22
0 2  J  transforming Eqs.(SI-1c) to 

  0nJ ,   000 nP ,     000  ττJnJ ,   00 WJn ,  (SI-1e) 

where the specific enthalpy is        lhPlh
TcWW  00 . Here    lhPc  is the specific heat at constant 

pressure,    lhT  is temperature, and the values    lhW0  have a constant jump at the interface   QW 0 , 

where Q  is the heat release per unit mass. In reactive fluids, the value Q  is considered as the specific 

heat release of a chemical reaction at the absolute zero temperature. In Eqs.(SI-1d) the incompressible 

condition leads to enthalpy perturbations      lhlhlh pw  . 

This derivation is similar to that in Landau-Lifshitz Theory Course V6 Hydrodynamics #128, 

Eqs.(128.3, 128.4) with appropriate change of variables. 

Note the difference in definitions of enthalpy W  in physics sense and W  in engineering sense. 
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Sub-section   Fundamental solutions 

a. Solutions structure 

The governing equations are reduced to a linear system 0 r , where   l
*

hlh ,zV,,r  is 

a vector and  is a 4x4 matrix. The matrix  is defined by the boundary conditions at the interface. Its 

elements are functions of R,  and G . We find eigenvalues i  by using condition 

  0 G,R,det i  and identify the associated eigenvectors ie  by reducing matrix 

 G,R,i  to row-echelon form. For a non-degenerate 44  matrix with rank 4, the expected 

number of eigenvalues i  and associated eigenvectors ie  is 4, with 41...i  , corresponding to 4 degrees 

of freedom and 4 independent variables obeying 4 equations. The solution r  is a linear combination of 

fundamental solutions  iiii ,err   as  i iiC rr , where iC  are the integration constants set, e.g., by 

the initial conditions. 

Note that the linear system 0 r  with  G,R,  results from a linear system rr SP   

where SP,  are 44  matrixes with    GR,SS,GR,PP  , under assumption that vector r  varies in 

time as te~ r . This leads to  PS  . In a non-degenerate case, the inverse -1P  exists, and the 

system rr SP   can be reduced to a standard form rr SP -1 . The eigenvalues i  of the dynamics can 

then be found from the conditions   0I-SP -1det , where  i , I  is the unit matrix, and index 

i  marks the independent degrees of freedom. Equations   0I-SP -1det  and   0 G,R,det  

have the same eigenvalues i  because linear combination of differential equations preserves the 

dynamical properties. 

Our approach for the boundary value problem and initial value problem systematically applies the 

standard rigorous methods of applied mathematics and theoretical physics. Specifically, we consider the 

conservation laws of mass, momentum and energy in the inertial reference frame; derive the boundary 

conditions; linearize the dynamics; expand the perturbations of the flow fields by using scalar and vector 

potentials; derive the linear system; find the fundamental solutions for the linear system; employ the 

eigenvalues and eigenvectors of the fundamental solutions; study the formal, qualitative and quantitative 

properties of the dynamics. 
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b. Derivation details 

In accordance with PNAS Policy on Materials and Data Availability, the authors report that the 

algebraic calculations of matrices, eigenvalues, and eigenvectors were done using standard linear algebra 

procedures, as described in the text. These can be done manually and/or with standard computer algebra 

software such as Wolfram Mathematica. The plots were generated in Wolfram Mathematica by assigning 

numerical values to variables, as described in the text. 
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Section    Results – Inertial dynamics 

Sub-section   Conservative dynamics 

a. Fundamental solutions 

For inertial conservative dynamics, with 0 r  and  l*
hlh ,zV,, r , matrix M  is 
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Fundamental solution  111 er ,  has the eigenvalue 1  and eigenvector 1e  : 
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Fundamental solution  222 er ,  has the eigenvalue 2  and eigenvector 2e  : 
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Fundamental solution  333 er ,  has the eigenvalue 3  and eigenvector 3e  : 
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Fundamental solution  444 er ,  has the eigenvalue 4  and eigenvector 4e  : 
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b. Figure captions and Figures 

Figure S2: Flow fields’ structure for the inertial conservative dynamics, fundamental solution 

 CDCDCD ,er   with   221 rrr CD . Plots of the perturbed velocity vector fields  lhu , the 

perturbed velocity streamlines  lhs , the contour plot of the perturbed pressure  lhp , and the interface 

perturbation *z  in the  z,x  plane. For this solution, the vortical field is 00  ll , uΨ . 

