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Single-cell measurement techniques can now probe gene expres-
sion in heterogeneous cell populations from the human body
across a range of environmental and physiological conditions.
However, new mathematical and computational methods are
required to represent and analyze gene-expression changes that
occur in complex mixtures of single cells as they respond to sig-
nals, drugs, or disease states. Here, we introduce a mathematical
modeling platform, PopAlign, that automatically identifies sub-
populations of cells within a heterogeneous mixture and tracks
gene-expression and cell-abundance changes across subpopula-
tions by constructing and comparing probabilistic models. Prob-
abilistic models provide a low-error, compressed representation
of single-cell data that enables efficient large-scale computa-
tions. We apply PopAlign to analyze the impact of 40 different
immunomodulatory compounds on a heterogeneous population
of donor-derived human immune cells as well as patient-specific
disease signatures in multiple myeloma. PopAlign scales to com-
parisons involving tens to hundreds of samples, enabling large-
scale studies of natural and engineered cell populations as they
respond to drugs, signals, or physiological change.

single-cell genomics | probabilistic models | single cell mRNA-seq

Introduction
All physiological processes in the body are driven by hetero-
geneous populations of single cells (1–3). Single-cell measure-
ment technologies can now profile gene expression in thousands
of cells from heterogeneous cell populations across different
tissues, physiological conditions, and disease states. However,
converting single-cell data into models that provide a population-
level understanding of processes like an immune response
to infection or cancer progression remains a fundamental
challenge.

Many single-cell analysis tools have been designed to provide
in-depth characterization of cell states and developmental trajec-
tories within a single-cell population. However, once clusters or
trajectories are identified, existing methods do not provide a for-
mal way to compare different populations or samples with each
other. In this paper, we introduce a computational framework,
PopAlign, that was designed to provide an integrated represen-
tation of the cell population within a sample, so that samples can
be compared at different scales of representation, ranging from
gene-expression programs, to cell states, to the structure of the
entire cell population. PopAlign identifies, aligns, and tracks sub-
populations of single cells within a heterogeneous cell population
profiled by single-cell RNA sequencing (scRNA-seq) (2, 4, 5).
Mathematically, PopAlign constructs a low-dimensional proba-
bilistic model of each cell population across a series of samples.
PopAlign 1) automatically identifies and models subpopulations
of cells; 2) aligns cellular subpopulations across experimental
conditions (signaling, disease); and 3) quantifies changes in cell
abundance and gene expression for all aligned subpopulations of
cells.

The key conceptual advance underlying PopAlign is repre-
sentational: we model the distribution of gene-expression states
within a heterogeneous cell population using a probabilistic
mixture model that we infer from single-cell data. PopAlign
identifies and represents subpopulations of cells as indepen-
dent Gaussian densities within a reduced gene-expression
space identified by orthogonal nonnegative matrix factorization
(oNMF). PopAlign, then, makes quantitative statistical align-
ments between subpopulations across samples, and thus enables
targeted and quantitative comparisons in gene-expression state
and cellular abundance. Probabilistic modeling is enabled by a
low-dimensional representation of cell state in terms of a set of
gene-expression features learned from data (6–8).

Critically, PopAlign fulfills a fundamental need for compara-
tive analysis methods that can scale to hundreds of experimental
samples. Fundamentally, PopAlign runtime scales linearly with
the number of samples because computations are performed on
probabilistic models rather than on raw single-cell data. Prob-
abilistic models provide a reduced representation of single-cell
data, reducing the memory footprint of a typical 10,000-cell
experimental sample by 50- to 100-fold. Further, downstream
computations, including population alignment, are performed on
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the models themselves, often reducing the number of computa-
tions by an order of magnitude. By contrast, methods based on
extraction of geometric features (clusters) from single-cell data
either by clustering (Louvain) or t-distributed stochastic neigh-
bor embedding (tSNE) rely on pairwise computations between
individual cells, which is compute-intensive and requires storing
of many raw single-cell datasets in memory.

