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Fig. S1. The original L = 16 data and the machine learned map from the disorder realization h1 through h16 to the resulting r-statistics. With the network we are able to
generate considerably more realizations (106 versus 103) in a much shorter timespan, provided that the network is capable of learning and generalizing. The sigmoid output
neuron rather than linear for optimizing the mean-squared-error ensures convergence of the output as a function of W . Error bars indicate the standard deviation over the
number of realizations, and the black dashed horizontal line indicates the Poissonian r-value of ln 4− 1.

Supporting Information Text

Data augmentation using machine learning

The different disorder realizations we study in this manuscript differ only in the values for the on-site potentials. Given the
on-site potentials, there exists a procedure that results in the value for the r-statistics. Namely, one builds the corresponding
Hamiltonian matrix and diagonalizes it to obtain the eigenvalues εn. The r-statistics is obtained by looking at neighboring
eigenvalue differences δn = εn+1 − εn and computing the ratio r = 〈min(δn, δn+1)/max(δn, δn+1)〉 as discussed in the main
text.

Here, however, we ask whether or not a more direct (approximate) map exists from the on-site potentials to r. Rather than
trying to explicitly construct it, we attempt to train a neural network to perform this map for us. Hence we generate a large
data-set of pairs (h, r), where h is a vector of the on-site potentials augmented with the value of W from which they were
drawn, and r is the resulting r-statistics for this particular realization. These serve as the input and output respectively for the
machine learning model.

Provided that such a mapping exists and that the network is capable of learning it, the resulting network can be used to
generate more r-values by using it to predict on more realizations. This allows one to generate statistics much faster compared
to running the full exact diagonalization. It must be noted that this procedure cannot take away the inherent statistical
uncertainty due to the finite size of the system. Particularly, for disorder strengths near the transitions point, the exact r-values
of systems with different realizations drawn from the same distribution, lie within a relatively large window. As the system
becomes larger this window becomes smaller. For example, already by including a few hundreds of realizations, for L = 16,
the error bars near the transition are dominated by the intrinsic finite size effect and cannot be improved by adding more
realizations.

In Fig. S1 we demonstrate the above procedure for the L = 16 data, for which the data-set consists of ∼ 15k entries (25
values of W spread over ∼ 550 realizations). We split off 10% of the data as a validation set, and train a network with the
following architecture. First, two convolutional layers with 32 filters and kernel sizes 6 and 3, followed by a maximum pooling
of size 3. Then a convolutional layer with 64 filters and kernel size 2, followed by a global average pooling. Next, two fully
connected sigmoid layers with 256 and 128 neurons respectively, and dropout 0.5. And finally an output layer with a single
sigmoid neuron.
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Fig. S2. Collapse of the W = 0.5 data for system sizes L = 14, 16, 18, as a function of the field strength f . The collapse is obtained by rescaling the fields according to
f → (f − fc)L1/ν with fc = 2.08 and ν = 0.952. The gray area indicates the width w that was used to make the curves collapse, and is the width at which the collapse is
most stable against inclusion or removal of the L = 12 data.

We train the network with the Adam (1) optimizer to minimize the mean-squared-error loss function, and achieve a validation
loss of ∼ 2 · 10−5 in 100 epochs of batchsize 32. In our experiments, we have found no particular reason for the above network
to work better than others, but we found that considerably simpler networks (e.g. just fully connected layers) converge much
slower. For the purpose of extracting the mapping, our chosen network might be hard to interpret. It would be an interesting
research direction however to see if the approximate mapping can be extracted from a network, or whether a single network
can be trained on different system sizes to extract finite size behavior. Both would potentially allow predictions to be made on
larger system sizes than trained on, although further investigation into this question is required.