Density ratio is 5R , time 2t ,   hkVt 1 . Values are 
   

1
minmaxminmax

hl pp . Red (blue) 

marks positive (negative) values in contour plots. Real parts of fields and functions are shown. 

Figure S3: Flow fields’ structure for inertial conservative dynamics, fundamental solution  111 er , . 

Plots of the perturbed velocity vector fields  lhu , the perturbed velocity streamlines  lhs , and the contour 

plot of the perturbed pressure  lhp , and the interface perturbation *z  in the  z,x  plane. For this 

solution, the vortical field is 00  ll , uΨ . Density ratio is 5R , time 2t , 

  hkVt 1 . Values are 
   

1
minmaxminmax

hl pp . Red (blue) marks positive (negative) values in 

contour plots. Real parts of fields and functions are shown. 

Figure S4: Flow fields’ structure for inertial conservative dynamics, fundamental solution  333 er , . 

(a) Plots of the perturbed velocity vector fields  lhu , the perturbed velocity streamlines  lhs , and the 

contour plot of the perturbed pressure  lhp , and the interface perturbation *z  in  z,x  plane. (b) Plots 

of the perturbed velocity vortical filed lΨ  and the contour plot of vorticity lu  in  z,x  plane. 

Density ratio is 5R , time 2t ,   hkVt 1 . Values are 
   

1
minmaxminmax

hl pp . Red (blue) 

marks positive (negative) values in contour plots. Real parts of fields and functions are shown. 

Figure S5: Flow fields’ structure for inertial conservative dynamics, fundamental solution  444 er , . 

(a) Plots of the perturbed velocity vector fields  lhu , the perturbed velocity streamlines  lhs , and the 

contour plot of the perturbed pressure  lhp , and the interface perturbation *z  in  z,x  plane. (b) Plots 

of the perturbed velocity vortical field lΨ  and the contour plot of vorticity lu  in  z,x  plane. 

Density ratio 5R , time 2t ,   hkVt 1 . The values are 
   

1
minmaxminmax

hl pp . Red (blue) 

marks positive (negative) values in contour plots. Real parts of fields and functions are shown. 
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c. Non-degeneracy of conservative dynamics 

For matrix M  for conservative dynamics, the associated matrices MSS  and MPP  are 
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R
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Determinant is      RRRdet  2-1 I-SP . 

The solutions of equations   0I-SP -1 det  and   0 R,Mdet  yield the same 

eigenvalues:   R,R,Ri  4321 . 

For conservative dynamics, there are 4 eigenvalues, 4 fundamental solutions, and 4 degrees of 

freedom. The conservative dynamics is non-degenerate. 
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Sub-section   Classic Landau’s dynamics 

a. Fundamental solutions 

For classic Landau’s dynamics, with 0 r  and  l*
hlh ,zV,, r , the matrix L  is 
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Fundamental solution  111 er ,  has the eigenvalue 1  and eigenvector 1e  : 
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Fundamental solution  222 er ,  has the eigenvalue 2  and eigenvector 2e  : 
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Fundamental solution  333 er ,  has the eigenvalue 3  and eigenvector 3e  : 
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b. Figure captions and Figures 

Figure S6: Flow fields’ structure for the classic Landau’s dynamics, fundamental solution 

 LDLDLD ,er   with 1rr LD . (a) Plots of the perturbed velocity vector fields  lhu , the perturbed 

velocity streamlines  lhs , the contour plot of the perturbed pressure  lhp , and the interface perturbation 

*z  in  z,x  plane. (b) Plots of the perturbed velocity vortical component lΨ , the contour plot of 

vorticity lu , and the interface perturbation *z  in the  z,x  plane. Density ratio is 5R , time is 

2t ,   hkVt 1 . The values are 
   

1
minmaxminmax

hl pp . Red (blue) marks positive (negative) 

values in contour plots. Real parts of fields and functions are shown. 

