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Abstract

Microlensing is a powerful and unique technique to probe isolated objects in the Galaxy. To study the
characteristics of these interesting objects based on the microlensing method, measurement of the microlens
parallax is required to determine the properties of the lens. Of the various methods to measure microlens parallax,
the most routine way is to make simultaneous ground- and space-based observations, i.e., by measuring the space-
based microlens parallax. However, space-based campaigns usually require “expensive” resources. Gould & Yee
(2012) proposed an idea called the “cheap space-based microlens parallax” that can measure the lens-parallax using
only two or three space-based observations of high-magnification events (as seen from Earth). This cost-effective
observation strategy to measure microlens parallaxes could be used by space-borne telescopes to build a complete
sample for studying isolated objects. This would enable a direct measurement of the mass function including both
extremely low-mass objects and high-mass stellar remnants. However, to adopt this idea requires a test to check
how it would work in actual situations. Thus, we present the first practical test of this idea using the high-
magnification microlensing event OGLE-2016-BLG-1045, for which a subset of Spitzer observations fortuitously
duplicates the prescription of Gould & Yee (2012). From the test, we confirm that the measurement of the lens-
parallax adopting this idea has sufficient accuracy to determine the physical properties of the isolated lens.

Key words: gravitational lensing: micro – stars: fundamental parameters

1. Introduction

Isolated objects with various masses such as free-floating
planets, brown dwarfs, and black holes are very interesting targets
(or potential targets) of study. At the low-mass end, free-floating

planets and brown dwarfs may represent the low-mass tail of star
formation or the result of bodies ejected during planet formation.
Larger-mass objects ( several Jupiter masses) have been found
with direct imaging in star-forming regions (e.g., Bihain et al. 2009;
Esplin & Luhman 2017), and there exist several scenarios to
explain their origin and evolution depending on various environ-
mental factors (Whitworth et al. 2007). Microlensing has also
probed the free-floating planet population, but with contradictory
results. Sumi et al. (2011) argued that Jupiter-mass free-floating
planets are about twice as numerous as stars, but Mróz et al. (2017)
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did not find any evidence for such a population. At the same time,
Mróz et al. (2017, 2018) discovered several candidates for less
massive (few Earth-mass) free-floating planets. These lower mass
objects could be candidates for ejection from forming planetary
systems (e.g., Chatterjee et al. 2008; Jurić & Tremaine 2008;
Barclay et al. 2017).

At the high-mass end, there is tension between theoretical
predictions of the stellar remnant distribution and the observed
population inferred from close binaries. Fryer et al. (2012)
predict a smooth distribution of remnant masses ranging from
neutron stars to the most massive stellar mass black holes. In
contrast, Özel et al. (2012) find a distinct gap between the
neutron star and black hole populations in the interval from
∼2–5Me. Because the only confirmed black holes are found in
binary systems, it is unclear whether this feature (and this
conflict between observation and theory) is intrinsic to the mass
distribution or somehow specific to stellar remnants in close
binaries.

Observations of isolated objects spanning the full mass
function are necessary to resolve these issues. Despite the
interest in these objects, their discovery and study are
challenging because they are generally too faint to find (or
they may be entirely dark). Moreover, they have no interaction
with other stellar objects. Compared to other methods, the
microlensing technique is a powerful and unique tool to probe
these isolated objects because the technique can in principle
detect any object that approaches or aligns with the line of sight
between a background star (source) and observer(s), regardless
of the brightness of the objects (lenses).

Unfortunately, microlensing observations do not, by them-
selves, routinely measure the microlens mass, M. Rather, they
usually return only the Einstein timescale tE, which is a
combination of several physical properties of the lens-source
system
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Here, ( ,rel relmp ) are the lens-source relative (parallax, proper
motion) and rel relmm = ∣ ∣. Equation (1) implies that to
determine the mass M of dark (or at least, unseen) lenses,
requires the measurement of both the Einstein radius θE and the
scalar amplitude E Epp = ∣ ∣ of the vector microlens parallax
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According to Equation (2), the microlens parallax quantifies
the lens-source vector displacement as seen from different
observers’ positions, relative to the size of the angular Einstein
ring radius. The displacements can be caused by the annual
motion of Earth, i.e., the annual microlens parallax (hereafter
APRX; Gould 1992), different locations of observatories, such
as Earth compared to space-borne telescopes, i.e., the space-
based microlens parallax (hereafter SPRX; Refsdal 1966), or
different ground-based sites, i.e., the terrestrial microlens
parallax (hereafter TPRX; Gould 1997).

Each method to measure microlens parallaxes has its
limitations. The APRX method (Alcock et al. 1995; Mao
1999; Smith et al. 2002) requires enough time for the motion of
Earth to displace the observer’s position from rectilinear
motion enough to measure the parallax. As a result, the APRX
can be measured for long timescale events with timescales
tE30 days in favorable cases, but usually tE60 days.