Finite size scaling

In this appendix we discuss the transition from the ergodic to the non-ergodic phase as a function of the linear field f . To do
so, we fix W = 0.5 and perform a finite size scaling analysis attempting to collapse the curves for different system sizes. We
consider a universal function g

(
(f − fc)L1/ν) for the r-statistics, and optimize the parameters fc and ν so that the rescaled

r-statistics curves for the different sizes collapse.
Each of the curves is first rescaled with proposed fc and ν after which we use spline interpolation to numerically minimize the

cost function C(fc, ν) =
∑

i<j

∫
x
(yi(x)− yj(x))2, where i, j both run over system sizes L = 12, 14, 16, 18 and yi(x) represents

the spline-interpolated data. The integration regime x is taken to be centered around the transition (i.e. x = 0) and has a
width 2w that we vary to obtain statistics on fc and ν. In the collapse including the system size L = 12 data, the L = 12 curve
is consistently the most off. In the spirit of Ref. (2) we consider the width w for which the extracted parameters are least
sensitive to the inclusion/removal of the L = 12 data. This results in the parameters fc = 2.08± 0.10 and ν = 0.952(5). The
resulting collapse for this set of parameters is shown in Fig. S2.

Choice of gauge for numerics

We chose to work with a time-independent Hamiltonian for which the linear field is added via the dipole term, rather than as a
time-dependent phase factor for the hopping. This interpretation brings with it the potential issue of having an infinite energy
difference between the endpoints of our system as one scales up to the thermodynamic limit. The physics in these two gauges is
evidently invariant, but since we consider (rather small) finite size systems the infinite energies are not a concern. Working in
the time-independent gauge is numerically considerably more convenient, since the time evolution operator over a period T , i.e.
U(T ), can be constructed by a single exponentiation through as U(T ) = exp (−iHstaticT ). For the time-dependent case, one
would have to compute the time ordered integral U(T ) = T exp

(
−i
∫
dtH(t)

)
by breaking it down into many small dt-sized

steps and exponentiating H(t) for each. The resulting differences in the spectra λi,static and λi,time are only of the order of
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Fig. S3. The (real and imaginary parts of the) spectrum of U(T ) computed in the static gauge (larger blue dots) versus the spectrum of U(T ) computed in the time-dependent
gauge (smaller orange dots), for field strengths F = 0.5 (left panel) and F = 3.0 (right panel). The difference between the spectra

∑
i
|λi,static − λi,time| is of order dt

used to calculate the latter.
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Fig. S4. The level statistics (r-index) as a function of the linear field for different values of the integrability-breaking strength, ζ. The calculation was done for a system of 14
sites (half-filled) with a fixed weak disorder W = 0.2 (averaged over 50 realizations),t = 1/2 and U = 1. Inset: the r-index of a clean system of 16 sites with fixed field
F = 3 as a function of ζ.

O(dt). An interesting phenomenon for future investigation is the observed clustering of the eigenvalues for field F > Fc, shown
in Fig. S3.

Sensitivity to integrability-breaking terms

We now consider an extended version of Eq. 5 of the main text,

H =
∑
j

t(c†jcj+1 + h.c)− Fjnj + hjnj + Unjnj+1 [1]

+ ζ
(
c†jcj+2 + h.c+ njnj+2

)
.
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In the absence of both disorder and linear field, the above model is integrable for ζ = 0. We show that also in the presence
of the integrability-breaking terms, the application of linear field (with or without disorder) leads to a transition from a
Wigner-Dyson level statistics (ergodic) to a Poisson level statistics (non-ergodic). While the value of the critical field depends
on ζ and the disorder strength, the qualitative behavior is indifferent to these terms. In Fig. S4 we show the r-index as a
function of the linear field strength. Different curves represent different values of ζ.

Time-evolution using the re-orthogonalized Lanczos algorithm

In this appendix we discuss algorithmic details of simulating the time-evolution of a wavefunction using a Krylov-subspace
method. In particular, we have used the so-called Lanzcos algorithm with re-orthogonalization to obtain the results presented
in Fig. 3 of the main text.

We wish to numerically perform the time-evolution of a wavefunction, i.e., to compute |ψ(t0 + t)〉 = e−iHt|ψ(t0)〉. To do
this exactly would require the full diagonalization of the Hamiltonian H, which becomes impossible for large system sizes due
to memory requirements. An improvement can be made by using a sparse matrix implementation of the Hamiltonian and
iteratively simulating

|ψ(t0 + dt)〉 = e−iHdt|ψ(t0)〉 [2]

for small time-steps dt. A naive implementation of this iterative algorithm quickly accumulates numerical errors and becomes
unstable, however, a more stable variant can be constructed using Krylov-subspaces (3). A Krylov-subspace of dimension m,
Km(H, |ψ〉), is defined as the span of the vectors