Figure S7: Flow fields’ structure for the classic Landau dynamics, fundamental solution  222 er , . (a) 

Plots of the perturbed velocity vector fields  lhu , the perturbed velocity streamlines  lhs , the contour 

plot of the perturbed pressure  lhp , and the interface perturbation *z  in  z,x  plane. The values are 

   
1

minmaxminmax
hl pp . (b) Plots of the perturbed velocity vortical component lΨ  and the 

contour plot of vorticity lu  and the interface perturbation *z  in the  z,x  plane. Density ratio is 

5R , time is 2t ,   hkVt 1 . Red (blue) marks positive (negative) values in contour plots. Real 

parts of fields and functions are shown. 
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c. Degenerate character of Landau’s dynamics 

The classic Landau dynamics has smaller than expected number of fundamental solutions. This 

paradox can be understood from the following consideration. The linear system 0rL  results from a linear 

system rr LL SP   as  LL PSL  , assuming te~ r . The associated matrices LS  and LP  are 































i

iRRR

R

iR

SL

011
20
0111

01

 ,  





























0000
001

000
0100

R

Ri

R

PL  . 

In matrix LP , the fourth row only has null elements, 0LPdet . The inverse matrix 1
LP  does not exist. 

This suggests the degeneracy of the classic Landau’s dynamics, and a singular and ill-posed 

character of the Landau-Darrieus instability. Eliminating this degeneracy may lead to appearance of a 

neutrally stable solution with a ‘seed’ vortical field, triggering the Landau-Darrieus instability. We address 

detailed consideration of this issue to the future. 
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Sub-section   Comparative study 

 

Table S1: Properties of the inertial conservative dynamics (CD) and 

the classic Landau-Darrieus (LD) dynamics in the linear regime 

 CD LD 

Conservation 

properties 
Conserves mass, momentum and 

energy at the interface 

Conserves mass and momentum, 

has zero perturbed mass flux at the 

interface 

Velocity of the 

interface as a whole 

Slight stable oscillations near the 

constant value 
Constant value (postulate) 

Flow field Potential velocity fields Vortical structures in the light fluid 

Inerfacial shear Shear-free Shear-free 

Formal properties 
Non-degenerate; 4 fundamental 

solutions and 4 degrees of freedom 

Degenerate; 3 fundamental 

solutions and 4 degrees of freedom 

Stability Stable; stabilized by inertial effects Unstable 
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Sub-section   Mechanisms of stabilization and destabilization 

a. Stabilization mechanism 

Our work identifies a new stabilization mechanism of the conservative dynamics due to inertial 

effects that cause the reactive force to occur. In mechanics the ‘reactive force’ is also known as ‘propulsion 

force’. It appears in inertial systems due to momentum conservation and it is the force that propels a rocket 

(hence the title). 

Physically, the inertial effects are identified as a stabilization mechanism of the conservative 

dynamics on the basis of the following considerations. When the interface is slightly perturbed, the parcels 

of the heavy fluid and the light fluid follow the interface perturbation, thus causing the change of 

momentum and energy of the fluid system. Yet, the dynamics is inertial. To conserve the momentum and 

energy, the interface as a whole should slightly change its velocity. This causes the reactive force to occur 

and stabilize the dynamics, Figure S8. 

Mathematically, slight oscillations of the interface as a whole are the property of the solution for 

the governing equations – the conservations of mass, momentum and energy. Our governing equations and 

their solution are derived in the inertial reference frame. This inertial reference frame can be referred to the 

reference frame moving with a constant velocity  00 00 V
~
,,

~
V  of the planar interface separating the 

fluids. If in the laboratory reference frame the heavy fluid is at rest, then the velocity of planar steady 

interface is h

~
VV 0 , with  hV,,

~
 000V . In general case of the unsteady non-planar interface the 

velocity V~  obeys the relation  








00
njnvnV

~~  and 0VV
~~

 . For a slightly perturbed 

dynamics, in the laboratory reference frame the interface velocity is vVV ~~~
 0  to the zeroth and first 

orders, with constant 0V
~  and with  




000
nunv~ , where  1000  ,,n . 

For the conservative dynamics with solution CDr , the values are tRie~ 

 
00nu  and 

tRie~ 

 


0

 , leading to   tRie~ 

 


00
nu  and tRie~~  0nv . Thus, for the perturbed dynamics 

the velocity of the interface as a whole vVV ~~~
 0  experiences small stable oscillations near the steady 

value 0V
~  with   tRie~

~~  00 nVV , Figure S8. 

The classic Landau’s dynamics postulates the boundary condition   00 nu , leading to the 

velocity to be constant 0VV
~~

  because 0v~ , associated with   0
00 


nu  and with 

  0
000 


nunv~ . Note that while in the classic Landau’s dynamics each of the terms 
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tLDe~ 

 
00nu  and tLDe~ 

 


0

  grows exponentially in time, due to the condition 

  0
00 


nu , their combination is precisely balanced to zero,   0
00 


nu , Figure S8. The 

Landau’s solution is a beautiful perfect match! 