However, these long timescale events are not common.
Moreover, from Equations (1) and (2), this method can almost
never be applied to low-mass lenses. For the TPRX, the
displacement can be provided by a combination of simulta-
neous observations from ground-based telescopes that are well
separated. However, because the size of Earth is only a tiny
fraction of the projected Einstein ring on the observer plane
(R r auE EpºÅ  ˜ ), this measurement can be made for only a
few special cases, i.e., extremely magnified lensing events
(Gould et al. 2009), for which the strongly divergent
magnification pattern is very sensitive to small changes in
position. Thus, unfortunately, the chance for TPRX measure-
ments would be extremely rare (Gould & Yee 2013).
The SPRX method can provide a “routine opportunity” for

measuring the microlens parallax as compared to the low chance
of measuring lens-parallax with the other methods of the lens-
parallax measurements (APRX and TPRX). This is because the
displacement of the space-based observatory from the Earth can
easily be a significant fraction of the Einstein ring, e.g., Spitzer is
∼1.3 au from Earth compared to a typical value of r 10 auE ~˜ .
Refsdal (1966) already proposed this method a half century ago,
and Dong et al. (2007) made the first such measurement. Since
2014, the Spitzer satellite has observed more than 500
microlensing events with this aim, yielding almost 80 published
microlens parallaxes (Calchi Novati et al. 2015a; Shvartzvald
et al. 2015, 2016, 2017; Udalski et al. 2015b; Yee et al. 2015b;
Zhu et al. 2015, 2016, 2017; Bozza et al. 2016; Han et al. 2016,
2017; Poleski et al. 2016; Street et al. 2016; Chung et al. 2017;
Shin et al. 2017; Wang et al. 2017; Ryu et al. 2018). Even
though the SPRX can provide a robust opportunity for
measuring microlens parallaxes, there still remains an obstacle
to regular adoption of the method because space-based
observations usually require “expensive” resources.
Gould & Yee (2012; hereafter, GY12) proposed to measure

“cheap space-based microlens parallaxes (cheap-SPRX)” for
high-magnification events (as seen from Earth). They showed
that because the lens-source separation (scaled to θE) u is
extremely small near the peak of a high-magnification
Amax?1 event, u A 00,

1 Å
- , the magnitude of the SPRX

(πE) is given by
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Here, Dsat is the known projected (on the plane of the sky)
separation to the satellite, e.g., Dsat;1.3 au for the Spitzer
Space Telescope, and usat is the position of satellite in the
Einstein ring at the exact moment of the peak of the event as
seen from Earth. Space-based observations can be used to
determine usat based on Asat,
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The space-based observations provide the Fsat (from an
observation at the ground-based peak) and Fbase,sat (from an
observation at “baseline,” i.e., well after the event), and
ground-based observations can be used to constrain the source
Fs,sat through color constraints (Gould et al. 2010a; Calchi
Novati et al. 2015b). Hence, we can efficiently determine the

2
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magnitude of the microlens parallax for high-magnification
events.

The cheap-SPRX is “cheap” in two senses. First, as
described in GY12, only two or three space-based observed
data points are required to measure the microlens parallax.
Second, this technique can be applied to only a small fraction
of events (the total number of high-magnification events is
inversely proportional to the peak magnification; Gould
et al. 2010b). Hence, if a satellite in solar orbit could be
equipped with a camera and a means for prompt response for
observations, it could carry out such a program at tiny
additional cost to its principal mission.

GY12 discussed a potential application of the cheap-SPRX:
to study planets through the high-magnification channel. High-
magnification events are required for the cheap-SPRX, and
they are a very important channel to discover planets because
this channel provides almost 100% detection efficiency if the
events contain planetary mass companions to the lens stars
(Griest & Safizadeh 1998). Based on these findings, GY12
argued that the cheap-SPRX could yield an unbiased measure-
ment of the distribution of planets in the Galaxy.

However, since that time, a second major application has
emerged: the mass function of isolated objects in the Galaxy
(particularly, for low-mass objects). The masses of isolated
objects can be measured only if the finite source effect is
observed, i.e., if u0ρ*, where ρ*≡θ*/θE and θ* is the
angular radius of the source. This generally requires a high-
magnification event (since ρ* is typically 10 3 -( –10−2). This
is the same condition necessary to measure the cheap-SPRX.
Gould (1997) had already noted that high-magnification events
could be used to yield isolated masses from a combination of
finite source effects and the TPRX. Moreover, two cases were
actually observed (Gould et al. 2009; Yee et al. 2009). Gould &
Yee (2013) showed the number of these measurements should
be ∝n, where n is the number density of objects, compared to
the underlying microlensing event rate n Mµ , where M is the
lens mass. Hence, they are especially useful for measuring the
mass function of low-mass objects because these are the most
abundant objects in the Galaxy. However, as mentioned above,
the chance of measuring such a TPRX is extremely low. Thus,
in a practical sense, the study of isolated objects cannot be
effectively carried out using the TPRX alone.

Compared to measurements of the TPRX, the SPRX can
provide more robust opportunities to make the measurements.
Actually, using Spitzer observations, Zhu et al. (2016) and
Chung et al. (2017) found that a remarkably high fraction
(3/170) of 2015 Spitzer targets yielded such isolated mass
measurements. The principal reason is that Spitzer enables
parallax measurements of much larger sources. For TPRX, by
contrast, Gould & Yee (2013) showed that the maximum lens
distance for which the method could be applied for large
sources scales as DL

1
*
qµ - , implying that the available volume

scales as 3
*
q- , thus virtually eliminating large sources for this

method. These larger sources have a higher cross-section
for crossing the lens, so a better chance of observing finite
source effects.22

