CaltechAUTHORS
  A Caltech Library Service

Dark Energy Survey year 1 results: Galaxy-galaxy lensing

Prat, J. and Eifler, T. F. (2018) Dark Energy Survey year 1 results: Galaxy-galaxy lensing. Physical Review D, 98 (4). Art. No. 042005. ISSN 2470-0010. https://resolver.caltech.edu/CaltechAUTHORS:20180827-094620782

[img] PDF - Published Version
See Usage Policy.

3047Kb
[img] PDF - Submitted Version
See Usage Policy.

2817Kb

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20180827-094620782

Abstract

We present galaxy-galaxy lensing measurements from 1321 sq. deg. of the Dark Energy Survey (DES) Year 1 (Y1) data. The lens sample consists of a selection of 660,000 red galaxies with high-precision photometric redshifts, known as redMaGiC, split into five tomographic bins in the redshift range 0.15 < z < 0.9. We use two different source samples, obtained from the Metacalibration (26 million galaxies) and im3shape (18 million galaxies) shear estimation codes, which are split into four photometric redshift bins in the range 0.2 < z < 1.3. We perform extensive testing of potential systematic effects that can bias the galaxy-galaxy lensing signal, including those from shear estimation, photometric redshifts, and observational properties. Covariances are obtained from jackknife subsamples of the data and validated with a suite of log-normal simulations. We use the shear-ratio geometric test to obtain independent constraints on the mean of the source redshift distributions, providing validation of those obtained from other photo-z studies with the same data. We find consistency between the galaxy bias estimates obtained from our galaxy-galaxy lensing measurements and from galaxy clustering, therefore showing the galaxy-matter cross-correlation coefficient r to be consistent with one, measured over the scales used for the cosmological analysis. The results in this work present one of the three two-point correlation functions, along with galaxy clustering and cosmic shear, used in the DES cosmological analysis of Y1 data, and hence the methodology and the systematics tests presented here provide a critical input for that study as well as for future cosmological analyses in DES and other photometric galaxy surveys.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1103/physrevd.98.042005DOIArticle
https://arxiv.org/abs/1708.01537arXivDiscussion Paper
https://link.aps.org/doi/10.1103/Physics.11.85Featured InPhysics: Viewpoint
ORCID:
AuthorORCID
Prat, J.0000-0002-5933-5150
Eifler, T. F.0000-0002-1894-3301
Additional Information:© 2018 American Physical Society. (Received 8 August 2017; published 27 August 2018) This paper has gone through internal review by the DES collaboration. It has been assigned DES paper id DES-2016-0210 and FermiLab preprint number PUB-17-277-AE. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under Grants No. AYA2015-71825, No. ESP2015-88861, No. FPA2015-68048, No. SEV-2012-0234, No. SEV-2016-0597, and No. MDM-2015-0509, some of which include ERDF funds from the European Union. I. F. A. E. is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC Grant Agreements No. 240672, No. 291329, and No. 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through Project NO. CE110001020. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. Support for D. G. was provided by NASA through Einstein Postdoctoral Fellowship Grant No. PF5-160138 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under Contract No. NAS8-03060. This research used computing resources at SLAC National Accelerator Laboratory, and at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Funders:
Funding AgencyGrant Number
Department of Energy (DOE)DE-AC02-07CH11359
NSFUNSPECIFIED
Ministerio de Educación y Ciencia (MEC)UNSPECIFIED
Science and Technology Facilities Council (STFC)UNSPECIFIED
Higher Education Funding Council for EnglandUNSPECIFIED
University of Illinois Urbana-ChampaignUNSPECIFIED
University of ChicagoUNSPECIFIED
Ohio State UniversityUNSPECIFIED
Texas A&M UniversityUNSPECIFIED
Financiadora de Estudos e Projetos (FINEP)UNSPECIFIED
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)UNSPECIFIED
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UNSPECIFIED
Ministério da Ciência, Tecnologia e Inovação (MCTI)UNSPECIFIED
Deutsche Forschungsgemeinschaft (DFG)UNSPECIFIED
Argonne National LaboratoryUNSPECIFIED
University of California, Santa CruzUNSPECIFIED
University of CambridgeUNSPECIFIED
Centro de Investigaciones Energéticas, Medioambientales y TecnológicasUNSPECIFIED
University College LondonUNSPECIFIED
DES-Brazil ConsortiumUNSPECIFIED
University of EdinburghUNSPECIFIED
ETH ZurichUNSPECIFIED
Institut de Ciències de l’Espai (IEEC/CSIC)UNSPECIFIED
Institut de Física d’Altes EnergiesUNSPECIFIED
Lawrence Berkeley National LaboratoryUNSPECIFIED
Ludwig-Maximilians Universität MünchenUNSPECIFIED
University of MichiganUNSPECIFIED
National Optical Astronomy ObservatoryUNSPECIFIED
University of NottinghamUNSPECIFIED
University of PennsylvaniaUNSPECIFIED
University of PortsmouthUNSPECIFIED
Stanford UniversityUNSPECIFIED
University of SussexUNSPECIFIED
OzDES Membership ConsortiumUNSPECIFIED
NSFAST-1138766
NSFAST-1536171
Ministerio de Economía, Industria y Competitividad (MINECO)AYA2015-71825
Ministerio de Economía, Industria y Competitividad (MINECO)ESP2015-88861
Ministerio de Economía, Industria y Competitividad (MINECO)FPA2015-68048
Centro de Excelencia Severo OchoaSEV-2012-0234
Centro de Excelencia Severo OchoaSEV-2016-0597
Ministerio de Economía, Industria y Competitividad (MINECO)MDM-2015-0509
European Regional Development Fund (ERDF)UNSPECIFIED
Generalitat de CatalunyaUNSPECIFIED
European Research Council (ERC)240672
European Research Council (ERC)291329
European Research Council (ERC)306478
Australian Research CouncilCE110001020
NASA Einstein FellowshipPF5-160138
NASANAS8-03060
Department of Energy (DOE)DE-AC02-05CH11231
Stanford Linear Accelerator CenterUNSPECIFIED
Issue or Number:4
Record Number:CaltechAUTHORS:20180827-094620782
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20180827-094620782
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:89153
Collection:CaltechAUTHORS
Deposited By: George Porter
Deposited On:27 Aug 2018 21:37
Last Modified:09 Mar 2020 13:19

Repository Staff Only: item control page