The difference in the boundary conditions leads to distinct interfacial dynamics. For the inertial 

conservative dynamics, the mass, momentum and energy are conserved in the bulk and at the interface. 

This flow is the superposition of two motions – the background motion of the fluids following the interface 

as a whole with the velocity slightly oscillating near its steady value, and the stable oscillations of the 

interface perturbations. For the Landau-Darrieus dynamics, the mass and momentum are conserved in the 

bulk and at the interface, and the normal component of the perturbed velocity is conserved at the interface, 

leading to the precise constancy of the velocity of the interface as a whole. This flow is the superposition 

of two motions – the background motion of the fluids following the interface with the constant velocity, 

and the growth of the interface perturbations, Figure S8. 

In the presence of acceleration, the difference in the boundary conditions leads to the new 

hydrodynamic instability. Particularly, for the conservative dynamics, the velocity fields are potential in 

the bulk and are shear-free at the interface. The interface stability is set by the interplay of the inertia and 

buoyancy. The interface is unstable when the acceleration value exceeds a threshold. The growth-rate and 

the flow fields of this new instability differ quantitatively and qualitatively from those of the accelerated 

Landau-Darrieus instability and Rayleigh-Taylor instability. For large acceleration values, the new 

instability has the largest growth-rate. 

In other hydrodynamic instabilities, such as the Richtmyer-Meshkov instability, one can also 

observe the flow as being the superposition of the two motions - the background motion of the fluids and 

the interface as a whole, and the growth of the interface perturbations [24,25]. 

 

b. Energy imbalance 

For ideal incompressible fluids the solution LDr  for the classic Landau’s dynamics is incompatible 

with the condition for energy balance at the perturbed interface [20]. Indeed, let us substitute the condition 

  0nu , or 0nj , in the condition for energy balance . In this expression the 

scalar product term is ttnn jJjJ  jJ  where tt j,J  are respectively the zero-order and the perturbed 

components of the mass flux tangential to the interface. This term is zero, 0 ttnn jJjJjJ , because 

0tJ  and 0nj . Thus the balance equation is       02  wJwJ nn jJ , and, with   0nJ , it is 

reduced to   0w . 

    02  jJwJn
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The energy imbalance can be scaled with kinetic energy 2
hV~ , by presuming that  2V~p  , with 

 22
hhll VV~p   and       hlhhll VV~pw  1122 , so that    22 1RV~w h . This 

scaling may be important for fluids with very different densities, R . The energy imbalance can also 

be scaled zero-order enthalpy 0W~ , as   0W~w . This scaling may be important for fluids with close 

densities, 1~R . Dimensionless parameter   0
22 1 WRVh  , separates these two cases. 

 

c. Conservative dynamics with energy fluctuations 

The energy imbalance required for the Landau-Darrieus instability to develop can be induced by 

energy fluctuations. In realistic fluids, the effect of energy fluctuations can be self-consistently derived 

from entropy conditions with account for chemical reactions. In ideal fluids, to quantify the effect of energy 

imbalance on the interface stability, we introduce an additional artificial energy flux. The appropriate term 

may appear in the energy equation only to the first order, because the zeroth order changes are accounted 

for with the transformation 00 W
~

W  . With modified first-order energy equation as 

    02 2  QjwJ nn jJ , and with    
2
hlhlh VqQ  , we obtain the conservative system with energy 

fluctuations matrix   is M
~

 : 

 





























22

20

111

1

RqiRqRRqRqRRq

iRRRR

RiR

iRR

M
~

lhllh

 

Its rank is 4. It has 4 eigenvalues 
i  and 4 eigenvectors ie . With qqq lh  , its determinant is 

            1211 222
 RRRRRiqRRRRiM

~
det . The parameter 

q , 0q , describes the strength of energy fluctuations. 