PopAlign is particularly well-suited to analyzing large-scale
datasets with many samples, such as those generated for surveys
of diseased tissues (9, 10) or data generated by using new sam-
ple multiplexing technologies (11–13). Multiplexing technologies
specifically allow convenient interrogation of cell populations
across hundreds of different experimental conditions. However,
PopAlign also offers unique capabilities for analyzing small num-
bers of samples because it provides a formalized representation
of cell-state and quantitative statistical metrics for analyzing
subpopulation and whole-population changes.

We assessed the accuracy and generality of PopAlign using
12 datasets from a mouse-tissue survey (Tabula Muris) (14) as
well as experiments on human peripheral blood cells, includ-
ing a screen of immunomodulatory drugs and a comparison of
healthy patients to disease (multiple myeloma [MM]). We show
that PopAlign can identify and track cell states across a diverse
range of tissues, drug-perturbation experiments, and human dis-
ease states. The probabilistic models have high representational
accuracy and identify biologically meaningful cell states from
data. We performed an experimental screen of 40 immunomod-
ulatory compounds applied to primary human immune cells and
used PopAlign to discover the biggest hits at a population level
and also for specific cell types within the mixture. Finally, we used
PopAlign to extract general and treatment-specific signatures of
disease progression from MM patient samples. Moving forward,

PopAlign sets the stage for the analysis of large-scale experi-
mental screens of drugs and genetic perturbations on hetero-
geneous cell populations extracted from primary human tissue
samples.

Results
PopAlign Represents Heterogeneous Cell Populations with Proba-
bilistic Mixture Models. We develop a mathematical and com-
putational framework (PopAlign) that 1) identifies and aligns
cell states across paired populations of single cells (a reference
population and a test population), and then 2) quantifies shifts
in cell-state abundance and gene expression between aligned
populations (Fig. 1). The method has three steps: probabilistic
mixture model construction, model alignment, and parameter
analysis. PopAlign can be applied to analyze gene-expression
and population-structure changes in heterogeneous popula-
tions of cells as they respond to signals, drugs, and disease
conditions.

We consider two populations of cells, a reference population
(Dref) and a test population (Dtest), that are profiled with single-
cell mRNA-seq (Fig. 1A). Profiling of each population generates
a set of gene-expression vectors, e.g., Dtest = {gi}

k
i=1, where g =

(g1, g2, . . . , gn) is an n-dimensional gene-expression vector that
quantifies the abundance of each mRNA species in single-cell
g and k is the number of profiled single cells. We normalized
and scaled g to account for technical variability in transcript
capture and then log-transformed for downstream computations
(SI Appendix, Data Normalization).

To compare the reference and test-cell populations, we first
constructed a probabilistic model of the gene-expression dis-
tribution for each set of cells (Fig. 1B). The high-dimensional
nature of gene-expression (n ∼ 20, 000) space makes the

A B C D

Fig. 1. Summary of PopAlign framework. PopAlign provides a scalable method for deconstructing quantitative changes in population structure, including
cell-state abundance and gene expression, across many single-cell experimental samples. (A) Users input single-cell gene-expression data from a “Reference”
sample and at least one “Test” sample, which each are a collection of n-dimensional gene-expression vectors g, shown as single dots. PopAlign reduces the
dimensionality of the input data by representing each gene-expression vector as a set of m gene-expression features (m = 10− 20), thus representing
each cell as an m-dimensional vector of coefficients c. (B) For each sample, PopAlign estimates a low-dimensional probabilistic model that represents the
distribution of gene-expression states as a mixture of local Gaussian densities Ni with parameters encoding subpopulation abundance ( i), mean gene-
expression state (µi), and population spread (Σi). (C) Each N test

i in the Test population is aligned to the closest N ref
i in the Reference sample by minimizing

Jeffreys divergence. (D) Following alignment, the parameters of aligned subpopulation pairs are compared to identify subpopulation-specific shifts in
cellular abundance ∆ , shifts in mean gene-expression state ∆µ, and shifts in subpopulation shape ∆Σ.
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inference and interpretation of probabilistic models challenging.
Therefore, we represented each cell, not as a vector of genes, but
as a vector of gene-expression programs or gene-expression fea-
tures that were extracted from the data, so that each single cell
was represented as a vector c = (c1, c2 · · · cm) of m feature coef-
ficients, ci , which weighted the magnitude of gene-expression
programs in a given cell (SI Appendix, Extraction of Gene Feature
Vectors Using Matrix Factorization).

