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Computational complex optical field imaging
using a designed metasurface diffuser
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Various speckle-based computational imaging techniques that exploit the ability of scattering media to transfer hidden
information into the speckle pattern have recently been demonstrated. Current implementations suffer from several
drawbacks associated with the use of conventional scattering media (CSM), such as their time-consuming characteri-
zation, instability with time, and limited memory-effect range. Here we show that by using a random dielectric
metasurface diffuser (MD) with known scattering properties, many of these issues can be addressed. We experimen-
tally demonstrate an imaging system with the ability to retrieve complex field values using a MD and the speckle-
correlation scattering matrix method. We explore the mathematical properties of the MD transmission matrix such as
its correlation and singular value spectrum to expand the understanding about both MDs and the speckle-correlation
scattering matrix approach. In addition to a large noise tolerance, reliable reproducibility, and robustness against
misalignments, using the MD allows us to substitute the laborious experimental characterization procedure of
the CSM with a simple simulation process. Moreover, dielectric MDs with identical scattering properties can easily
be mass-produced, thus enabling real-world applications. Representing a bridge between metasurface optics and
speckle-based computational imaging, this work paves the way to extending the potentials of diverse speckle-based
computational imaging methods for various applications such as biomedical imaging, holography, and optical
encryption. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (050.6624) Subwavelength structures; (110.6880) Three-dimensional image acquisition; (110.1758) Computational

imaging.
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1. INTRODUCTION

Imaging through scattering media is one of the most challenging
problems in optics, as the passage of coherent light through
scatterers leads to complicated speckle patterns. Various methods
for imaging objects through scattering media, such as optical
coherence tomography [1], wavefront engineering [2], speckle
correlation based on the memory effect [3,4], and the transmis-
sion matrix [5], have been reported.

In the past few years, various computational techniques that
retrieve hidden information from changes in complicated speckle
patterns have been proposed [6-22]. These speckle-based com-
putational imaging techniques, which utilize the benefits of
scattering instead of considering it an obstacle, have unique merits
in capturing various types of hidden information that are other-
wise challenging to obtain with conventional imaging systems, or
require a higher degree of complexity in the optical system. For
example, progress has been made toward developing diverse
speckle-based computational imaging techniques for retrieving
depth or three-dimensional information. These techniques
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include phase-space measurements [6,7], speckle holography with
a reference point source [8], compressed sensing techniques with
speckle patterns [9,10], deconvolution with the manipulated
point spread function based on the memory effect [11], the
speckle-correlation scattering matrix (SSM) [12,13], and wave-
front sensing with the Demon algorithm [14]. Based on the spec-
tral decorrelation characteristics of the speckle pattern, various
methods to retrieve spectral information have also been explored
[15-18]. Moreover, speckle-based computational imaging meth-
ods allow for retrieval of more diverse information about the light,
such as its polarization [19] or orbital angular momentum [20],
and also can lead to retrieval of images with enhanced resolu-
tion [21,22].

In particular, the SSM method has recently been proposed to
enable complex field measurements without a reference signal
[12,13,19,20]. However, the previous works focus only on the
optical methods or computational aspects, leaving out the scatter-
ing medium as an integral part of the scheme. Similar to other
scattering-based techniques, the use of conventional scattering
media (CSM) has many drawbacks that significantly limit the
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potential of this technique for real applications. For example, the
instability of the optical properties [23], the fluctuation in trans-
mittance of diffusive CSM [24], and the trade-off between
memory-effect range and maximum scattering angular range
[25] could be critical drawbacks from a practical point of view.
Most important, the cumbersome experimental characterization
procedure that should be individually repeated for every scattering
medium is an important barrier that will be extremely challenging
to overcome if systems employing such techniques are to be
mass-produced and commercialized.

