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ABSTRACT   

It is difficult to distinguish between tumor cells and surrounding cells without staining as is done in histology. We 
developed tyrosinase-catalyzed melanin as a reporter gene for photoacoustic tomography. Tyrosinase is the primary 
enzyme responsible for the production of melanin and alone is sufficient to produce melanin in non-melanogenic cells. 
Two cell lines were created: a stably transfected HeLa line and a transiently transfected 293 line. A phantom 
experiment was performed with the 293 transfected cells 48 hours post transfection and the results compared with 
oxygenated whole blood, B16 melanoma and 293 control cells. An in vivo experiment was performed using the 
transfected HeLa cells xenografted into a nude mouse ear, and then imaged. The results show strong contrast for 
tyrosinase-catalyzed melanin in both the 293 cells in the tube phantom as well as the in vivo result showing melanin in 
a nude mouse ear.  Transfection increased expression in 293 cells 159 fold and image contrast compared to blood by as 
much as 50 fold. Due to the strong signal obtained at longer wavelengths and the decrease of blood signal at the same 
wavelengths, tyrosinase catalyzed melanin is a good candidate as a molecular imaging contrast agent for photoacoustic 
tomography. 
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1. INTRODUCTION  

A reporter gene in the most basic sense is a gene product which can be measured and is linked to the product or 
function of interest [1]. One common reporter gene is β-galactosidase which was used previously by Li et al in 2007 [2]. 
In their experiment they showed the ability of PAM to image gene expression directly. When the lacZ gene is 
expressed, and X-gal (a substrate for β-galactosidase) is introduced, the enzyme cleaves X-gal produce a stable blue 
product. This blue product absorbs strongly in the red part of the visual spectrum so it is easily distinguishable from 
background hemoglobin absorption in vivo [2]. Razanski et al. have also shown that it is possible to image fluorescent 
reporter genes (eGFP and mCherry) in whole drosophila and zebra fish [3]. 
 
The OR-PAM system has been able to image single red blood cells (RBC) [4]. The main absorber in RBCs with a 
wavelength around 600 nm is hemoglobin. Hemoglobin has two states, oxy and deoxy with different absorption 
spectra that overlap at isosbestic points [5]. One of these isosbestic points is at 598 nm which is also near a peak for 
both forms [5]. At this wavelength the molar extinction coefficient of hemoglobin is 34,639 M-1 cm-1, about two orders 
of magnitude greater than that of melanin. Melanin, as a single molecule is a not as strong an absorber as hemoglobin, 
however it is densely packed in cells and is therefore the absorption coefficient is comparable [6]. Hemoglobin is 
approximately 35% of the cell by volume, so in order to see a transfected cell expressing melanin with as strong a signal 
as is received from an RBC, then the melanin concentration in the cell must be around two orders of magnitude higher 
than that of hemoglobin. The signal from an RBC is strong, so although this volume would produce a similar signal, it is 
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possible to detect lower levels. The actual concentration of melanin in the cell has not been measured and is estimated 
from an average measure taken by Siegrist et al. [7]. 
 
Melanin production occurs primarily due to the tyrosinase enzyme. It does this through the conversion of tyrosine into 
DOPA and DOPA into dopaquinone, which then undergoes spontaneous cyclization and polymerization to create the 
final melanins [8]. When this enzyme is malfunctioning or absent albinism occurs [8]. Melanocytes and cells of this 
lineage are usually the only cells which can produce melanin; however Bouchard et al. showed in 1989 that 
transfecting a cell line, in their case fibroblasts, with tyrosinase cDNA was enough to produce melanin in non-
melanogenic cells [9]. The integration of the tyrosinase gene into normally non-melanogenic cells could prove to be a 
useful molecular imaging contrast agent for photoacoustic tomography. 
 

2. METHODS 

2.1 Transfections 

The pReceiver-M02 plasmid vector was purchased from GeneCopoeia. Both transfections were performed with a 
modified Lipofectamine protocol. The transiently transfected 293 cells were used 48 hours post transfection. The 
stably transfected HeLa cells were transfected and placed under Geneticin selection for two weeks. The cells were kept 
under antibiotic selection until used. 

2.2 Preparation of sample: phantom 

4 Silastic® tubes of 300 μm inner diameter were filled with varying samples as shown in table 1. The tubes samples 
were first pelleted, then decanted and finally the tubes were filled using an insulin syringe.  

 

 Table 1: Phantom tube setup 

Phantom 

Tube Cell type 

1  Oxygenated RBC 

2  B16 melanoma 

3  293-wt 

4  293-tyr 

 

2.3 Preparation of sample: in vivo 

A bolus injection of approximately 1E6, stably transfected HeLa cells, was xenografted into a nude mouse ear near a 
second order branching vessel. Imaging was performed one day after injection. 

 

2.4 Imaging 

The sample was imaged using two dimensional raster scanning on an OR-PAM system composed of a dye laser pumped 
by an Nd:YLF pump laser and detected with a 75 MHz ultrasound transducer with a 70% nominal bandwidth as seen in 
figure 1. The prisms allows light to enter the sample and redirects the ultrasonic wave to the transducer [4]. The water 
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Figure 4: In vivo results for PA imaging of transfected HeLa cells 

 

4. SUMMARY 

It is difficult to distinguish clearly between tumor cells and the surrounding cells without histological staining. To 
increase the contrast of cells of interest such as tumor cells, a new contrast agent for photoacoustic tomography was 
developed by using melanin.  Tyrosinase, the key enzyme in generating melanin in melanocytes, can be expressed in 
cells which normally do not produce melanin through the incorporation of the tyrosinase cDNA into the cells of 
interest. The expression of tyrosinase in non-melanogenic cells is sufficient to alone produce melanin. With the use of 
plasmid vectors it is possible to stably or transiently transfect the cells of interest and begin generating melanin for 
different applications. With a tissue specific promoter it might be possible to image disease states non-invasively and 
with high sensitivity. We have shown that it is possible to spectrally separate tyrosinase-catalyzed melanin from other 
absorbers in vivo and therefore have created a new molecular imaging contrast agent for photoacoustic tomography. 
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