We extracted these gene features using a particular matrix-
factorization method called orthogonal nonnegative matrix fac-
torization (oNMF) (15) that produces a useful set of features
because all vectors are positive and composed of largely nonover-
lapping genes (SI Appendix, Figs. S1B, S2, and S3). This allowed
us to naturally think of a cell’s transcriptional state as a linear
sum of different positive gene-expression programs (16). Other
methods like principal components analysis (PCA) can be more
difficult to interpret because they produce vectors which contain
contributions from overlapping sets of genes. If two features, f1
and f2, contain similar sets of genes, then representations which
use these features can hide underlying cell-state similarity. oNMF
forces shared genes to be separated into their own program, so, in
the example above, shared genes become a third program f3, and
the two cell types can be represented as f1 + f3 and f2 + f3.

Choosing the number of features to use involves balancing a
tradeoff between accuracy and dimensionality. To provide a prin-
cipled way to choose the number of features, we constructed a
loss function f (m) that places a penalty on high values of m (SI
Appendix, Figs. S4 and S5 and Extraction of Gene Feature Vectors)
and uses the function to identify a local minimum. The PopAlign
package allows users to modulate the exact choice of m by tun-
ing the loss function, thus constructing a coarse- or fine-grained
representation that is appropriate for the exact use case.

Following dimensionality reduction, for a given cell popula-
tion, we think of cell states as being sampled from an underlying
joint probability distribution over this feature space, P(c), that
specifies the probability of observing a specific combination of
gene-expression features/programs, c, in the cell population. We
estimated a probabilistic model, P test(c) and P ref(c), for the ref-
erence and test-cell populations that intrinsically factored each
population into a set of distinct subpopulations, each repre-
sented by a Gaussian probability density (density depicted as
individual “clouds” in Fig. 1B):

P test(c) =

l∑
i=1

wi φ
test
i (c) [1]

where φtest
i (c) =N (c;µi ,Σi),

where N (c;µi ,Σi) are multivariate normal distributions with
weight wi , centroids µi , and covariance matrices Σi . The dis-
tributions φtest

i (c) =N (c;µi ,Σi), mixture components, represent
individual subpopulations of cells; l is the number of Gaus-
sian densities in the model. We estimated the parameters of
the mixture model ({µi ,Σi ,wi}) from single-cell data using the
expectation-maximization algorithm (17, 18) with an additional
step to merge redundant mixture components to compensate for
fitting instabilities (SI Appendix, Merging of Redundant Mixture
Components).

The parameters associated with each Gaussian density,
(µi ,Σi ,wi), have a natural correspondence to the biological
structure and semantics of a cellular subpopulation. The rela-
tive abundance of each subpopulation corresponds to the weight
wi ∈ [0, 1]; the average cell gene-expression state of each sub-
population corresponds to the m-dimensional Gaussian cen-
troid vector µi , and the shape or spread of the subpopulation
is captured by the covariance matrix Σi . Intuitively, the local
Gaussian densities provide a natural “language” for compar-
isons between samples. Each Gaussian is a region of high den-

sity in gene-feature space, and we compare cell populations
by asking how the density of cells shifts across experimental
conditions.

Statistical Alignment of Cellular Subpopulations between Samples.
To compare the test and reference models, we “aligned” each
mixture component in the test population model, φtest

i (c)∈
{φtest

i (c)}, to a mixture component, {φref
i (c)}, in the reference

population model (Fig. 1C). Alignment was performed by find-
ing the “closest” reference mixture component in gene-feature
space (SI Appendix, Alignment of Models). Mathematically, to
define closeness, we used the Jeffreys divergence, a statistical
metric of similarity on probability distributions. We chose the
Jeffreys divergence over other metrics because it is symmetric
while also having a convenient parametric form (SI Appendix,
Model Interpretation through Parameter Analysis).