Optical metasurfaces, composed of nano-scatterers or meta-
atoms, can manipulate the phase, amplitude, and polarization
of light at subwavelength scales [26-30]. Various conventional
optical components [31-35] as well as newer optical devices
[36,37] have already been demonstrated using metasurfaces. In
addition, concepts of computational optics with metasurfaces
were recently proposed in the context of full-color imaging
[38] and optical encryption [39]. Moreover, several investigations
about the statistical or physical properties of random metasurfa-
ces, such as the far-field response [40,41] or the random Rashba
effect [42], have been reported. Recently, the concept of the meta-
surface diffuser (MD) was also proposed for wavefront control
with a spatial light modulator, demonstrating wide field of view
(FOV) and high-resolution bio-imaging [25]. However, the
investigation focused on wavefront shaping rather than computa-
tional imaging based on the properties of the speckle patterns.

Here we propose the use of designed MDs that replace CSMs
for the purpose of complex field and three-dimensional imaging,.
The performance of the complex field imager is demonstrated in
both simulation and experiment. In particular, measurements of
amplitude samples and holographic imaging with numerical back-
propagation verify the MD’s capability for complex field retrieval
with real objects. In addition, several benefits of the MD such as
replacing the laborious characterization procedure of the CSM
with a significantly simpler simulation process, reproducibility,
stability, high noise tolerance, and robustness against misalign-
ments are also demonstrated and discussed. Moreover, we explore
the mathematical properties of the transmission matrix (T), such
as the correlation between its columns and the randomness of its
entries indicated by the singular value spectrum. These properties
give important insight into the optical properties of the MD as a
scattering medium and clarify the required operating conditions

of the SSM method.

2. METASURFACE DIFFUSER DESIGN

Figure 1 schematically illustrates the concept of the MD-based
complex field imager. Light from the object is scattered by the
MD and leads to a speckle pattern that is captured by an image
sensor. Using the computed T matrix of the designed MD and the
captured intensity of the speckle pattern, the complex fields of the
object can be retrieved. The MD works as a cross-polarized ran-
dom phased array that scatters light with greater efficiency than
amplitude masks, which are widely used in compressed sensing
schemes [43—45]. In other words, the MD is designed to
operate as a half-wave plate (HWP), and at the same time to
scatter light uniformly.

The MD, schematically shown in Fig. 2(a), is composed of
high-contrast birefringent amorphous silicon (a-Si) meta-atoms
[46]. The meta-atoms are 652 nm tall and rest on a square lattice
with a lattice constant of 500 nm. The design wavelength is
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Fig. 1. Schematic illustration of computational complex field retrieval
using a designed MD. Light from the object is scattered by the metasur-
face, resulting in a speckle pattern. The known phase profile of the MD is
then used in a computational procedure based on the SSM method to
retrieve the complex fields of the object from the captured speckle pattern.

850 nm. The meta-atoms shown in Fig. 2(b) have rectangular
cross sections with side lengths D, and D, along the x and y axes,
respectively. With proper design, the meta-atoms provide inde-
pendent 27 phase coverage for x- and y-polarized light. The
meta-atom side lengths versus the phase delays for two orthogonal
polarizations (¢, and ¢,) are plotted in Fig. 2(c) (see Section S1
and Fig. S1 of Supplement 1 for details of the simulation results,
design, and fabrication).
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Fig. 2. MD structure and design. (a) Schematic illustration of the side
and top views of the MD. The a-Si meta-atoms are arranged in a square
lattice on a fused silica substrate. A gold layer is deposited to block the
light outside the diffuser aperture. (b) Schematics of a uniform array (top)
and a unit cell of the metasurface (bottom), showing the parameter def-
initions. The transmission phase of the two orthogonal polarizations can
be manipulated using the meta-atoms. (c) Calculated in-plane dimen-
sions of the meta-atoms (D, and D,) as functions of the required trans-
mission phases for x- and y-polarized light (¢, and ¢,, respectively). The
black dashed lines show the meta-atoms that work as a half-wave plate
(i.e., |¢ - ¢,| = 7). (d) Calculated amplitude of the Fourier transform
of the MD’s phase mask. (e) Optical image of the fabricated MD array.
(f) Bird's-eye-view scanning electron microscope image of a portion of
the metasurface. The scale bar is 1 pm.
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To suppress the power of the unscattered light after the MD
(which is inevitable due to the finite scattering efficiency and
fabrication imperfections), we designed and used the MD in a
cross-polarized configuration. To this end, each meta-atom oper-
ates as a HWP whose optical axis makes a 45 deg angle with the x
and y directions [Fig. 2(a), right]. As a result, the x-polarized
input light will be scattered to the y-polarized output. The un-
scattered light is then rejected using a linear polarizer. We should
note here that this is an important additional benefit of the
capabilities of MDs, not achievable with CSM.