(
|ψ〉, H|ψ〉, H2|ψ〉, . . . , Hm−1|ψ〉

)
. The vector |ψ(t0 + dt), after expanding

the exponent on right-hand side of Eq. 2, is approximated well by a vector in this Krylov subspace.
The vectors in Km(H, |ψ(t0)〉) first need to be orthonormalized (discussed in more depth shortly), after which we store them

as the columns of a new matrix Qm of dimension N ×m, where N is the size of the Hilbert space. After obtaining Qm, we
project the Hamiltonian into the spanned subspace to obtain hm = Q†mHQm. This is a much smaller m×m matrix that can
be easily exponentiate, and allows us to compute

|ψ(t0 + dt)〉 = e−iHdt|ψ(t0)〉

≈ the first column of Qme−ihmdt. [3]

In all of the above, the Krylov subspace dimension m can either be systematically increased until convergence is obtained, or
changed adaptively during the orthogonalization procedure described next.

Evert P. L. van Nieuwenburg, Yuval Baum, Gil Refael 5 of 7



−40 −20 0 20 40
−2
−1
0

1

2

E/(2J0)

〈D̂
〉 −3 0 3

−1

1
·10−3

(a)

−1.5 −0.5 0.5 1.5
−2
−1
0

1

2

E/(2J0)

〈D̂
〉

(b)

−4 −2 0 2 4
−2
−1
0

1

2

E/(2J0)

〈D̂
〉

(c)

−6−4−2 0 2 4 6

−2
−1
0

1

2

E/(2J0)

〈D̂
〉

(d)

Fig. S5. Eigenstates dipole moment (expectation value) as a function of their energy for 16 sites half filled chain with J0 = 1/2, U = 1 and different fields: (a) F = 20, (b)
F = 0.5, (c) F = 1.5, (d) F = 2.2. For presentational reasons we show only the expectation value of the dipole moment and omit the fluctuations. The mean fluctuations
are (a) σF ≈ 0.04, (b) σF ≈ 3.2, (c) σF ≈ 1, (d) σF ≈ 0.6. Above a critical field, the eigenstates in a given energy window have a well define dipole moment which restrict
the dynamics.

The numerically most challenging step in this algorithm is obtaining the orthonormalized set of vectors for Qm from
Km(H, |ψ(t)〉). A standard Gram-Schmidt procedure for orthonormalizing a set of vectors loses the orthogonality between
successive vectors simply due to rounding errors (i.e. finite precision of floating point numbers). The modified Gram-
Schmidt procedure does considerably better, but we have found it insufficient for our purpose. The set of vectors we wish to
orthonormalize is a special set, in which each vector is generated from the previous one by application of a matrix. This means
we can generate the vectors during the Gram-Schmidt procedure instead of having them given to use beforehand. This small
but important difference leads to this algorithm often being called the Arnoldi method. The resulting projected matrix is in
general an upper Hessenberg matrix (upper triangular plus the first lower off-diagonal). If the matrix is Hermitian as it is in
our case, the projected matrix is therefore tri-diagonal. The Arnoldi algorithm with a Hermitian matrix is called the Lanczos
algorithm, and provides an improvement in terms of computational effort.

Regardless of using modified Gram-Schmidt, Arnoldi or Lanczos, the orthogonality between successive vectors is gradually
lost. A significant improvement, at computational cost of course, can be made by simply re-orthogonalizing the set of obtained
(semi-)orthogonal vectors. It turns out that for the re-orthogonalization “twice is enough” for non-singular cases (4). For the
numerics presented in Fig. 3 of the main text, we have checked the convergence of the curves with respect to the timestep dt
and the Krylov-subspace dimension m. The values we have used are dt = 0.02 and m = 15.

1. Dipole moment analysis

We show in Fig. S5 the results of exact diagonalization of a half-filled fermionic system where each point represents an eigenstate
in the space of energy and dipole-moment. As expected, in a given energy window and for large field (Fig. S5a) the many body
wave functions have well-defined dipole moment. For a weak field however (Fig. S5b), this is not the case. The eigenstates
in a given energy window span a range of dipole moments. Around the critical field (Fig. S5c,d), while the eigenstates in a
given energy have a finite spread in the dipole moment, the different sectors become distinct and the integer part of the dipole
moment behaves as a conserved quantity.
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