Specifically, for each φtest
i ∈{φtest

i (c)}, we find a φref
j ∈

{φj (c)}ref, the closest mixture component in the reference set:

arg min
φref
j (c)∈{φref

j (c)}
DJD (φtest

i (c) ‖ φref
j (c)), [2]

where the minimization is performed over each {φref
i (c)} in the

set of reference mixture components, and DJD is the Jeffreys
divergence (19). Intuitively, for each test mixture component, we
find the reference mixture component φj that is closest in terms
of position and shape in feature space. For each alignment, we
can calculate an explicit P value from an empirical null distribu-
tion P(DJD) that estimates the probability of observing a given
value of DJD in an empirical set of all subpopulation pairs within
a single-cell tissue database (SI Appendix, Scoring Alignments).

Alignments identify subpopulations with maximal transcrip-
tional-state similarity across samples. Since transcriptional-state
similarity can arise even in the absence of a direct lineage or iden-
tity relationship, alignments do not guarantee cell-type identity,
but, rather, highlight predicted relationships that should be inter-
preted in the context of prior knowledge and can be explored
through further downstream analysis.

The directionality of alignment can impact the results and
highlight different classes of phenomena. For instance, suppose
a cell state in the reference population splits into two progeny
branches in a test sample. If we align to the reference, both
branches in the test sample will align to the same reference cell
state. However, reversing the directionality will give only one
alignment—the original cell state will align only with its closest
progeny. Both procedures are useful because they address dif-
ferent questions; the first allows us to identify all cell states that
align to a particular cell state, and the second allows us to iden-
tify only the most similar cell state. For this reason, we offer the
option to align in both directions, from test samples to reference,
and the reverse.

Additionally, we can perform alignments two-way, which is
useful for identifying these branching events or even missing
populations. For instance, if a cell state is present in the test
sample, but not in the reference sample, the alignment results
will change depending on the directionality. An alignment will
be found going one way, but not the other way. In this case, we
run the alignment procedure in both directions and only retain
alignments in which the aligned pair are each other’s best match.
Alignments which are only found one way are flagged to indi-
cate a missing population or branching event. Thus, two-way
alignments are useful for providing a stringent assessment of
similar cell states across samples and also for flagging poten-
tially interesting orphaned populations and branching events.
These settings offer a suite of different approaches that have
their uses in different contexts (SI Appendix, Directionality of
Alignment).

28786 | www.pnas.org/cgi/doi/10.1073/pnas.2005990117 Chen et al.
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Tracking Cell-State Shifts through Mixture Model Parameters. Fol-
lowing mixture alignment, we analyzed quantitative differences
in mixture parameters between the reference and test mod-
els to track shifts in gene-expression state, gene-expression
covariance, and cellular abundances across the identified sub-
populations of cells (Fig. 1D). Mathematically, for each aligned
mixture pair, (φtest

i ,φref
j ) with parameters {µref

i ,Σref
i ,w ref

i } and
{µtest

j ,Σtest
j ,w test

j }, we calculate:

∆µi = ‖µref
i −µtest

j ‖2, [3]

∆Σi =DC(Σref
i ,Σtest

j ), [4]

∆wi = |w ref
i −w test

j |, [5]

where ∆µi measures shifts in mean gene expression; ∆Σi quan-
tifies shifts in the shape of each mixture component, including
rotations and changes in gene-expression variance using the
Forstner metric, DC, on aligned mixture component covariance
matrices (SI Appendix, Model Interpretation through Parameter
Analysis) (20); and ∆wi quantifies shifts in cell-state abundance.
We calculated these shifts in parameters for all mixture pairs
to assess the impact of drug perturbations or environmental
changes on the underlying cell population.