In fact, Spitzer itself is not well matched to the task of
systematically measuring cheap-SPRX for high-magnification
events. Spitzer observations require long lead times (a 3–10 day

delay between target selections and start of those observations,
see Figure 1 of Udalski et al. 2015b), which raises the
possibility of missing very short timescale events, which are
most likely to be caused by the lowest mass objects. Moreover,
Spitzer can observe the bulge only six weeks out of the eight
month bulge season. In addition, the final campaign is currently
scheduled to be in 2018.
As mentioned above, a systematic campaign to measure the

cheap-SPRX could be conducted as an “add-on” capability to
some future space mission. This would greatly increase the
fraction of isolated objects characterized by microlensing.
Based on this sample, we can determine the mass function of
isolated objects at low cost. However, before pursuing such a
course, we should perform a practical test of the cheap-SPRX
idea to check the accuracy of the microlens parallax
measurement. This test is important because the accuracy that
can be achieved is directly related to establishing the feasibility
of applying the cheap-SPRX under actual conditions and also
for establishing an observational strategy for such a future,
space-based microlensing campaign.
Here, we conduct the first practical test for the cheap-SPRX

idea using the microlensing event OGLE-2016-BLG-1045 with
Spitzer observations. In Section 2.1, we describe the event as a
testbed for this practical test. In Section 2.2, we describe our
method for testing the idea. Then, we present test results and
our findings in Section 2.3. Lastly, we conclude and discuss in
Section 3.

2. Test of the Cheap-SPRX Idea

2.1. Testbed: OGLE-2016-BLG-1045 Spitzer Event

2.1.1. Ground Observations

The microlensing event OGLE-2016-BLG-1045 occurred on
a source that lies at (α, δ)J2000=(17h36m51 19, −34°32′
39 7), which corresponds to the Galactic coordinates
(l,b)=(354°.255, −1°.386). The Optical Gravitational Lensing
Experiment (OGLE-IV: Udalski et al. 2015a) found this event
and then the Early Warning System (Udalski et al. 1994;
Udalski 2003) of the OGLE-IV survey announced the event on
2016 June 9. The observations were made with the 1.3 m
Warsaw telescope in the I-band channel of a 1.4 square-degree
camera located at the Las Campanas Observatory in Chile.
The event was highly magnified, implying that a planetary

companion to the lens could probably be detected if it exists.
Hence, a follow-up observation team called the Microlensing
Follow-Up Network (μFUN: Gould et al. 2006) observed this
event to capture any anomalies that might be produced by a
planet. Auckland observatory, a μFUN member located in New
Zealand, made the observations with a 0.4 m telescope using a
number 12 Wratten filter (which is similar to R band). The
Auckland observations successfully covered the peak of the
event. This peak coverage did not reveal an anomaly in the
light curve due to a planetary lens system. However, the good
coverage of the peak provided a chance to detect the finite
source effect, which enters the determination of the angular
Einstein ring radius, i.e., ρ*=θ*/θE. The finite source effect
can provide a mass–distance relation, M D c G4 Erel

2 2q= ( ) ,
where the D D Drel L

1
S

1 1º -- - -( ) is the relative distance
between distances to the lens (DL) and the source (DS), M is
the lens mass, c is the speed of light, and G is Newton’s
constant.

22 Zhu et al. (2016) also noted that for standard SPRX, it is also more likely to
see the finite source effect because there are two different observatory
positions. However, this advantage is not relevant to cheap-SPRX.
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Other μFUN observations exist in H band taken at the Cerro
Tololo International Observatory in Chile with the 1.3 m
SMARTS telescope (CTIO). These CTIO data were not
included in the final models because of the similar coverage
to the KMTNet data, but were used for the color–magnitude
diagram (CMD) analysis of the event (see the Appendix).

The Korea Microlensing Telescope Network (KMTNet: Kim
et al. 2016) also observed this event. Three identical 1.6 m
telescopes located in the Cerro Tololo International Observa-
tory in Chile (KMTC), the South African Astronomical
Observatory in South Africa (KMTS), and the Siding Spring
Observatory in Australia (KMTA) observed this event with the
I-band channel of their 4 deg2 cameras. The KMTNet
observations provided overall coverage of the light curve.

The observed data sets were reduced by each group using
their own pipelines and difference-imaging analysis packages:
((OGLE-IV (DIA): Alard & Lupton 1998; Wozniak 2000),
(μFUN and KMTNet (pySIS): Albrow et al. 2009)).

2.1.2. Space Observations

This event was “secretly” chosen as a target of the 2016
Spitzer Microlensing Campaign on 2016 June 16 (UT 20:30)
based on the possibility that the event could be highly
magnified. The event was later claimed as a “subjective” target
on 2016 June 18 (UT 16:34) once the event was observed to be
moderate to high magnification (see Yee et al. 2015a for more
details on different types of event selection). The observations
began on 2016 June 18 (UT 9:56) and ended on July 8 (UT
2:43). The Spitzer Space Telescope took 24 total data points
over 20 days with the 3.6 μm channel (L band) of the IRAC
camera. The Spitzer data were reduced with point response
function photometry (Calchi Novati et al. 2015b).

2.1.3. Light Curves

In Figure 1, we present light curves of the event observed
from ground and space. We also present the best-fit model light
curves and their residuals, which is the (−, +) case presented in
Table 2. The ground-based light curve shows a symmetric
Paczyński curve (Paczyński 1986) with a smooth peak feature,
which implies that the event was produced by a single lens
affected by the finite source effect. The Spitzer observations
only partially covered the light curve. However, Han et al.
(2017), Shin et al. (2017), and Wang et al. (2017) already
showed that it is possible to accurately measure the SPRX even
though the space-based observations are fragmentary. Thus, for
this event, using the Spitzer observations and the finite source
effect, it is possible to measure the microlens parallax and
the angular Einstein ring radius, which yield the properties of
the isolated lens. We note that there exists a systematic trend
in the Spitzer observations. The origin of this trend is unknown.
However, several publications that used the Spitzer data with a
similar trend (e.g., Poleski et al. 2016; Shin et al. 2017;
Shvartzvald et al. 2017; Zhu et al. 2017) concluded that the
trend is not likely to affect determinations of their models. In
this case, the trend is milder than those in the previous
publications.

