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ABSTRACT 

The increasing use of mouse models for human brain disease studies, coupled with the fact that existing functional 

imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging 

modality. Utilizing acoustic-resolution photoacoustic microscopy (AR-PAM), we imaged spontaneous cerebral 

hemodynamic fluctuations and their associated functional connections in the mouse brain. The images were 

acquired noninvasively in B-scan mode with a fast frame rate, a large field of view, and a high spatial resolution. 

At a location relative to the bregma 0, correlations were investigated inter-hemispherically between bilaterally 

homologous regions, as well as intra-hemispherically within the same functional regions. The functional 

connectivity in different functional regions was studied. The locations of these regions agreed well with the 

Paxinos mouse brain atlas. The functional connectivity map obtained in this study can then be used in the 

investigation of brain disorders such as stroke, Alzheimer’s, schizophrenia, multiple sclerosis, autism, and epilepsy. 

Our experiments show that photoacoustic microscopy is capable to detect connectivities between different 

functional regions in B-scan mode, promising a powerful functional imaging modality for future brain research. 
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1. INTRODUCTION 

Functional magnetic resonance imaging (fMRI), the most common neuroimaging modality for human brain 

imaging, requires a very high magnetic field in order to obtain a sufficient signal to noise ratio (SNR) and 

spatial resolution for small animal imaging 
1
. Functional connectivity mapping with optical intrinsic signal 

imaging (fcOIS) was recently introduced as an alternative method to image functional connectivity in mice 
2,3

. 

In fcOIS, changes in local hemoglobin concentrations are determined based on changes in the reflected light 

intensity from the surface of the brain 
2,4

. Therefore, neuronal activity can be measured through the 

neurovascular response, similar to the method used in fMRI. However, due to the diffusion of light in tissue, 

the spatial resolution of fcOIS is limited 
2,5

, and the experiment has, thus far, been performed using an 

exposed skull preparation, which adds complexity for longitudinal imaging. Photoacoustic imaging is an 

emerging technique that is based on the acoustic detection of optical absorption from tissue chromophores, 

such as oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb) 
6
. This hybrid nature makes photoacoustic 

tomography capable of providing high resolution images of the brain while leaving the scalp intact 
7
. In 

Figure 1, graphs of molar extinction coefficients of oxy (HbO2) and deoxy (Hb) hemoglobin for wavelengths 

ranging from 250 nm to 950 nm are shown.  
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Figure 1. Graph showing molar extinction coefficients of oxy (HbO2) and deoxy (Hb) hemoglobin. The molar extinction 

coefficients of HbO2 and Hb are identical at 532 nm.  
 
 

Previously 
8
, we developed a functional connectivity photoacoustic tomography (fcPAT) system, which, for 

the first time, allowed noninvasive imaging of resting-state functional connectivity in the mouse brain, with a 

large field of view and a high spatial resolution. Bilateral correlations were observed in eight functional 

regions, including the olfactory bulb, limbic, parietal, somatosensory, retrosplenial, visual, motor, and 

temporal regions, as well as in several subregions. 

Here, we image the mouse brain in B-mode, and study the functional connectivity between the homologous 

functional regions in the left and right hemispheres of the mouse brain, non-invasively. We utilize acoustic-

resolution photoacoustic microscopy (AR-PAM) imaging system to image the mouse brain non-invasively. 

The lateral and axial resolutions are 45µm and 30µm, and the focal zone is around +0.3mm ~ -0.7mm. By 

changing the transducer or the numerical aperture, the spatial resolution and the maximum imaging depth of 

the AR-PAM are saleable within the reach of the excitation photons. An imaging depth of more than 3 mm in 

live animals has already been demonstrated using our AR-PAM 
9
. This is much larger penetration depth 

compared to other optical imaging modalities such as optical coherence tomography 
10,11

 
10

. The acquisition 

time in this system is 250 ms. A typical image acquired by the AR-PAM from the mouse brain is given in 

Figure 2.  

 

Figure 2. B-scan image of a mouse brain (Bregma 0) acquired non-invasively using the AR-PAM. 
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For the experiments, we used 3-4 month old Swiss Webster mice. Before imaging, the animal was briefly 

anesthetized with 2% isoflurane, and the hair was removed with a hair remover lotion. The animal was then 

mounted on the imaging system. We changed the anesthesia from isoflurane to the mixture of ketamine and 

xylazine, because they provide stronger brain activity. 100 mg/kg ketamine and 10 mg/kg xylazine were 

mixed and administered intraperitoneally. For brain imaging, all experimental animal procedures were carried 

out in conformity with the guidelines of the US National Institutes of Health. The laboratory animal protocols 

for this work were in accordance with those approved by the Animal Studies Committee of Washington 

University in St. Louis. 

 

2. SEED-BASED ANALYSIS OF FUNCTIONAL CONNECTIVITY  

In each experiment, the animal was imaged using the AR-PAM system for 5 minutes, generating 1200 

temporal images. To process the images, the seed-based method is utilized. For the seed-based analysis, the 

images are processed in order with the following procedures: (a) Smoothing, (b) DC removal, (d) resting-state 

functional connectivity frequency components (between 0.009 and 0.08 Hz) selection, and (e) global 

regression. The regression algorithm is performed following the procedure described in [23]. Briefly 

speaking, for a brain data B including s  temporal images and nm  pixels in each image, the global signal is 

BgBg  1
, where g  is a s1  vector that contains the average of each brain image, and 

')'( 11 gggg  
 ( 'g  is the transpose of g ). The global signal is then regressed out from each pixel’s 

temporal signal using gp BgBB  . In Figure 3, the time traces of seed locations in the left and right 

secondary motor cortex are shown. As one can see, there is a strong correlation between the signal from these 

homologous functional regions.  

 

           
Figure 3. Time traces of seed locations in the left and right secondary motor cortex 
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3. RESULTS AND DISCUSSION 

The mice were imaged by using the AR-PAM imaging system. Images were analyzed using the seed-based 

method as described in section 3. The imaging depth was 3 mm to 3.5 mm. We co-registered the functional 

regions on the Paxinos atlas with those on the PAM image. Then, a seed was placed in retrosplenial granular 

cortex. A strong correlation was observed between the left retrosplenial and right retrosplenial regions (Figure 

4). We also observed a strong correlation between the cingulate regions in the left and right hemispheres of 

the mouse brain. Moreover, simultaneously we observed an anti-correlation between some of the functional 

regions in left and right hemispheres. We are still investigating the anti-correlated regions. The anti-correlated 

regions are believed to have opposing functions, but their origins are still being debated. We plan to use 

electrical stimulation to test the correctness of the results 
12

.  

                                 
Figure 4. B-mode resting-state functional connectivity maps in a live mouse brain acquired noninvasively by AR-PAM 

system. Correlation map of retrosplenial granular cortex. White circles: seed regions. 

 

 

4. CONCLUSION 

Utilizing acoustic-resolution photoacoustic microscopy (AR-PAM), we imaged spontaneous cerebral 

hemodynamic fluctuations and their associated functional connections in the mouse brain. The images were 

acquired noninvasively in B-scan mode with a fast frame rate, a large field of view. At different locations 

relative to the bregma, correlations can be investigated inter-hemispherically between bilaterally homologous 

regions, as well as intra-hemispherically within the same functional regions up to several millimeters in depth. 

The B-scan functional connectivity maps at different brain locations can be combined to eventually form a 

three dimensional correlation map of the entire mouse brain. These are in our future plan which is ongoing. 

. 
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