In the MD design process, the data in Fig. 2(c) act as a lookup
table, with the dashed black lines corresponding to the HWP
meta-atoms. Similar to other local dielectric metasurfaces, the
MD acts as a phase mask characterized by a two-dimensional
complex transmission function. In order for the MD to scatter
light isotropically, we designed the phase mask to have uniform
amplitude in the Fourier domain. As shown in the simulation
results in Fig. 2(d), the numerical aperture of the MD is set
to 0.6, which means that it scatters light to a maximum angle
of ~37 deg. The Gerchberg—Saxton (GS) algorithm [47-49]
is used to design the phase profile of the diffuser (see
Section S1 of Supplement 1 for details). An optical image of
an array of fabricated MDs, each 1.6 mm in diameter, is shown
in Fig. 2(e). A scanning electron microscope image of the meta-
atoms is shown in Fig. 2(f). Moreover, a gold aperture is deposited
around the MDs to block the unwanted light to increase the
signal-to-noise ratio (SNR).

3. THEORY AND SIMULATION RESULTS
A. Theory

In linear optical systems, the T matrix can describe the relation-
ship between an input field (x) and an output field (y) through a
linear equation, y = Tx. In this section, the properties of the T
matrix of the MD are explored for two reasons. First, knowing T
is a prerequisite of the SSM method, which we utilized to directly
retrieve the input complex field x from the output intensity of the
speckle pattern, y*y. Second, the mathematical properties of T can
be utilized not only for better characterization of the MD as a
scattering medium, but also to improve our understanding of
the operating conditions of the SSM method.

To compute the T matrix, we performed a numerical study
using the designed MD phase mask and the wave propagation
method (see Section S1 and Fig. S2 of Supplement 1 for the
detailed procedure and the flow graph showing the computation
of T). To limit the matrix dimensions and make the calculations
manageable in a regular workstation, we limited the input and
output space. At the input plane, we limited the object to a
60 x 60 array of 2.5 um pixels. For each input pixel, the field
is then calculated at the output space. After downsampling the
output field to compensate for the oversampling caused by the
microscope magnification, the effective output space in our sys-
tem becomes a 210 x 210 array of 1.06 pm pixels (see Section S1
of Supplement 1 for details). Each input/output pixel corresponds
to an input/output mode. Therefore, this choice sets the number
of input and output modes, NV and M, at 3600 and 44,100,
respectively. The simulated amplitude and phase of the speckle
patterns on the output space for the 1st, 2nd, and Nth input
modes are shown in Fig. 3(a).

The calculated complex speckle pattern for the 7th input
mode, #;, can be written as an M x 1 vector. This vector then
constitutes the 7th column of T, which is an M x N matrix.
The SSM, Z, is then computed from T and the intensity of
the speckle pattern resulting from a certain object, y*y, using [12]

1
Zy= ﬁ[(ti‘fﬂ*)’) - ) Ol M

where (-) indicates spatial averaging and ZP = (|tp|2). Z plays a
key role in the complex field retrieval if three conditions are met.

First, the M /N ratio, denoted by Y, should be much larger
than 1. In this case, the rank of Z becomes one and its eigenvector
forms the initial retrieved complex field. In our case Y is 12.25,
which is sufficiently larger than 1, as our system performs well in
both simulation and experiment. If a system works well with a low
Y, it is beneficial in terms of computational cost and perfor-
mance. That’s because a low Y means a wide FOV for a fixed
M (i.e., higher performance), or a small-sized T matrix for a fixed
N (i.e., less computation required).