The Spitzer observations were not taken with the idea of
“cheap-SPRX” in mind. In fact, because the peak magnification
was relatively unconstrained when the observations were
scheduled, many similar events were observed based on the
chance that one of them would be high-magnification (so, these

observations cannot be considered “cheap”). Nevertheless, the
resulting observations contain what would be obtained for a
“cheap-SPRX” campaign, i.e., the Spitzer observations exist
near the peak of the ground-based light curve and also exist
near the baseline. Hence, this event can serve as an excellent
testbed to perform a practical test of the cheap-SPRX idea.

2.2. Test Method

2.2.1. Three Cases to Test the Cheap-SPRX Measurement

We test the accuracy of the cheap-SPRX method by
considering three different Spitzer data sets, which we refer
to as the “Actual,” “Realistic,” and “Idealized” cases. These
data sets differ in the amount of information they contain (most
to least). We first consider the two extremes, which are the
“Actual” case defined by the current experiment and the
“Idealized” GY12 case. For the “Actual” case, we use all
observed Spitzer data (24 points). From this case, we can obtain
the actual SPRX measurement that can be used as a reference
to compare with the measurements derived from the other
cases. For the “Idealized” case, considering the ideal situation
proposed by GY12, this represents the minimum amount of
data necessary for the cheap-SPRX idea to work. For this case,
we generate two artificial data points using the Spitzer data and
the best-fit model light curve. One is located at the exact
ground-based peak (HJD′=7559.201) and the other is located
at the baseline (HJD′=7900.000). For the “Realistic” case, we
choose two actual data points near the ground-based peak
(HJD′=7559.172 and 7559.482) because it is almost
impossible to take an image at the exact peak time in realistic
situations. In addition, we use the last point (HJD′=7577.613)
observed by Spitzer, which is located near the baseline. Based
on these selected Spitzer data, we can obtain a measurement of
the cheap-SPRX under realistic conditions. In Figure 2, we
present light curves of the cases that clearly show the space-
based observations used for the test.

2.2.2. Modeling of Light Curves

Based on the three cases, we conduct modeling to measure the
SPRX value of each case. For the modeling, we use six
parameters: (t0, u0, tE, ρ*, πE, and Φ). Among them, three basic
parameters (t0, u0, and tE) describe the light curve produced by a
single lens and a point source. These basic parameters are
closely related to each other: t0 is the time at the peak of the light
curve; u0 is the impact parameter, i.e., the separation between the
center of the Einstein ring and the position of the source at time
t0; tE is the crossing-time of the Einstein ring. Another parameter
ρ* is the angular source radius (θ*) normalized by the angular
Einstein ring radius (θE), ρ*≡θ*/θE, which describes the finite
source effect. The last two parameters (πE and Φ) describe the
SPRX, which differs from the conventional way of describing
the microlens parallax vector p (normally consisting of north
(πE,N) and east (πE,E) components). In our parameterization (see
also Bennett et al. 2008),

, cos , sin . 6N EE E, E, E Ep p p p p=  F F( ) ( ) ( )

The Φ angle is allowed to vary over the full possible range [−π,
+π].23 In addition, there are flux parameters (FS and FB) for

23 The parameter Φ is treated as a cyclic variable. That is, whenever it crosses
the “boundaries” at ±π, its formal value is changed by m2π, so that there are
no rejected links due to these “boundaries.”
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each data set that describe the fluxes of the source and blend,
respectively, which are fit linearly for each model. We note that
the model flux for each data set, i, is derived from
F t A t F Fi S i B iobs, , ,= +( ) ( ) , where the A(t) is the model magni-
fication as a function of time. Using these parameters, we
search for the best-fit model with the minimum χ2 between the
observed and modeled light curves using a Markov Chain
Monte Carlo (MCMC) χ2 minimization (the details of our
MCMC sampling method are described in Dunkley
et al. 2005). To find the global minimum of the model
parameters, especially the SPRX parameter (πE), we initially
conducted a grid search over πE and Φ using the 200×200
grid points. The grid search results are the same as those of the
MCMC simulations.

During the modeling process, we consider the limb-
darkening (LD) of the source star. We adopt LD coefficients
for observed passbands from Claret (2000) based on the
spectral source type determined by the CMD analysis
(described in the Appendix). In addition, we rescale the errors

of observations to enforce χ2/dof;1 using the equation
enew=k(eold) where k, enew, and, eold are the error rescaling
factor, rescaled errors, and original errors, respectively. The
error rescaling process has been done based on the best-fit
model, i.e., the (−, +) case. We note that, in the case of the
OGLE-IV data, the observational errors are calibrated using a
correction procedure that is described in Skowron et al. (2016),
before applying the error rescaling process based on the best-fit
model. In Table 1, we present these LD coefficients and error
rescaling factors for modeling.
We also incorporate the color-constraint, (I− L)=3.800±

0.020, which provides an independent constraint on the model.
The constraint is determined using I-band ground observations
(OGLE-IV) and L-band space observations (Spitzer) based on
the CMD analysis. To incorporate the (I− L) color-constraint,
we introduce penalty

2c described in Section 3.2 of Shin et al.

(2017). The penalty
2c increases the χ2 when the fitted (I− L)

color of the model is different from the constraint. In particular,
the penalty

2c increases strongly when the difference between the
fitted color and the constraint is larger than 2σ.