Note that    LdetRRqMdetRM
~

det 1 , where lh qqq  . Thus, MdetRM
~

det   for 

0q  leading to the conservative dynamics, and    LdetRRqM
~

det 1  for q  leading to 

the Landau dynamics. For convenience, we scale    11 2
 RRRfq  with constant f . The equation 

0M
~

det  takes the form 

               0111222  RRRRRRfRRR . 
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Figure S9 shows solutions for this equation – the eigenvalues i with i 1,2,3,4 for a fixed R -

as a function of f , illustrating the transition from the stable to unstable dynamics with the increase of the

fluctuations strength f . For small f , 010.f  , values   21 Im   and  43  are indistinguishable from the 

corresponding values in the conservative dynamics. For large f , 100f , values i  with 321 ,,i   are 

indistinguishable from the corresponding values in the classic Landau system. The flow fields experience 

appropriate changes with the increase of fluctuations’ strength. 

d. Figure captions and Figures

Figure S8: Schematics of the flow dynamics in a far field approximation (not to scale) for the inertial 

conservative dynamics (left) and the classic Landau’s dynamics (right) in the inertial reference frame. 

Blue color marks the planar interface (dashed) and the perturbed interface (solid). For the conservative 

dynamics the blue double arrows mark the oscillations of the interface perturbations (solid) and the 

interface velocity as a whole (dashed) with the latter occurring due to inertial effects and causing the 

reactive force to occur. For the classic Landau’s dynamics the single blue arrows mark the growth of the 

interface perturbations; the velocity of the interface as a whole is postulated constant. 

Figure S9: Dependence of eigenvalues i , 4321 ,,,i  , on f  in a broad range of values f  for

conservative system with fluctuations. Density ratio is 5R . 
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Section    Results – Accelerated dynamics 

Sub-section   Accelerated conservative dynamics 

a. Fundamental solutions 

For the conservative dynamics, with 0 r  and  l*
hlh ,zV,, r , the matrix GM  is 

 






























iRR

iRRGRRR

RiR

iRR

MG 21

111

1

 . 

Fundamental solution  111 er ,  has the eigenvalue 1  and eigenvector 1e  : 

   

1

11
1






R

RGRR
 ,   

        

        


































0

1
1

1111
1

1111

1
R

RGRRRRR
R

RGRRRR

e  . 

Fundamental solution  222 er ,  has the eigenvalue 2  and eigenvector 2e  : 

   

1

11
2






R

RGRR
 ,   

        

        





































0

1
1

1111
1

1111

2
R

RGRRRRR
R

RGRRRR

e  . 

Fundamental solution  333 er ,  has the eigenvalue 3  and eigenvector 3e  : 

R3  ,  























1

0

0

3

i
e  . 

Fundamental solution  444 er ,  has the eigenvalue 4  and eigenvector 4e  : 

R4  ,     
 
































1

0
1

1
1

2

4 R

Ri
R

i

e  . 
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Sub-section   Accelerated Landau-Darrieus dynamics 

a. Fundamental solutions 

For accelerated Landau’s dynamics, with 0 r  and  l*
hlh ,zV,, r , matrix GL  is 

 






























i

iRRGRRR

RiR

iRR

LG

011

21

111

1

 

Fundamental solution  111 er ,  has the eigenvalue 1  and eigenvector 1e  : 

   
R

RGRRRR






1

1223

1  ,  

          
        

           
        

      
      













































1
11212

112

112121

12111

112121

11211

222

222

222

222

222

22222

1

RGRRRRRR

RGRRRRR
i

RGRRRRRRR

RGRRRGRRRRR
i

RGRRRRRRR

RGRRRRRRGRRRR
i

e  . 

Fundamental solution  222 er ,  has the eigenvalue 2  and eigenvector 2e  : 

   
R

RGRRRR






1

1223

2  , 

          
        

           
        

      
      













































1
11212

112

112121

12111

112121

11211

222

222

222

222

222

22222

2

RGRRRRRR

RGRRRRR
i

RGRRRRRRR

RGRRRGRRRRR
i

RGRRRRRRR

RGRRRRRRGRRRR
i

e  . 

Fundamental solution  333 er ,  has the eigenvalue 3  and eigenvector 3e  : 

R3  ,  























1

0

0

3

i
e
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b. Figure captions and Figures 

Figure S10: Flow fields’ structure for the accelerated Landau’s dynamics, fundamental solution 

 LDGLDGLDG ,er   with 1rr LDG  (a) Plots of the perturbed velocity vector fields  lhu , the 

perturbed velocity streamlines  lhs , the contour plot of the perturbed pressure  lhp , and the interface 

perturbation *z  in  z,x  plane. (b) Plots of the perturbed velocity vortical component lΨ , the 

contour plot of vorticity lu , and the interface perturbation *z  in the  z,x  plane. Gravity value is 

  2cr
* GGG  , with    11  RRRGcr  and   412  RG* . Density ratio is 5R , gravity 

value is 314G , time is 2t ,   hkVt 1 . The values are 
   

51
minmaxminmax

hl pp . Red 

(blue) marks positive (negative) values in contour plots. Real parts of fields and functions are shown. 
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Sub-section    Accelerated Rayleigh-Taylor dynamics 

a. Fundamental solutions 

For the Rayleigh-Taylor dynamics, with 0 r  and  *hlh zV,,r , the matrix GT  is  

 
























011

1

1

RGRRR

RR

TG  . 