Second, the columns of T should be orthogonal to each other
(i.e., the speckle patterns for different input modes should be
uncorrelated). To investigate the orthogonality, we formed a sym-
metric matrix G whose elements are the correlation of normalized

columns of T(G;; = [(#/£;)|/1/>_;>_)- The elements of G are

plotted in Fig. 3(b), which shows an approximately diagonal ma-
trix with all diagonal elements equal to 1. There are some nonzero
off-diagonal elements (with values close to 0.18) corresponding to
the speckle field—field correlation between neighboring input
modes [50,51]. The correlation drops quickly to negligible
amounts for input modes that are farther apart (see Fig. S3 of
Supplement 1 for details about the correlation between the col-
umns of T). The almost uncorrelated columns of T could be
explained by the fact that the MD is a subwavelength-thick dif-
fractive layer with a high scattering power. Also, computing the T
matrix avoids additional correlation caused by any type of noise
during the experimental characterization procedure. From an en-
gineering viewpoing, it is possible to design the MDs to minimize
the correlation between columns of T for given optical setup con-
ditions. This could be a key advantage of the MD for the purpose
of various speckle-based imaging methods based on the T matrix
[5,50]. Nevertheless, as the following numerical and experimental
results show, the achieved level of orthogonality works well for the
field retrieval. It is also worth noting here that even if the vectors
(¢; and ¢;) are not orthogonal, one can in principle form and use
an orthogonal basis with them using the Gram—Schmidt process
[see Figs. S4(a) and S4(b) of Supplement 1 for details].

As the third condition for accurate complex field retrieval, the
MD should be designed to scatter light in random directions. To
investigate the randomness more rigorously, an eigenvalue analy-
sis of T'T/M was performed, where T denotes the conjugate
transpose. It has previously been shown that because of multiple
scattering, the distribution of the normalized singular value spec-
trum of the square T matrix of a thick CSM follows a quarter-
circle law, which is a special case of the Marchenko—Pastur law
[50,52,53]. As shown in Fig. 3(c), the distribution of the normal-
ized eigenvalues of T'T/M for the MD deviates from the
Marchenko-Pastur law, indicating dependence between the en-
tries of T [51,54]. This is because unlike with a thick CSM,
the MD consists of a single layer of scatterers. Also, the
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Fig. 3. Numerical investigation of the ability of the MD to retrieve complex fields. (a) Simulated speckle amplitudes and phases for sample input
modes, which are then shaped as complex M x 1 vectors and form the columns of T. (b) The G matrix formed from the inner product mapping of the
normalized vectors of T. G; represents the absolute value of the inner product of normalized #; and #;. The 130 x 130 elements located at the center of G
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are magnified in the inset. (c) Eigenvalue distribution of the T'T/M matrix. The solid red line is the Marchenko-Pastur law prediction for a random
M x N matrix. (d), (¢) The sample amplitude and phase objects. (f), (g) Simulated speckle patterns of the amplitude and phase objects. (h)—(k) Amplitude
and phase maps of the initially retrieved complex fields. (h), (j) Amplitude object. (i), (k) Retrieved fields for the phase object. (1)—(0) Amplitude and phase

maps of the retrieved complex fields after 20 iterations.

dependence between the entries is consistent with a large
memory-effect range for the MD [25]. However, our experimen-
tal and numerical results verify that this level of randomness is
enough to implement the SSM method.