Figure 1. Light curves of the single-lens event OGLE-2016-BLG-1045 seen from the ground and space. Colored dots represent observed data taken from different
telescopes located on the ground and in space (i.e., Spitzer). The dark gray and pink solid lines represent model light curves of the ground and Spitzer, respectively.
The red dotted line indicates the peak time (t0, see Table 2) of the ground-based light curve. The upper panel shows the observed light curves with their best-fit models.
The lower panel shows residuals between the observations and the best-fit model. The inner panel shows the zoom-in of the peak part of ground-based light curve,
which has a smooth feature due to the finite source effect. The dotted blue line indicates the time that this event was selected as a Spitzer target. The dotted black line
indicates the time that the event was claimed as a “subjective” target.
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In Table 2, we present the best-fit parameters for each case
(Actual, Realistic, and Idealized). For each case, we find that
two degenerate solutions exist due to the “four-fold degen-
eracy” (Refsdal 1966; Gould 1994). In principle, the four-fold
degeneracy has four solutions, (+, +), (+, −), (−, +), and
(−, −) (denoted according to the convention described in Zhu
et al. 2015), which are caused by different pairs of source
trajectories (seen from ground and space) going through a
similar lensing magnification pattern. This degeneracy can be
divided into two categories by its origin (GY12 and references
therein). The first (denoted by the first ±sign in this paper) is
related to the relative positions of the Earth and satellite,
whether they lie on the same or opposite sides of the lens. The
other (denoted by the second ±sign in this paper) is related to
the different possible source trajectories as seen from Earth,
i.e., whether they pass on the left or right sides of the lens. The
former degeneracy can affect the magnitude (πE) of the Ep ,
while the latter degeneracy can only affect the direction of the

Ep , which is less interesting in this test of the cheap-SPRX idea.
The four-fold degeneracy can sometimes be resolved (e.g., Yee
et al. 2015b; Udalski et al. 2015b; Han et al. 2016, 2017;
Chung et al. 2017; Shin et al. 2017). For this event, we find that
there exist only two solutions, (−, +) and (+, +), based on the

grid search process. The other two solutions, (−, −) and
(+, −), are merged with the (−, +) and (+, +) solutions,
respectively. The reason that the four solutions are merged into
only two solutions for this event is that u0,Spitzer∼0. For model
parameters of each solution, uncertainties are determined based
on the 68% confidence intervals of the MCMC chains.

2.3. Test Results

2.3.1. Validation of the Accuracy of the Cheap-SPRX Measurement

In Figure 3, we present the SPRX distributions of each case.
The distributions are constructed from the MCMC chains.
These distributions clearly show the consistency of the SPRX
measurements. We present two types of distributions. One type
of distribution is presented according to the conventional
parameters, (πE,E, πE,N), which are calculated from the MCMC
parameters as πE,E=πEsinΦ and cosNE, Ep p= F. The other
is the (πE, Φ) distribution, which can be used to directly check
the accuracy of the magnitude of the SPRX measurement.
From the modeling of the actual case, we obtain the

SPRX measurements for the (−, +) and (+, +) cases:
0.355E 0.006

0.004p = -
+ and 0.352 0.005

0.006
-
+ , respectively. We find that

the magnitudes of the SPRX values between the (−, +) and (+,
+) solutions of the actual case are consistent to well within 1σ.
Based on the actual SPRX measurements, we can compare the
other test cases of the cheap-SPRX idea to check the accuracy
of the cheap-SPRX measurements. For the realistic case, we
find that the SPRX measurements of both degenerate solutions,
0.355 0.008

0.005
-
+ and 0.350 0.006

0.008
-
+ , are consistent with those of the

actual case to within 1σ. For the idealized case, the
measurements, 0.365 0.015

0.004
-
+ and 0.346 0.004

0.014
-
+ , are consistent to

within 1σ using the idealized-case errors.
Based on the SPRX measurements, we can determine the

properties of this isolated lens by combining it with the angular
Einstein ring radius (θE=θ*/ρ*), where θ* is the angular
source radius determined from the CMD analysis (described in
the Appendix) and ρ* is determined from the finite source

Figure 2. Light curves showing each test case. The left panel shows the “Actual” case using all actually observed 24 Spitzer data points. The middle panel shows the
“Realistic” case using 3 selected Spitzer data points considering realistic space-based observations of the cheap-SPRX idea. The right panel shows the “Idealized” case
using two artificial data points considering the ideal situation of the cheap-SPRX idea. The gray, black, and red dots indicate ground-based observations, Spitzer
observations, and the artificial data, respectively. Black and magenta lines represent the best-fit model light curves of (−, +) solutions of each case.

Table 1
Limb-darkening Coefficients and Error Rescaling Factors

Observations Γλ k

OGLE (I) 0.5103 0.913
Auckland (R)a 0.6583 2.370
KMTC (I) 0.5103 1.116
KMTS (I) 0.5103 1.501
KMTA (I) 0.5103 1.446

Note.
a We use a modified LD coefficient for Auckland observations, RG =

2 0.61118 0.7048 2 0.6583R VG + G = + =( ) ( ) because the Auckland obser-
vatory used a 12 Wratten filter having a flat transmission between 540 and
700 nm). Thus, the filter is similar to the mean value of R and V bands. Note
that we did not use a ΓL because it plays no role for the Spitzer observations.
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effect. We determine the angular Einstein ring radius as

0.244 0.015 mas. 7Eq =  ( )
In Figure 4, we present distributions of physical properties of

the lens for each case. the lens mass (ML) and the lens distance
(DL) are determined from MCMC parameters as

M M, 8.144 mas , 8L
E

1*

*

q k
r p

k= = -


( ) ( )

