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 2 
Figure 6. Positioning of two replicated chromosomes  3 
A. Time-lapse images of nucleoid positioning in cells that contain two chromosomes. Cell poles are indicated by the 4 
light grew lines. Center and quarter positions in the final cell length is indicated below the image. Ori loci are shown 5 
in red, and the Ter loci are shown in cyan.  6 
B. 2D projection of simulated sister chromosomes that are moving apart due to cell growth and the associated depletant 7 
addition. Cell lengths are indicated at the right. 8 
Scale bars, 5 μm. 9 
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Figure S1. Cell growth with a single nucleoid requires protein synthesis and maintains a nucleoid-3 
bound HU-mYPet level. 4 
A and B. Cell area measurement of dnaC2(ts) allel growing at non-permissive temperature without and with 5 
chloramphenicol treatment 6 
C. Cell length unoccupied by the single nucleoids in cylindrical dnaC2(ts) cells growing into different sizes. Error 7 
bars represent standard deviations. 8 
D. Total chromosome-bound HU-mYPet intensity in dnaC2(ts) cells growing into different sizes. 9 
 10 
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Figure S2. Cell division and chromosome contraction of ΔslmA/dnaC2 mutant. 3 
A, time-lapse images nucleoid dynamics during the growth and division of ΔslmA/dnaC2 cells growing at non-4 
permissive temperature. Phase contrast in grey scale, and HU-mYPet in green. Time is labeled in minutes. Magenta 5 
and cyan arrows traces two cell lineages. Scale bars, 2 μm. Inset, cell size (black) and nucleoid size (magenta) change 6 
over time measured from the nucleoid-containing cell lineage at the left. 7 
B, three examples of chromosome translocation after cell constriction and prior to septation. Grey indicates 8 
automatically identified cell shape, and green indicates automatically identified nucleoid. 9 
C, illustration and time-lapse images showing that the chromosome translocation is oriented towards the cell half with 10 
the Ori focus.  11 
D, histogram showing the maximum DNA translocation speed estimated from the time-lapse fluorescent images. Inset, 12 
progression of DNA translocation in single cells over time.  13 
E, nucleoid/cell length relation in the two nucleoid-containing lineages indicated in A measured over two cell division 14 
events. Time interval is 15 minutes. Each had 13 time points. The black smooth line shows a section of the nucleoid-15 
boundary response curve shown in Fig. 1C. 16 
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 3 
Figure S3. Effect of cell size on the nucleoid internal structure 4 
A, snapshot of a model chromosome at cell length L=6 μm at a density of depletants of 212 μm-3, showing the polar 5 
segregation of the depletants and the helical backbone conformation.  6 
B, Structured Illumination Microscopy images of nucleoids of different lengths at their central focal planes. Scale bar, 7 
2 μm. 8 
 9 
 10 
 11 
 12 
 13 

 14 
 15 
Figure S4.  Ori/Ter foci positioning inside nucleoids of different lengths in different NAP mutants. 16 
Each panel displays the distances of Ori / Ter loci from the center of nucleoids as a function of the nucleoid length. 17 
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 6 
 7 
Figure S5. Sister chromosome positioning is not affected by abolishing transertion or Min proteins. 8 
A and B, distances of two sister chromosomes from the cell center in different cell lengths in minDE+ and 9 
minDE- cells (n = 3626). Green data points represent sister chromosomes that are still connected. Grey and 10 
purple data points indicate right and left chromosomes respectively.  11 
C and D, time-lapse images of single- or double-nucleoid cells treated by a combination of 34 μg/ml 12 
chloramphenicol and 100 μg/ml rifampicin, which were added into the agarose pad. Time 0’ is 10 minutes 13 
after inoculation onto the cover glass. Scale bar, 5 μm. 14 
E, distances of two sister chromosomes from cell center in different cell lengths obtained through 15 
simulations with (bright circles) and without (light lines) depletants.   16 
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Supplementary Table T1. List of strains used in this study. 1 

 2 
Strains Descriptions References 

JW5641 BW25113, ΔslmA::aph :: frt (Baba et al., 2006) 

FW1957 dnaC2(ts) ΔmdoB::aph :: frt (Saifi and Ferat, 2012) 

FW1363 W3110, ΔminDE::cat :: frt :: sacA (Wu et al., 2015b) 

FW2177 AB1157, ori1:: lacOx240::hygR, ter3::tetOx240::accC1 

ΔgalK::tetR-mCerulean :: frt, ΔleuB::lacI-mCherry :: frt, hupA-

mYPet :: frt 

(Wu et al., 2018) 

FW2179 AB1157, ori1:: lacOx240::hygR, ter3::tetOx240::accC1 

ΔgalK::tetR-mCerulean :: frt, ΔleuB::lacI-mCherry :: frt, hupA-

mYPet :: frt, dnaC2 (ts) :: aph frt 

(Wu et al., 2018) 

FW2444 AB1157, ori1:: lacOx240::hygR, ter3::tetOx240::accC1 

ΔgalK::tetR-mCerulean :: frt, ΔleuB::lacI-mCherry :: frt, hupA-

mYPet :: frt, Δfis::frt, dnaC2 (ts) :: aph frt 

(Wu et al., 2018) 

FW2479 AB1157, ori1:: lacOx240::hygR, ter3::tetOx240::accC1 

ΔgalK::tetR-mCerulean :: frt, ΔleuB::lacI-mCherry :: frt, hupA-

mYPet :: frt, Δhns::frt, dnaC2 (ts) :: aph frt 

(Wu et al., 2018) 

FW2254 AB1157, ori1:: lacOx240::hygR, ter3::tetOx240::accC1 

ΔgalK::tetR-mCerulean :: frt, ΔleuB::lacI-mCherry :: frt, hupA-

mYPet :: frt, ΔmatP::frt, dnaC2 (ts) :: aph frt 

(Wu et al., 2018) 

FW2442 AB1157, ori1:: lacOx240::hygR, ter3::tetOx240::accC1 

ΔgalK::tetR-mCerulean :: frt, ΔleuB::lacI-mCherry :: frt, hupA-

mYPet :: frt, ΔslmA::frt, dnaC2 (ts) :: aph frt 

This work 

FW2502 AB1157, ori1:: lacOx240::hygR, ter3::tetOx240::accC1 

ΔgalK::tetR-mCerulean :: frt, ΔleuB::lacI-mCherry :: frt, hupA-

mYPet :: frt, ΔminDE::cat :: frt :: sacA,  dnaC2 (ts) :: aph frt 

This work 

 3 
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