PopAlign Identifies and Aligns Cell States across Disparate Mouse Tis-
sues. To test the accuracy and generality of PopAlign, we first
constructed and aligned probabilistic models across a wide range
of mouse tissues from a recent public study (Tabula Muris) (14,
21). The Tabula Muris study contains single-cell data collected
from 12 different tissue samples with ∼ 40, 000 cells total.

For all tissues analyzed, the probabilistic mixture models
produce an accurate and interpretable decomposition of the
underlying cell states (SI Appendix, Fig. S9). Accuracy of the
models can be assessed by comparing the synthetic (model-
generated) data to raw experimental data held out from model
training (Fig. 2). PopAlign models generate synthetic data

that replicates the geometric structures and statistical varia-
tions found in the tissue data in tSNE or two-dimensional
(2D) feature projections with quantitative error of ∼ 18%
(Figs. 2 and 3 A and B and SI Appendix, Analysis of Model
Error). The quantitative error across 2D projections is roughly
equal to the error observed at 50% subsampling (SI Appendix,
Fig. S8).

In addition to providing an accurate representation, the mix-
ture models decompose the cell populations into a biologically
interpretable set of cellular subpopulations represented by indi-
vidual φi(c), the mixture components (Fig. 3 C and D). The
PopAlign mixture components, {φi(c)} commonly contain cells
of a single-cell “type” as defined by labels supplied by the Tab-
ula Muris project. In example tissues, PopAlign extracts known
tissue resident cell types, including (Fig. 3 C and D) basal cells,
luminal cells, macrophages, and T cells (in mammary gland)
and skeletal muscle cells, mesenchymal stem cells, endothelial
cells, and macrophages (in limb muscle). Broadly, across all
tissue models (SI Appendix, Fig. S9), 70% of the mixture compo-
nents classified for a single-cell type provided by Tabula Muris
(SI Appendix, Fig. S10).

Through alignment of model components across tissues,
PopAlign enables high-level comparisons of tissue composition.
By aligning mammary gland to limb muscle (Fig. 3E), we iden-
tified “common” cell types between the two tissues, including
B cells (P = 0.0006), T cells (P = 0.001), endothelial cells
(P = 0.0013), and macrophages (P = 0.004, 0.0076) (SI Appendix,
Fig. S4), and also revealed tissue scale differences in relative
abundance. T cells are highly prevalent (w = 0.3 in the mammary
gland, but rare in the limb muscle w = 0.05) (Fig. 3G); endothe-
lial cells are highly abundant in the limb muscle (w = 0.32),
but rare in the mammary gland (w = 0.06) (Fig. 3G). Between
shared cell types, such as macrophages, we reveal common pro-
grams such as ER-Trafficking and Metal Ion Sequestration, as
well as tissue-specific gene-expression programs found specifi-
cally in limb-muscle macrophages (Fig. 3H). PopAlign can, thus,
give insight into the underlying composition of a tissue, shedding
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Fig. 2. PopAlign models represent experimental data with high qualitative and quantitative accuracy. (A) Experimental data for 3,267 bone marrow cells
projected into an m = 10-dimensional oNMF feature space. The 2D plots show single cells projected along oNMF feature pairs (ci , cj), and a single selected
three-dimensional (3D) projection (A, Inset) is shown. The blue axis denotes a shared axis between 2D and 3D plots. (B) Model-generated data for the
same 2D and 3D feature-space projections shown in A. (B, Inset) In the 3D projection, each maroon circle denotes the centroid (µ) of a Gaussian mixture
component. In each projection, the model-generated data replicate the qualitative geometric structures in the experimental data. (C) Random 2D and
one-dimensional (1D) projection plots for quantifying error between a kernel-density estimate (KDE) of the data (i and iv) to the model (ii and v). The L1
error between the model and KDE is computed and displayed on the right (iii and vi). The marginal 1D distributions (iv, v, and vi) are summed along the x
axis of each 2D projection. The kernel-density estimate is built by using all data points with a bandwidth of 0.75. (D) Distribution of summed L1 errors across
2D projections for 500 random projections. Mean error is 0.188± 0.066.
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Fig. 3. Probabilistic models identify, align, and dissect cellular subpopulations across disparate tissues. (A and B) For two tissues, mammary gland (A) and
limb muscle (B), experimental single-cell data (black) are plotted together with PopAlign model-generated data (teal) using a 2D tSNE transformation.
For each tissue, mixture model centroids (µ) are indicated by a numbered black dot. (C and D) Heatmaps for mammary gland (C) and limb muscle (D)
showing the percentage of cells associated with each mixture component that have a specific cell annotation label supplied by Tabula Muris. Columns
(but not rows) sum to one. (E) Null distribution of Jeffreys divergence (JD) using all possible pairs of mixture components within each model. Threshold
for P< 0.05 is indicated by a vertical line. (F) Alignments between mixture component centroids (µ) from the reference population (mammary gland) and
the test population (limb muscle) are shown as connecting lines. All m-dimensional µ vectors are transformed by using PCA and plotted by using the first
three principal components. The width of each line is inversely proportional to the P value associated with the alignment (see key). (G) We ranked aligned
subpopulations in terms of maximum ∆ and show the top two pairs (T cells and endothelial cells) that are highlighted in F with a gray dotted line. T
cells are highly abundant in mammary gland, while endothelial cells are highly abundant in limb muscle. (H) Comparing subpopulation centroids (µ) for
macrophages in terms of annotated oNMF features. Macrophages in mammary gland and limb muscle share common features (Left), but two features
(Right) are expressed at higher levels specifically in limb-muscle macrophages. Coefficient values for each feature have been normalized by the maximum
value across the column. Corresponding alignments are highlighted in F with a red ellipse.