D
D

au
,

au
, 9

S
S

S
L

E * *
p r q p

p=
+

=
( )

( )

where DS is the distance to the source estimated from Nataf
et al. (2013). For this event, the estimated DS is ∼8.87 kpc. We
find that both properties are consistent to within 1σ across all
cases. In fact, the uncertainty in the properties is dominated by
the uncertainty of the θ* determination. Quantitatively, the
uncertainty of the SPRX measurement is <3% compared to
the �6% uncertainty in θ*. Thus, we find that the accuracy of
the SPRX measurement based on the cheap-SPRX idea is
sufficient to accurately determine the properties of the isolated
object. The isolated lens of this event is a low-mass stellar
object with ML∼0.08±0.01Me, which is located at
∼5.02±0.14 kpc from us.24

2.3.2. Validation of Effects on the Cheap-SPRX Measurement by
Binary-lensing Cases

The cheap-SPRX idea assumes that an observed light curve
seen from space, e.g., the Spitzer observations, resembles a
single-lensing light curve. However, if the lens is a binary and
there are only two observations from the spacecraft, it will not

be possible to determine from the space-based observations
alone whether these are affected by the binary or whether the
single-lens assumption is sufficient. Indeed, if the binary is not
detected in the ground-based data, an anomaly in the space-
based data due to a binary would go undetected. Then, the
magnification computation to measure the cheap-SPRX may be
inaccurately determined due to the effect of the binary-lensing
perturbation on the light curve. As a result, a violation of the
single-lensing assumption can, in principle, yield an incorrect
measurement of the cheap-SPRX when a second mass exists.
However, high-magnification events (this is a basic assump-

tion for applying the cheap-SPRX idea) are very sensitive to
binary lenses. This implies that, for a high-magnification event,
we can rule out very broad class binary-lens configurations
because these would produce clear anomalies on the ground-
based light curve. We perform a quantitative test to check the
effect on the cheap-SPRX measurement caused by binary-
lensing. The test is performed using the following procedures.
First, we separately conduct a binary-lens modeling with

ground-based observations only. The best-fitting of this
modeling yields a χ2 threshold to exclude binary-lensing
cases, which have noticeable anomalies. The best-fit model has

13.92
single
2

binary
2c c cD = - =( ) . Thus, we set the χ2 thresh-

old 15.0th
2c = . This is the criterion for dividing simulated

binary-lensing cases into two categories: 2
th
2c c> are the cases

with anomalies that are detectable in the ground-based light
curve, and 2

th
2c c< are the cases having nondetectable

anomalies.
Second, we simulate binary-lensing cases with only ground-

based observations using the Rhie method (Bennett &
Rhie 1996; Rhie et al. 2000). In this procedure, the binary-
lensing cases are simulated using a grid of the projected
separation (s), mass ratio (q), and angle (α) of the source
trajectory with respect to the binary-axis: slog 1.2, 1.2= -[ ],

qlog 5.0, 1.0= -[ ], and α=[0, 2π]. Each range of the grid is

Table 2
The Best-fit Model with Degenerate Solutions of Each Case

Case Actual Realistic Idealized

Parameter (−, +) (+, +) (−, +) (+, +) (−, +) (+, +)

Ntotal
2

datac 1368.70/1372 1368.99/1372 1344.89/1351 1345.04/1351 1343.83/1350 1343.95/1350

NGround
2

datac 1345.01/1348 1345.09/1348 1344.77/1348 1344.77/1348 1343.83/1348 1343.95/1348

NSpitzer
2

datac 23.69/24 23.90/24 0.12/3 0.27/3 0.00/2 0.00/2

penalty
2c 0.017 0.075 0.000 0.010 0.003 0.014

(I − L) [3.80] 3.797 3.794 3.800 3.802 3.799 3.803
t0 (HJD′) 7559.201±0.001 7559.201±0.001 7559.201±0.001 7559.201±0.001 7559.202±0.001 7559.202±0.001
u0 (10