Fundamental solution  111 er ,  has the eigenvalue 1  and eigenvector 1e  : 

1

1
1






R

R
G  , 




































1
1

1
1

1

1
R

R
G

R

R
G

e  .  

Fundamental solution  222 er ,  has the eigenvalue 2  and eigenvector 2e  : 

1

1
2






R

R
G  , 




































1
1

1
1

1

2
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R
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R

R
G

e  . 

 

b. Figure captions and Figures 

Figure S11: Flow fields’ structure for the Rayleigh-Taylor dynamics, fundamental solution 

 RTRTRT ,er   with 1rr RT . Plots of the perturbed velocity vector fields  lhv , the perturbed 

velocity streamlines  lhs , and the contour plot of the perturbed pressure  lhp , and the interface 

perturbation *z  in the  z,x  plane. The velocity vortical component is 0 lΨ  and vorticity is 

  0 lhv . Gravity value is   cr* GGG  23 , with    11  RRRGcr  and 

  412  RG* . Density ratio is 5R , gravity value is 7G , time is 2t ,   hkVt 1 . The 

values are 
   

51
minmaxminmax

hl pp . Red (blue) marks positive (negative) values in contour plots. 

Real parts of fields and functions are shown. 
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c. Degenerate character of Rayleigh-Taylor dynamics 

For Rayleigh-Taylor dynamics, for matrix GT , the associated matrices 
GT

SS  and 

GT
PP  are 

  
























011

1

01

RGRR

R

S
GT

 , 






















000

01

100

R

R

P
GT

 

Determinant 0
GT

Pdet , the inverse matrix 1-
TG
P  does not exist. 

This suggests the degeneracy of the dynamics, and a singular and ill-posed character of the RTI. 

Eliminating this degeneracy may produce a neutrally stable solution with a ‘seed’ velocity shear at the fluid 

interface, triggering the RTI. We address detailed consideration of this issue to the future. 
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Sub-section   Comparative study 

 

a. Properties of the growth-rates of the instabilities 

Table S2: Properties of growth-rates of the new conservative dynamics instability CDG  , the Landau-

Darrieus instability LDG  , and the Rayleigh-Taylor instability RT  in gravity field G ,   ,G 0  . 

 0G  crGG 0  *
cr GGG   *GG   G  

 CDGRe  0 0 >0, LDGCDG   >0, LDGCDG   crGGR  

 RTRe  0 >0 >0, RTCDG   >0, RTCDG   RT  

 LDGRe  >0 >0 >0, LDGRT   >0, LDGRT   RT  

 

Here 
cr

CDG
G

G
Ri  1 ,  

   
R

RGRRRR
LDG






1

1223

 , 
R

R
GRT






1

1
 ,  

 
1

1






R

R
RGcr  ,  

4

12 

R

G*  . 
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b. Properties of the accelerated instabilities 

 

Table S3: Properties of the accelerated conservative dynamics (CDG), accelerated Landau-Darrieus 

(LDG) dynamics and Rayleigh-Taylor (RT) dynamics in the linear regime 

 CDG LDG RT 

Conservation 

properties 

Conserves mass, 

momentum and energy at 

the interface 

Conserves mass and 

momentum and has zero 

perturbed mass flux at the 

interface 

Conserves mass and 

momentum and has zero 

mass flux at the interface 

Interface 

velocity of the 

as a whole 

Time-dependent Constant Zero 

Flow field Potential velocity fields 
Vortical structures in the 

light fluid 
Potential velocity fields 

Interfacial shear Shear-free Shear-free Interfacial shear 

Formal 

properties 

Non-degenerate;  

4 fundamental solutions 

and 4 degrees of freedom 

Degenerate;  

3 fundamental solutions 

and 4 degrees of freedom 

Degenerate;  

2 fundamental solutions 

and 3 degrees of freedom 

Stability 

Stability is set by the 

interplay of effects of 

inertia (reactive force) 

and buoyancy (gravity). 