B. Simulation Results

To numerically investigate the operation of the MD, we
performed simulations using amplitude and phase samples.
Figures 3(d) and 3(e) show sample amplitude and phase objects,
respectively, along with their corresponding simulated speckle
patterns [Figs. 3(f) and 3(g), respectively]. Using the speckle pat-
terns and the precalculated T matrix, the Z matrix is calculated for
each speckle pattern. The first estimate of the complex field is the
eigenvector of Z corresponding to the eigenvalue with the largest
absolute value. The amplitude and phase of these initial estimated
fields are shown in Figs. 3(h) and 3(j), respectively, for the am-
plitude object in Fig. 3(d), and in Figs. 3(i) and 3(k) for the phase
object in Fig. 3(e). An iteration method based on the modified GS
algorithm (originally proposed by Lee and Park [12]) is then ap-
plied to improve the SNR (see Section 1 of Supplement 1 for the
detailed computational procedure). The results after 20 iterations
are shown in Figs. 3(1)-3(0), demonstrating the ability of the MD
to retrieve the complex fields very accurately. Furthermore, to in-
vestigate the effects of the orthogonality between the columns of
T, we also performed the complex field retrieval of the same am-
plitude and phase targets with the transmission matrix modified
through the Gram—Schmidt process (Tgranm). We couldn’t

discern any noticeable difference between the fields retrieved us-
ing either matrix, and therefore we conclude that the achieved
level of orthogonality is high enough to allow near-ideal operation
of the SSM method [see Figs. S4(c)-S4(f) of Supplement 1 for
details]. The iteration process converged quickly, showing negli-
gible changes after 20 iterations. Therefore, we used the same
number of iterations (20) in the experimental studies as well.
On average, calculating the initial retrieved fields and performing
the 20 iterations takes less than 30 s in total on our workstation
(Intel Xeon E5-2640 CPU; 96.0 Gbytes RAM). Most of the com-
putation time is consumed by multiplication of the large matrices,
and thus we expect that the time would significantly decrease with
parallel computing.

4. EXPERIMENTAL RESULTS AND FURTHER
NUMERICAL ANALYSIS

A. Experimental Complex Field Retrieval with
Amplitude Targets

To experimentally test the MD and the method, we use two
different parts of the 1951 USAF resolution test target as ampli-
tude objects in the measurement setup shown in Fig. S5(a) of
Supplement 1. Figures 4(a) and 4(b) show images of the ampli-
tude objects captured using the conventional microscope (i.e.,
with the MD and the polarizers removed). The speckle patterns
generated by the objects through the MD are plotted in Figs. 4(c)
and 4(d). Then, proper downsampling of the speckle pattern is
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Fig. 4. Experimental retrieval of amplitude objects: (a), (b) in-focus
images of targets captured by a custom-built microscope; (c), (d) the re-
sulting speckle patterns of the samples after passing through the MD;
(e), (f) the retrieved object amplitudes; (g), (h) phases from the captured
speckle patterns. The scale bars are 25 pm.

performed to compensate the oversampling caused by the micro-
scope magnification and image sensor pixel size. The Z matrix can
then be computed via Eq. (1) using the downsampled speckle in-
tensity patterns and the precalculated T matrix. The retrieved am-
plitudes and phases of the two amplitude objects are shown in
Figs. 4(e)—4(h) after 20 iterations [see Figs. S5(b) and S5(c) of
Supplement 1 for the retrieved fields before performing iterations].

Unlike with CSM, changing the measurement setup or the
input/output mode conditions (distances, pixel sizes and num-
bers, etc.) does not require the MD to be characterized again.
Instead, the new T matrix is calculated using the designed phase
mask and the new conditions. To examine the reproducibility
of the results under such changes, further measurements were

Without lteration (Simulated Speckle)
SNR = SNR = SNR =

SNR < SNR < SNR <

performed with different distances and pixel sizes. We were able
to reproduce the results under various conditions by just updating
the T matrix accordingly (see Fig. S6 of Supplement 1 for details).
Moreover, the retrieval process is successful despite the experi-
mental noise. To show the effect of a large Y, we also performed
the complex field retrieval for a Y value of 69.4. The large Y
results in improved accuracy of the initial retrievals and retrievals
after 20 iterations, as well as in an increased computation time
from 30 s to 3 min on average (see Fig. S7 of Supplement 1
for details). In addition, the optical properties of the MD are
stable over time, and no noticeable change was observed in more
than five months. It is also worth noting here that a thin linear
polarizer and a compact image sensor can replace the custom-built
microscope for miniaturization.