−2) 1.308 0.042
0.033- -

+ 1.314 0.044
0.036

-
+ 1.318 0.037

0.041- -
+ 1.318 0.044

0.033
-
+ 1.312 0.044

0.033- -
+ 1.309 0.033

0.044
-
+

tE (days) 11.981 0.098
0.064

-
+ 11.963 0.084

0.088
-
+ 11.950 0.083

0.084
-
+ 11.947 0.083

0.088
-
+ 11.956 0.094

0.073
-
+ 11.952 0.088

0.076
-
+

ρ* (10−2) 3.186 0.026
0.033

-
+ 3.190 0.030

0.030
-
+ 3.195 0.030

0.027
-
+ 3.195 0.033

0.028
-
+ 3.194 0.029

0.030
-
+ 3.193 0.028

0.031
-
+

πE 0.355 0.006
0.004

-
+ 0.352 0.005

0.006
-
+ 0.355 0.008

0.005
-
+ 0.350 0.006

0.008
-
+ 0.365 0.015

0.004
-
+ 0.346 0.004

0.014
-
+

Φ (radian) 1.291 0.062
0.165

-
+ 1.353 0.066

0.167
-
+ 1.210 0.284

0.381
-
+ 1.178 0.177

0.458
-
+ 0.341 1.185

0.955
-
+ 0.407 1.188

1.141
-
+

EE,p 0.341 0.012
0.012

-
+ 0.344 0.011

0.013
-
+ 0.332 0.323 0.122 0.137

NE,p 0.098 0.059
0.027

-
+ 0.076 0.058

0.028
-
+ 0.125 0.134 0.344 0.317

FS,OGLE 1.370 0.010
0.014

-
+ 1.373 0.013

0.012
-
+ 1.375 0.012

0.012
-
+ 1.375 0.013

0.011
-
+ 1.374 0.011

0.014
-
+ 1.374 0.012

0.013
-
+

FB,OGLE 0.032 0.014
0.010- -

+ 0.034 0.012
0.012- -

+ 0.036 0.012
0.011- -

+ 0.037 0.012
0.012- -

+ 0.035 0.014
0.010- -

+ 0.036 0.013
0.011- -

+

F SpitzerS, 45.257 0.932
0.919

-
+ 45.212 0.870

1.004
-
+ 45.518 1.061

0.953
-
+ 45.622 1.199

0.902
-
+ 45.439 0.909

1.124
-
+ 45.618 1.127

0.973
-
+

F SpitzerB, 6.528 0.993
0.941- -

+ 6.430 1.178
0.819- -

+ 8.032 1.094
0.963- -

+ 8.179 1.046
1.174- -

+ 6.674 1.190
0.844- -

+ 6.854 1.039
1.062- -

+

Note. HJD′=HJD-2450000.0. The Ndata after each χ
2 value indicates the number of data points that are used for the modeling. We note that the πE,E and πE,E are not

modeling parameters. These are calculated from the modeling parameters, πE and Φ (see Equation (6)). We do not present the errors of πE,N and πE,E for Realistic and
Idealized cases because these errors are meaningless: only the error in πE has meaning.

24 These values of physical properties are the simple mean values of each
property, with the uncertainty determined through standard error propagation.
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divided into 120 grid points (i.e., total 1203 binary-lensing
cases are simulated). We adopt the other parameters, t0, u0, tE,
and ρ*, from the actual (−, +) solution to produce an artificial
data set of the binary-lensing case. For each binary-lensing case
with the artificial ground-based data set, we calculate a χ2

value by fitting with a finite-source single-lensing model.
Third, we can build two types of diagrams (Figure 5) using

the simulated binary-lensing cases and the χ2 threshold: one
is the diagram showing the detection efficiency of this event,
and the other is the diagram showing two categories of the
binary-lensing cases at a specified mass ratio. From this
diagram, we can extract a “boundary” with Δχ2=15, which
represents a kinds of extreme binary-lensing cases having
nondetectable anomalies that may possibly affect the cheap-
SPRX measurement. In Figure 5, we present an example of
such diagrams at the q=0.1 and their boundaries.

Fourth, at these boundary cases, we can check the effect on
the cheap-SPRX measurement caused by the hidden anomalies
of the binary-lensing cases. To quantitatively check the effect,
we set a criterion as

A

A
1 , 10

Spitzer

Spitzer

binary

PSPL peak,

E

E

s p
p

- <
Å

( ) ( )

where the A Spitzer
binary and A Spitzer

PSPL are magnifications of the Spitzer
light curve at the ground-peak time (HJD′∼7559.20)
computed using binary-lens and single-lens models, respec-
tively. The πE and σ(πE) are the cheap-SPRX measurement and
its uncertainty adopted from the actual (−, +) case. This
criterion shows how much an undetected anomaly due to

binary-lensing could affect the magnification of the Spitzer
light curve. If the criterion in Equation (10) is met, the
inaccuracy in the magnification is less significant than
uncertainties from other sources. Using this criterion, we check
three cases of boundaries at q=0.01, 0.1, and 1.0.
In Figure 6, we present the quantitative results of this test.

We find that, for all cases along the boundary, the deviations
between magnifications of the Spitzer light curve at the ground-
peak are much smaller than the relative error of the SPRX that
is actually measured. This implies that the binaries that do not
give to detectable signals in the ground-based data also do not
significantly affect the SPRX measurement. Hence, in this case,
even if there exists an undetected binary-lens anomaly, we can
still obtain an accurate SPRX measurement using the cheap-
SPRX idea.

3. Conclusion and Discussion

Based on the event OGLE-2016-BLG-1045, we tested the
cheap-SPRX idea to check the accuracy of the microlens
parallax measurement by comparing it to the true measurement.
In addition, based on the parallax measurement of each case,
we checked whether the physical properties of this isolated lens
are consistent or not. We found that the magnitudes of the
actual SPRX measurement and the realistic, cheap-SPRX
measurement are consistent to within 1σ. We also found that
the lens mass determined for all cases is consistent ∼0.08 Me,
which is the upper-mass limit for brown dwarfs. In addition, the
lens distances derived for all cases are also consistent to within
1σ. Moreover, we conducted a test to see how a binary lens that
is not detectable in ground-based observations might affect the

Figure 3. SPRX distributions of each case with degenerate solutions. The top, middle, and bottom panels show the SPRX distributions of the actual, realistic, and
idealized cases, respectively. The left six panels present the (πE,E, πE,N) distributions according to the conventional parameterization. The right six panels present the
(πE, Φ) distributions that are the MCMC parameters used to describe the SPRX. The red, yellow, green, light blue, blue, and purple colors represent 12 2cD = , 22, 32,
42, 52, and 62, respectively. The star symbols indicate the best-fitted SPRX value of the actual case.
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cheap-SPRX measurement. We found that this effect is not
significant in this case. Hence, we conclude that the cheap-
SPRX measurement has sufficient accuracy to adopt this idea in
real situations. Thus, using only two or three space-based
observations, we can determine the physical properties of the
lens for high-magnification events. This fact implies that by
adopting the cheap-SPRX idea, we have a robust method of
measuring microlens parallaxes (i.e., SPRX), which can reveal
the nature of the lens with a cost-effective space-based
campaign.