Stable for small gravity 

values below threshold; 

unstable for large gravity 

value above threshold; 

largest growth-rate for 

large gravity values 

Unstable for any gravity 

value, including zero 

gravity value; largest 

growth-rate for small 

gravity values; smallest 

growth-rate for large 

gravity values 

Unstable for any gravity 

value, neutrally stable for 

zero gravity 
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Sub-section   Mechanism of stabilization and destabilization 

a. Critical and maximum wavevector values 

For accelerated conservative dynamics the interface stability is defined by the interplay of the effect 

of inertia and buoyancy (i.e., the reactive force and gravity). The eigenvalue is 1 crCDG GGR . 

For small acceleration values, 1crGG , the inertial effects dominate and the dynamics is stable, 

crCDG GGRi  1 . For large acceleration values, 1crGG , buoyancy effects dominate and the 

dynamics is unstable 1 crCDG GGR . 

In dimensional units the growth-rate value is   hkV , and the gravity value is  GkVg h
2 . 

For fixed values of lhh ,,,g,V  , we find the critical wavevector crk  at which the interface is stabilized 

from the condition 0
 crkkCDG . We further find the maximum wavevector maxk  at which the unstable 

interface has the fastest growth from the conditions 00 22 


maxmax kkCDGkkCDG k,k . 

 

Table S4: For the accelerated conservative dynamics with fixed values of lhh ,,,g,V  , the values of 

the critical wavevector crk , at which the interface is stabilized, and the maximum wavevector maxk  at 

which the unstable interface has the fastest growth. The ratio is   2maxcr kk . 

Critical 

wavevector 








































lh

lh

h

l

h

cr
V

g
k

2  

Maximum 

wavevector 







































lh

lh

h

l

h

max
V

g
k

22

1  
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Sub-section   Effect of surface tension 

a. Formalism 

Our general framework enables systematic study of interfacial dynamics influenced by surface 

tension, thermal conductivity, compressibility, viscosity, mass ablation, and flow geometry and 

dimensionality, upon the corresponding modification of the governing equations. Here we briefly consider 

the effect of surface tension. It is important in multi-phase flows, and is straightforward to account for. 

Physically, for interfacial dynamics with interfacial mass flux, surface tension can be viewed as a tension 

at the phase boundary between the flow phases. Mathematically, surface tension contributes to the dynamics 

with an additional term modifying the pressure perturbation in the governing equations as 

     22 xzpppp *
lhlh  . 

For the inertial dynamics with the dimensionless surface tension   2
hh VkT  , the associated 

eigenvalues are 
0


GRTLDCD

ˆ,ˆ,ˆ  for the conservative dynamics, Landau-Darrieus dynamics and 

Rayleigh-Taylor dynamics, respectively: 

  11  RTRiˆ
CD ,       RRTRRRRRˆ

LD  1123 ,  

  1
0




RRTiˆ
GRT       (SI-2a) 

where 
0


GRT

ˆ  is understood as the frequency of the capillary wave [5]. The conservative dynamics CD̂  

and capillary wave dynamics 
0


GRT

ˆ  are stable for 0T ; Landau-Darrieus dynamics LD̂  is stable for 

1 RT . 

For the accelerated dynamics with surface tension T , the associated eigenvalues are 

RTLDGCDG
ˆ,ˆ,ˆ   for the accelerated conservative dynamics and the accelerated Landau-Darrieus and 

Rayleigh-Taylor dynamics, respectively: 

1 crCDG GG
~

Rˆ ,       RRGRRRRˆ
LDG  11223 , 

   11  RRGˆ
RT       (SI-2b) 

where  1 RRTGG
~  and  1 RRTGG . The accelerated conservative dynamics CDG̂  

is stable for    RRGGT cr 1 . The accelerated LD dynamics LDG̂  is stable for 

   RRRGT 1 ; RT dynamics RT̂  is stable for   RRGT 1 . 
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b. Matrices 

In the presence of gravity G  and surface tension T  the matrices for the conservative dynamics 

GM̂ , Landau’s dynamics GL̂  and Rayleigh-Taylor dynamics GT̂  have the form: 

 

 






























iRRT

iRRTRGRRR

RiR

iRR

M̂G 21

111

1

 
 

 






























i

iRRTRGRRR

RiR

iRR

L̂G

011

21

111

1

 

 

 
























011

1

1

RTRGRRR

RR

T̂G

 
 

Interface Dynamics Supporting Information PNAS

PNAS # 2017-14500 SI-42



c. Eigenvalues 
 

Table S5: Eigenvalues for the conservative dynamics CD̂ , the classic Landau’s dynamics LD̂ , and the 

Rayleigh-Taylor dynamics 
0


GRT

ˆ  in the presence of surface tension T  at zero gravity 0G , and the 

associated stability intervals. The eigenvalue 
0


GRT

ˆ  is frequency of capillary wave. 

