A Caltech Library Service

CO Luminosity Density at High-z (COLDz) Survey: A Sensitive, Large-area Blind Search for Low-J CO Emission from Cold Gas in the Early Universe with the Karl G. Jansky Very Large Array

Pavesi, Riccardo and Sharon, Chelsea E. and Riechers, Dominik A. and Hodge, Jacqueline A. and Decarli, Roberto and Walter, Fabian and Carilli, Chris L. and Daddi, Emanuele and Smail, Ian and Dickinson, Mark and Ivison, Rob J. and Sargent, Mark and da Cunha, Elisabete and Aravena, Manuel and Darling, Jeremy and Smolčić, Vernesa and Scoville, Nicholas Z. and Capak, Peter L. and Wagg, Jeff (2018) CO Luminosity Density at High-z (COLDz) Survey: A Sensitive, Large-area Blind Search for Low-J CO Emission from Cold Gas in the Early Universe with the Karl G. Jansky Very Large Array. Astrophysical Journal, 864 (1). Art. No. 49. ISSN 0004-637X.

[img] PDF - Published Version
See Usage Policy.

[img] PDF - Accepted Version
See Usage Policy.


Use this Persistent URL to link to this item:


We describe the CO Luminosity Density at High-z (COLDz) survey, the first spectral line deep field targeting CO(1–0) emission from galaxies at z = 1.95–2.85 and CO(2–1) at z = 4.91–6.70. The main goal of COLDz is to constrain the cosmic density of molecular gas at the peak epoch of cosmic star formation. By targeting both a wide (~51 arcmin2) and a deep (~9 arcmin^2) area, the survey is designed to robustly constrain the bright end and the characteristic luminosity of the CO(1–0) luminosity function. An extensive analysis of the reliability of our line candidates and new techniques provide detailed completeness and statistical corrections as necessary to determine the best constraints to date on the CO luminosity function. Our blind search for CO(1–0) uniformly selects starbursts and massive main-sequence galaxies based on their cold molecular gas masses. Our search also detects CO(2–1) line emission from optically dark, dusty star-forming galaxies at z > 5. We find a range of spatial sizes for the CO-traced gas reservoirs up to ~40 kpc, suggesting that spatially extended cold molecular gas reservoirs may be common in massive, gas-rich galaxies at z ~ 2. Through CO line stacking, we constrain the gas mass fraction in previously known typical star-forming galaxies at z = 2–3. The stacked CO detection suggests lower molecular gas mass fractions than expected for massive main-sequence galaxies by a factor of ~3–6. We find total CO line brightness at ~34 GHz of 0.45 ± 0.2 μK, which constrains future line intensity mapping and CMB experiments.

Item Type:Article
Related URLs:
URLURL TypeDescription Paper
Pavesi, Riccardo0000-0002-2263-646X
Sharon, Chelsea E.0000-0002-6250-5608
Riechers, Dominik A.0000-0001-9585-1462
Hodge, Jacqueline A.0000-0001-6586-8845
Decarli, Roberto0000-0002-2662-8803
Walter, Fabian0000-0003-4793-7880
Carilli, Chris L.0000-0001-6647-3861
Daddi, Emanuele0000-0002-3331-9590
Smail, Ian0000-0003-3037-257X
Dickinson, Mark0000-0001-5414-5131
Ivison, Rob J.0000-0001-5118-1313
Sargent, Mark0000-0003-1033-9684
da Cunha, Elisabete0000-0001-9759-4797
Aravena, Manuel0000-0002-6290-3198
Darling, Jeremy0000-0003-2511-2060
Smolčić, Vernesa0000-0002-3893-8614
Scoville, Nicholas Z.0000-0002-0438-3323
Additional Information:© 2018. The American Astronomical Society. Received 2018 February 13; revised 2018 May 29; accepted 2018 June 6; published 2018 August 29. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. D.R. and R.P. acknowledge support from the National Science Foundation under grant number AST-1614213 to Cornell University. R.P. acknowledges support through award SOSPA3-008 from the NRAO. We thank Tom Loredo for helpful discussion. I.R.S. acknowledges support from the ERC Advanced Grant DUSTYGAL (321334), STFC (ST/P000541/1), and a Royal Society/Wolfson Merit Award. V.S. acknowledges support from the European Union's Seventh Frame-work program under grant agreement 337595 (ERC Starting Grant, CoSMass) RJI acknowledges ERC funding through Advanced Grant 321302 COSMICISM. This research has made use of the NASA/ IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work is based on observations taken by the CANDELS Multi-Cycle and 3D-HST Treasury Program (GO 12177 and 12328) with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. We acknowledge funding toward the 3 bit samplers used in this work from ERC Advanced Grant 321302, COSMICISM. J.A.H. acknowledges the support of the VIDI research program with project number 639.042.611, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). M.T.S. acknowledges support from the Science and Technology Facilities Council (grant number ST/P000252/1).
Group:COSMOS, Infrared Processing and Analysis Center (IPAC)
Funding AgencyGrant Number
National Radio Astronomy ObservatorySOSPA3-008
European Research Council (ERC)321334
Science and Technology Facilities Council (STFC)ST/P000541/1
European Research Council (ERC)337595
European Research Council (ERC)321302
NASAGO 12177
NASAGO 12328
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)639.042.611
Science and Technology Facilities Council (STFC)ST/P000252/1
Subject Keywords:galaxies: evolution; galaxies: formation; galaxies: high-redshift; galaxies: ISM; radio lines: galaxies; surveys
Record Number:CaltechAUTHORS:20180830-105710950
Persistent URL:
Official Citation:Riccardo Pavesi et al 2018 ApJ 864 49
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:89316
Deposited By: George Porter
Deposited On:30 Aug 2018 19:51
Last Modified:30 Aug 2018 19:51

Repository Staff Only: item control page