light onto principles of tissue organization with respect to tissue
function.

PopAlign Can Perform Global Comparisons of Cell State across Tens
to Hundreds of Samples. We tested the ability of PopAlign to com-
pare large numbers of samples, using synthetic collections of
samples bootstrapped from Tabula Muris data survey. We found
that PopAlign runtime scales linearly with sample number and
can analyze 100 samples in approximately 100 min on a typical
workstation with eight cores and 64 GB RAM (Fig. 4A). By first
building models, PopAlign front-loads the computation to pro-
duce a low-error (Fig. 2) representation of the data that achieves
a 50- to 100-fold reduction in the memory footprint. Memory
efficiency speeds up downstream tasks, such as the calculation of
pairwise divergences between subpopulations (Fig. 4B) necessary
for aligning them across samples.

Applying PopAlign to compare all 12 tissues of Tabula Muris
shows that the method is general across many types of exper-

iments, including comparisons of disparate tissues that do not
contain overlapping populations. PopAlign achieves generality
because it aligns subpopulations by performing a local com-
putation for each test subpopulation (i.e., the minimization of
Jeffreys divergence relative to reference subpopulations), that
can be accepted or rejected using a hypothesis test. Other
methods for comparing samples across experiments essentially
perform batch correction to align multiple datasets, before pool-
ing data and jointly identifying clusters (22, 23). For example,
canonical correlation analysis (CCA) finds a global linear trans-
formation of the data that minimizes transcriptional differences
between samples. Not only are many batch-correction meth-
ods computationally expensive (Fig. 4A), they can also require
overlapping subpopulations for interpretation, thus limiting the
generality of the approach.

In the 12-sample Tabula Muris comparison, PopAlign uncov-
ered meaningful signatures of cell distributions and gene-
expression patterns that reflect and expand upon known biology.