B. Numerical Noise Tolerance Analysis

We performed a numerical noise tolerance study using the com-
puted T matrix of the MD. Various intensity noises with a
Gaussian distribution and different energies were added numeri-
cally to the simulated and measured speckle intensity patterns to
adjust the SNR. We focused on incoherent intensity noise, be-
cause the employed cross-polarized scheme cuts almost all of
the coherent noise from the laser. The results of the noise toler-
ance study are summarized in Fig. 5. First, we investigated the
noise tolerance with the calculated speckle intensity patterns.
The initially retrieved fields for various SNR values are plotted
in Figs. 5(a) and 5(b) for an amplitude object, and Figs. 5(c)
and 5(d) for a phase object. The retrieval process works for
SNR values greater than 1, and the initially retrieved fields look
almost identical for SNR values larger than 5. Figures 5(e)-5(h)

SNR = SNR = SNR =
1 5

SNR < SNR < SNR <
1

Fig. 5. Numerical noise tolerance analysis. (a)—(d) Retrieved amplitudes and phases for the amplitude and phase objects in Figs. 3(d) and 3(e) for SNR
values from 0.5 to 1000. A Gaussian noise is added to the simulated speckle patterns to test the noise tolerance. (e)—(h) Reconstructed objects after
performing 20 iterations of the GS algorithm using the results in (a)—(d) as initial points. (i), (j) Retrieved intensity and phase maps for the object shown in
Fig. 4(a) when changing the SNR from 0.5 to 1000. A Gaussian noise is added to the measured speckle pattern shown in Fig. 4(c). (k), (I) Reconstructed
intensity and phase maps after conducting 20 iterations of the GS algorithm using (i) and (j). The scale bars in (i)—(l) are 25 pm.
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Fig. 6. Experimental results of complex field retrieval for holographic imaging. (a) Schematic drawing of the measurement setup showing the computa-
tional steps. The complex field is retrieved at the 150 pm aperture using the captured speckle pattern. The field is then backpropagated to reconstruct the
object at different distances from the aperture. (b) Reconstructed images for different objects at point A. (c) Reconstructed images for a target shaped like
the number 5 at different distances from the aperture. (d) Schematic drawing of a microscope setup that images the target through the same aperture for
comparison. (¢) Captured in-focus images with the microscope for the same objects as in (b). (f) Captured in-focus images with the microscope for the
same object and distances as in (c). The distances between the points and the aperture are as follows: A, 1.5 mm; B, 2 mm; C, 2.5 mm; D, 3.5 mm; and E,

4.5 mm. Scale bars are 25 pm.

show the retrieved fields after 20 iterations. As expected, the
retrieval accuracy improves as the SNR value increases. The same
analysis can be performed using the measured speckle patterns.
To this end, the Gaussian intensity noise was numerically added
to the experimentally measured speckle pattern shown in
Fig. 4(c). We should note here that the actual SNR value of the
noisy speckle pattern is less than the numerically controlled SNR,
since the measured speckle pattern already includes the measure-
ment noise and errors arising from imperfections in the fabricated
MD. The results shown in Figs. 5(1)-5(I) are comparable to the
amplitude target shown in Fig. 4(a). If the SNR is less than 1, it is
better to avoid iterations, since the iteration process automatically
assumes a high SNR in the speckle pattern.

It is worth noting the differences between the noise tolerance
analysis in this work and the study performed by Lee and Park
[12]. Here, we used the computed transfer matrix of the actual
MD instead of the randomly generated complex matrix used in
[12]. The randomly generated transfer matrix has almost perfectly
uncorrelated columns, and its corresponding eigenvalue spectrum
follows the Marchenko—Pastur law (i.e., it is almost ideal for the
SSM method). Nevertheless, our results for the MD show better
noise tolerance and similar retrieval performance in comparison
to the randomly generated transfer matrix (see Section S2 and
Fig. S8 of Supplement 1 for details). In addition, here the noise
tolerance was investigated using both simulated and measured
speckle patterns, and we observed that the complex fields can be
retrieved in both cases, even for a low Y value of 12.25 and an SNR
value as low as 1.