A space-based microlensing campaign, perhaps added on to
another mission, adopting this cost-effective idea can provide a
measurement of the magnitude of the microlens parallax for
most high-magnification events. This complete sample can be
used to study isolated objects, especially low-mass objects, in
the Galaxy and derive a mass function based on them.
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supported by JPL grant 1500811. A.G., Y.K.J., and W.Z.
acknowledge the support from NSF grant AST-1516842. Work
by Y.S. and C.B.H. was supported by an appointment to the
NASA Postdoctoral Program at the Jet Propulsion Laboratory,
administered by Universities Space Research Association
through a contract with NASA. Work by C.H. was supported

by the grant (2017R1A4A1015178) of the National Research
Foundation of Korea.

Appendix
The CMD Analysis

From this CMD analysis, we can determine the angular source
radius, the spectral type of the source star, and the model-
independent color constraint. The CMD analysis is usually
conducted by combining the (V− I, I) CMD and the standard
method (Yoo et al. 2004). However, for this event, the
source is severely extincted with AI∼3.5 in I band. As
a result, the standard method cannot be applied using the
(V− I,I) CMD. Hence, we construct a new (I−H, I) CMD
based on the OGLE-IV survey and the VISTA Variables and Via
Lactea Survey (VVV: Minniti et al. 2010) using cross-matching
of field stars, which are located within 60″ from the source star.
In Figure 7, we present the (I−H, I) CMD. We conduct the

CMD analysis using the standard method. First, we determine
the location of the red giant clump centroid on the CMD as
(I−H, I)C=(4.00±0.03, 18.25±0.05). Second, the location
of the source on the CMD is determined based on source fluxes
in I band and H band from the best-fit model additionally
including CTIO H-band data. The magnitudes are found to be
IS,OGLE=17.658±0.004 and HS,CTIO=17.648±0.003. The
CTIO H-magnitude scale is converted to the VVV H-magnitude
scale using the relation H H 4.059 0.011CTIO VVV S- = ( ) ,
which comes from comparison stars. Thus, the location of
the source on the CMD is determined to be (I−H, I)S=
(4.068±0.012, 17.658±0.004).
We adopt the dereddened color (Bensby et al. 2013) and

intrinsic magnitude (Nataf et al. 2013) of the giant clump as a
reference. The adopted values are (V− I, I)0,C=(1.06±0.01,
14.62±0.04). Based on this reference, we can obtain the

Figure 4. Distributions of lens properties determined from the MCMC chains. The left-side upper and lower panels show the lens mass distributions of (−, +) and
(+, +) solutions, respectively. The right-side upper and lower panels show the distributions of the distance to the lens of (−, +) and (+, +) solutions, respectively.
The red, blue, and black colors indicate the actual, realistic, and idealized case, respectively. The colored shade shows the 1σ uncertainty (68% area of the
distributions) of each case. Each distribution is normalized so the peak of the histogram is set to unity.
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dereddened color and magnitude of the source under the
assumption that the clump and source experience the same
extinction. In addition, the (I−H) color is converted to the
V I-( ) color using the color–color relation in Bessell & Brett
(1988). For the source of this event, the relation is

I H V I1.00D - = ´ D -( ) ( ). Thus, the dereddened color
and magnitude of the source are (V− I)0,S=(V− I)0,C−
[(I−H)C− (I−H)S] and I I I I0,S 0,C C S= - -[ ], respectively.
Lastly, we obtain the dereddened color and magnitude of the
source: (V− I, I)0,S=(1.128±0.034, 14.028±0.064).
From the color of the source, we determine the angular

source radius using the color/surface–brightness relations in
Kervella et al. (2004). To employ the relation, we convert the
(V− I)0,S to (V− I)0,S by using the Bessell & Brett (1988)
relation. The determined angular source radius is

7.80 0.47 as. 11*q m=  ( )

Moreover, based on the intrinsic source color, we estimate the
source star to be an early K-type giant. We adopt LD coefficients
from Claret (2000) assuming typical properties of an early
K-type giant: effective temperature T 4750eff  K, surface
gravity glog 2.0 , microturbulent velocity V 2.0t  km s 1- ,

Figure 5. Example of diagrams at the mass ratio (q=0.1) and their boundaries. The upper panel shows the detection efficiency diagram built using 15.0th
2c = . The

lower panels show diagrams of the two regimes of binary lensing for the case of q=0.1. The left panel shows the wide (s 1> ) binary regime and the right panel
shows the close (s 1< ) binary regime. The gray and dark gray dots represent two categories of binary-lensing cases whose boundary is given by th

2c . The gray dots
indicate 15.02 c , while the dark gray dots indicate 15.02c > . The blue dots indicate the boundary points between the two categories.

Figure 6. Criterion values of the test from the boundary cases. The upper and
lower panels show the criterion values for the close and wide binary cases,
respectively. The black, red, and blue colors represent the magnification
deviations of boundaries at q=0.01, 0.1, and 1.0, respectively. The cyan
dashed line represents the relative error of the measured SPRX value.
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and metallicity M Hlog 0.0[ ] . The adopted LD coefficients
are presented in Table 1.

Based on the information of the source, we determine the
(I− L) color constraint using the color–color regression
method based on the IHL color–color diagram. This process
is described in Calchi Novati et al. (2015b) and Shin et al.
(2017). The determined (I− L) color constraint is

I L 3.800 0.020. 12- = ( ) ( )

We incorporate this model-independent constraint in the
modeling process by introducing an additional penalty

2c , which
increases as Δ(I− L) increases between the color calculated
from the model and the constraint.
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