Dynamics Eigenvalue Stability interval 

CD  11  RTRiˆ
CD  0T  

LD       RRTRRRRRˆ
LD  1123   1 RT  

RT  1
0




RRTiˆ
GRT  0T  

 

 

Table S6: Eigenvalues for the accelerated conservative dynamics CDG̂ , the accelerated Landau’s 

dynamics LDG̂  , and the Rayleigh-Taylor dynamics RT̂  in the presence of surface tension T  and 

gravity G , and the associated stability intervals. 

Dynamics Eigenvalue Stability interval 

CDG 1 crCDG GG
~

Rˆ     RRGGT cr 1  

LDG       RRGRRRRˆ
LDG  11223     RRRGT 1  

RT    11  RRGˆ
RT    RRGT 1  

Here the values are  1 RRTGG
~ ,  1 RRTGG ,    11  RRRGcr . 
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d. Critical and maximum wavevector values 
In dimensional units, for fixed values lhh ,,,g,V  , we can find wavevector(s)  maxcrk , at which 

the interface is stable (the instability has the fastest growth). The outline of results is given below. The 

details the dependence of  maxcrk  on lhh ,,,g,V  . will be discussed elsewhere. Note that stabilization 

of the conservative dynamics by the inertial effect and by the surface tension are distinct mechanisms. 

 

Table S7: The critical wavevector crk  at which the interface is stabilized in the presence of gravity and 

surface tension for the accelerated conservative dynamics, the accelerated Landau’s dynamics, and the 

Rayleigh-Taylor dynamics for fixed values of lhh ,,,g,V  . 

Dynamics Critical wavevector 

CDG      





























































2

22 4
2

1
lh

l

h
hlhlh

l

h
h VgV  

LDG      





























































2

22 4
2

1
lh

l

h
hlhlh

l

h
h VgV  

RT  lh

g



 

 

 

Table S8: The maximum wavevector maxk  at which the unstable interface has the fastest growth in the 

presence of gravity and surface tension for the accelerated conservative dynamics, and the Rayleigh-

Taylor dynamics for fixed values of lhh ,,,g,V  . For the accelerated Landau-Darrieus dynamics, the 

dependence of maxk  on the (fixed) values lhh ,,,g,V   is cumbersome; we discuss it elsewhere. 
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Section    Figures 

Captions and Figures 1-7 

Figure 1: Dependence of eigenvalues on density ratio; (A) Conservative dynamics. (B) Classic Landau 

dynamics. 

Figure 2: Flow fields’ structure for the inertial conservative dynamics. Plots of real parts of the interface 

perturbation, the perturbed velocity vector fields, the perturbed velocity streamlines, and the contour plot 

of the perturbed pressure with red (blue) for positive (negative) values. 

Figure 3: Flow fields’ structure for the classic Landau’s dynamics. Plots of real parts of the interface 

perturbation, the perturbed velocity vector fields, the perturbed velocity streamlines, and the contour plot 

of the perturbed pressure with red (blue) for positive (negative) values. 

Figure 4: Dependence of eigenvalues on density ratio at some gravity value. (A) Accelerated conservative 

dynamics. (B) Accelerated Landau dynamics. 

Figure 5: Flow fields’ structure for the accelerated conservative dynamics. Plots of real parts of the interface 

perturbation, perturbed velocity vector fields, perturbed velocity streamlines, and contour plot of 

perturbed pressure with red (blue) for positive (negative) values. 

Figure 6: Flow fields’ structure for the accelerated Landau’s dynamics. Plots of real parts of the interface 

perturbation, the perturbed velocity vector fields, the perturbed velocity streamlines, and contour plot of 

perturbed pressure with red (blue) for positive (negative) values. 

Figure 7: Dependence of the growth rates of the instabilities on gravity value. 
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