C. Holographic Imaging Experiment and Numerical
Analysis of Robustness against Misalignment

To further demonstrate the ability of the MD and the method to
retrieve complex fields, we performed holographic imaging

experiments. To this end, the complex fields are retrieved at a
150 pm aperture behind the MD [Fig. 6(a)]. The fields are then
numerically backpropagated to the desired distance to reconstruct
the object behind the aperture. We imaged several target objects
at different distances from the aperture, as shown in Fig. 6(a). The
reconstructed objects are shown in Figs. 6(b) and 6(c) for different
targets and distances. For comparison, we also imaged the objects
through the same aperture using the microscope shown in
Fig. 6(d). The results are plotted in Figs. 6(e) and 6(f), showing
good agreement with the MD results. The retrieved complex
fields for all images at the aperture are shown in Fig. S9 of
Supplement 1. In both Figs. 6(c) and 6(f), the image resolution
decreases as the object distance to the aperture increases. This is
due to the smaller effective NA of the system in imaging farther
objects as the aperture diameter is kept constant. We also numeri-
cally investigated the performance of the MD and the method
under axial and transverse misalignments. Not only is the method
robust to the MD displacement in the axial and transverse direc-
tions, but also some misalignments can be corrected or exploited
in the alignment of the optical system (see Section S3 and
Fig. S10 of Supplement 1 for details).

5. DISCUSSION AND CONCLUSION

In summary, we demonstrated computational complex field im-
aging using dielectric MDs. We investigated the mathematical
properties of the T matrix of the MD and demonstrated its per-
formance as a scattering medium in the SSM method. In addi-
tion, we discussed the advantages of MDs for computational
imaging over the CSM. A key benefit is the replacement of
the difficult and time-consuming characterization process with
a single simulation. The MD provides reliable reproducibility,
long-term stability, high noise tolerance even for small Y values,
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and robustness against misalignments. CSM usually suffer from
the trade-off between the light efficiency and maximum scattering
angle, because both are highly dependent on the thickness of the
CSM. In contrast, the MD can achieve high transmission and a
large maximum scattering angle at the same time. This could be a
noteworthy property for future investigations based on the MDs.
Another important property of the MDs is the possibility of mass-
producing designed MDs with almost identical optical properties.
Avoiding the required case-by-case characterization could be a
key factor in applying scattering-medium-based computational
imaging techniques in real-life applications.

Similar to some other lensless techniques, speckle-based com-
putational imaging systems can overcome some of the limits of
conventional lens-based imaging systems, such as the trade-off
between resolution and FOV [55]. In addition, it is worth noting
that the lensless imaging systems inherently suffer less from vari-
ous monochromatic and chromatic optical aberrations, which are
major challenges faced by metasurface lenses [56—62]. Even
though the relatively heavy computational load is generally one
of the main drawbacks for computational imaging systems, recent
investigations based on deep learning have shown not only a
significant decrease in the computational load but also improved
imaging performance [63—65].

This work can be extended to various existing speckle-based
computational optics schemes and may be beneficial for a diverse
set of applications. For example, endoscopes for iz vivo quanti-
tative phase imaging can be realized by using the MD and thin
linear polarizers in existing image-sensor-based endoscopes with a
laser light source [66—68]. Due to the compactness of the MD
and its compatibility with semiconductor fabrication processes,
it might be possible to integrate the MD-based holographic cam-
era into smartphones or other electronic devices for the purpose of
point-of-care diagnostics [69] and holography [70]. Furthermore,
we expect that the versatile metasurface platform, which enables
scattering media with tailored properties, can be exploited for
speckle-based optical encryption [71,72].
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