CaltechAUTHORS
  A Caltech Library Service

Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range

Stolzenburg, Dominik and Kim, Changhyuk and Mai, Huajun and Flagan, Richard C. (2018) Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 115 (37). pp. 9122-9127. ISSN 0027-8424. PMCID PMC6140529. doi:10.1073/pnas.1807604115. https://resolver.caltech.edu/CaltechAUTHORS:20180829-153219060

[img] PDF - Published Version
Creative Commons Attribution Non-commercial No Derivatives.

7MB
[img] PDF - Supplemental Material
Creative Commons Attribution Non-commercial No Derivatives.

5MB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20180829-153219060

Abstract

Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Recent results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from −25 °C to 25 °C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We show that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1073/pnas.1807604115DOIArticle
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807604115/-/DCSupplementalPublisherSupporting Information
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140529PubMed CentralArticle
ORCID:
AuthorORCID
Stolzenburg, Dominik0000-0003-1014-1360
Kim, Changhyuk0000-0002-8744-4880
Mai, Huajun0000-0002-0616-1986
Flagan, Richard C.0000-0001-5690-770X
Additional Information:© 2018 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). Edited by John H. Seinfeld, California Institute of Technology, Pasadena, CA, and approved July 30, 2018 (received for review May 3, 2018). Published ahead of print August 28, 2018. We thank T. Kurten and N. Hyttinen for providing helpful COSMOtherm volatility estimates. We also thank K. Ivanova, P. Carrie, L.-P. De Menezes, J. Dumollard, F. Josa, I. Krasin, R. Kristic, A. Laassiri, O. S. Maksumov, B. Marichy, H. Martinati, S. V. Mizin, R. Sitals, A. Wasem, and M. Wilhelmsson for their contributions to the experiment. We thank the European Organization for Nuclear Research (CERN) for supporting CLOUD with important technical and financial resources and for providing a particle beam from the CERN Proton Synchrotron. This research was supported by the European Commission Seventh Framework Programme (Marie Curie Initial Training Network “CLOUD-TRAIN” 316662); German Federal Ministry of Education and Research Grants 01LK1222 A and 01LK1601 A; Swiss National Science Foundation Projects 20FI20_159851, 200020_172602, and 20FI20_172622; Austrian Research Funding Association FFG Project 846050; Austrian Science Fund (FWF) Projects J3951-N36 and J-3900; European Research Council (ERC) Consolidator Grant NANODYNAMITE 616075; ERC-Advanced Grant DAMOCLES 692891; ERC Starting Grant COALA 638703; Horizon 2020 Marie Sklodowska-Curie Grant 656994 (“Nano-CAVa”); ERC Advanced Grant 742206 ATM-GP; Academy of Finland Center of Excellence Programme Grant 307331; US Department of Energy Grant DE-SC0014469; and the Presidium of the Russian Academy of Sciences Program “High Energy Physics and Neutrino Astrophysics” 2015.
Funders:
Funding AgencyGrant Number
CERNUNSPECIFIED
Marie Curie Fellowship316662
Bundesministerium für Bildung und Forschung (BMBF)01LK1222 A
Bundesministerium für Bildung und Forschung (BMBF)01LK1601 A
Swiss National Science Foundation (SNSF)20FI20_159851
Swiss National Science Foundation (SNSF)200020_172602
Swiss National Science Foundation (SNSF)20FI20_172622
Österreichische Forschungsförderungsgesellschaft846050
FWF Der WissenschaftsfondsJ3951-N36
FWF Der WissenschaftsfondsJ-3900
European Research Council (ERC)616075
European Research Council (ERC)692891
European Research Council (ERC)638703
Marie Curie Fellowship656994
European Research Council (ERC)742206
Academy of Finland307331
Department of Energy (DOE)DE-SC0014469
Russian Academy of SciencesUNSPECIFIED
Subject Keywords:aerosols; nanoparticle growth; aerosol formation; CLOUD experiment; volatile organic compounds
Issue or Number:37
PubMed Central ID:PMC6140529
DOI:10.1073/pnas.1807604115
Record Number:CaltechAUTHORS:20180829-153219060
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20180829-153219060
Official Citation:Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range Dominik Stolzenburg, Lukas Fischer, Alexander L. Vogel, Martin Heinritzi, Meredith Schervish, Mario Simon, Andrea C. Wagner, Lubna Dada, Lauri R. Ahonen, Antonio Amorim, Andrea Baccarini, Paulus S. Bauer, Bernhard Baumgartner, Anton Bergen, Federico Bianchi, Martin Breitenlechner, Sophia Brilke, Stephany Buenrostro Mazon, Dexian Chen, António Dias, Danielle C. Draper, Jonathan Duplissy, Imad El Haddad, Henning Finkenzeller, Carla Frege, Claudia Fuchs, Olga Garmash, Hamish Gordon, Xucheng He, Johanna Helm, Victoria Hofbauer, Christopher R. Hoyle, Changhyuk Kim, Jasper Kirkby, Jenni Kontkanen, Andreas Kürten, Janne Lampilahti, Michael Lawler, Katrianne Lehtipalo, Markus Leiminger, Huajun Mai, Serge Mathot, Bernhard Mentler, Ugo Molteni, Wei Nie, Tuomo Nieminen, John B. Nowak, Andrea Ojdanic, Antti Onnela, Monica Passananti, Tuukka Petäjä, Lauriane L. J. Quéléver, Matti P. Rissanen, Nina Sarnela, Simon Schallhart, Christian Tauber, António Tomé, Robert Wagner, Mingyi Wang, Lena Weitz, Daniela Wimmer, Mao Xiao, Chao Yan, Penglin Ye, Qiaozhi Zha, Urs Baltensperger, Joachim Curtius, Josef Dommen, Richard C. Flagan, Markku Kulmala, James N. Smith, Douglas R. Worsnop, Armin Hansel, Neil M. Donahue, Paul M. Winkler Proceedings of the National Academy of Sciences Sep 2018, 115 (37) 9122-9127; DOI: 10.1073/pnas.1807604115
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:89289
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:29 Aug 2018 23:26
Last Modified:07 Mar 2022 19:03

Repository Staff Only: item control page