A Caltech Library Service

In vivo multiscale photoacoustic microscopy of human skin

Favazza, Christopher P. and Hu, Song and Huang, Victor and Jassim, Omar and Cornelius, Lynn A. and Wang, Lihong V. (2011) In vivo multiscale photoacoustic microscopy of human skin. In: Photons Plus Ultrasound: Imaging and Sensing 2011. Proceedings of SPIE. No.7899. Society of Photo-Optical Instrumentation Engineers , Bellingham, WA, Art. No. 789946. ISBN 9780819484369.

[img] PDF - Published Version
See Usage Policy.


Use this Persistent URL to link to this item:


Scalability is a key feature of photoacoustic microscopy (PAM). Reports have shown that PAM systems can be designed to possess sub-micron resolution at shallow depths or penetrate centimeters deep at the expense of resolution while the number of resolved pixels in the depth direction remains high. This capability to readily tune the imaging parameters while maintaining the same inherent contrast could be extremely useful for a variety of biomedical applications. Human skin, with its layered vascular structure whose dimensions scale with depth, provides an ideal imaging target to illustrate this advantage. Here, we present results from in vivo human skin imaging experiments using two different PAM systems, an approach which enables better characterization of the cutaneous microvasculature throughout the imaging depth. Specifically, we show images from several distinct areas of skin: the palm and the forearm. For each region, the same area was imaged with both an optical-resolution PAM (OR-PAM) and an acoustic-resolution PAM (AR-PAM), and the subsequent images were combined into composite images. The OR-PAM provides less than 5 μm lateral resolution, capable of imaging the smallest capillary vessels, while the AR-PAM enables imaging at depths of several millimeters. Several structures are identifiable in the ORPAM images which cannot be differentiated in AR-PAM images, namely thin epidermal and stratum corneum layers, undulations in the dermal papillae, and capillary loops. However, the AR-PAM provides images of larger vessels, deeper than the OR-PAM can penetrate. These results demonstrate how PAM's scalability can be utilized to more fully characterize cutaneous vasculature, potentially impacting the assessment of numerous cardiovascular related and cutaneous diseases.

Item Type:Book Section
Related URLs:
URLURL TypeDescription
Wang, Lihong V.0000-0001-9783-4383
Additional Information:© 2011 Society of Photo-Optical Instrumentation Engineers. This research was supported by National Institutes of Health grants R01 EB00712, R01 EB010049, R01 CA134539, R01 EB008085, R01 CA134539, U54 CA136398, and 5P60 DK02057933. LW acknowledges financial interest in Endra Inc., which, however, did not support this research.
Funding AgencyGrant Number
NIHR01 EB000712
NIHR01 EB010049
NIHR01 CA134539
NIHR01 EB008085
NIHR01 CA134539
NIHU54 CA136398
NIH5P60 DK02057933
Subject Keywords:photoacoustic microscopy, multi-scale, skin, microvasculature, optical resolution, acoustic resolution
Series Name:Proceedings of SPIE
Issue or Number:7899
Record Number:CaltechAUTHORS:20180918-134410809
Persistent URL:
Official Citation:Christopher P. Favazza, Christopher P. Favazza, Song Hu, Song Hu, Victor Huang, Victor Huang, Omar Jassim, Omar Jassim, Lynn A. Cornelius, Lynn A. Cornelius, Lihong V. Wang, Lihong V. Wang, } "In vivo multiscale photoacoustic microscopy of human skin", Proc. SPIE 7899, Photons Plus Ultrasound: Imaging and Sensing 2011, 789946 (22 February 2011); doi: 10.1117/12.875969;
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:89706
Deposited By: Tony Diaz
Deposited On:18 Sep 2018 21:01
Last Modified:03 Oct 2019 20:18

Repository Staff Only: item control page