28788 | www.pnas.org/cgi/doi/10.1073/pnas.2005990117 Chen et al.
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Fig. 4. PopAlign can perform global comparisons of cell states across dozens to hundreds of experimental samples. (A) Computational runtime versus
number of samples for PopAlign (blue) vs. CCA-based alignment method (red). PopAlign scales linearly with the number of samples, while CCA scales
with polynomial time and encounters an out-of-memory error when applied to > 8 samples. Samples are bootstrapped from all 12 samples of the mouse-
tissue survey Tabula Muris. Benchmarking tests were performed on typical workstations (eight cores, 64 GB RAM). (B) Heatmap of a pairwise similarity
metric between subpopulations from all 12 tissues demonstrates that PopAlign can identify cogent cell-type-specific clusters, even when applied on very
disparate tissue types. The similarity metric is defined as exp(−JD), where JD is the Jeffreys divergence between two subpopulations. B, Inset highlights
subpopulations clustered as macrophages, displaying tissue and cell-type labels extracted from Tabula Muris annotations. (C–F) Models for all tissues are
aligned to a reference model (mammary gland), and corresponding abundances ( ) are plotted for selected subpopulations classified as T cells (C), B cells
(D), endothelial cells (E), and macrophages (F). (G) Mean gene-expression state (µ) for macrophages across all tissues show variation in features associated
with key immune pathways (highlighted with red font and arrows).

For example, we found that T cells (Fig. 4C) and B cells (Fig. 4D)
are most abundant in organs where they are known to mature
developmentally [the thymus (24) and spleen (25), respectively],
endothelial cells (Fig. 4E) are most prevalent in highly vas-
cularized tissues (kidney and limb muscle), and macrophages
(Fig. 4F) are highly prevalent in the lung, which accumulates
debris and bacteria that must be engulfed and destroyed. The
analysis also highlights surprising results, such as the observation
that T cells are very abundant in the mammary gland (Fig. 4C).
We also found distinct patterns of gene-program activation (e.g.,
lung macrophages are highly phagocytic) in macrophage popu-

lations across tissues (Fig. 4G), consistent with previous reports
of functional diversity among macrophages (26). These results
demonstrate that PopAlign is an efficient computational frame-
work for extracting meaningful shifts in abundance and gene
expression that scales to large numbers of samples and is not
constrained by requirements for overlapping cell populations
between samples.

PopAlign Identifies Universal and Cell-Type-Specific Impacts of Drugs.
A key application of PopAlign is to study heterogeneous cell pop-
ulations from the human body as they respond to environmental

Chen et al. PNAS | November 17, 2020 | vol. 117 | no. 46 | 28789
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change, drug treatments, and disease. The human immune sys-
tem is an important application domain for PopAlign as an
extremely heterogeneous physiological system that is central for
disease and cell-engineering applications (2, 27–30). Being able
to analyze the effects of different drugs on complex immune-cell
populations, and understand how they affect cell function, is fun-
damentally important to our ability to design drug therapies for
disease treatment. Thus, we performed an analysis of commer-
cially available immunological compounds on human immune
cells and used PopAlign to discover how these compounds alter
specific cellular subtypes.

We performed our screen using 40 drugs (Fig. 5A) from a com-
mercially available compound library (Selleck Chem) on periph-
eral blood mononuclear cells (PBMCs) from a healthy 22-y-old
male donor. PBMCs normally contain a mixture of different
immune cell types, but our model revealed that blood samples
from this particular donor were dominated by monocytes (18%)
and T cells (82%) (Fig. 5B).

We first identified hits at a high level by ranking drugs based on
how similar the drug-exposed populations are to the unperturbed
control populations (six independent replicates). Statistically, we
could define “hits” as drugs which have a negative log-likelihood
ratio metric (SI Appendix, Ranking Populations) that lies below
the control range (gray box). Within this group, high-ranking
drugs include a group of glucocorticoids (compounds labeled
in orange, Fig. 5B), as well as mTOR inhibitors (pink) and
alprostadil (a prostaglandin) (purple).

Many immune-regulating drugs are known to be broadly sup-
pressive or activating, but their cell-type-specific effects are not
very well understood. By quantifying and ranking these shifts
across specific cell types, we found that 26 drugs exerted signif-
icant gene-expression shifts (∆ ) on monocytes (Fig 5C), while
14 drugs exerted significant effects on T cells (false discovery rate
[FDR]-corrected P values< 0.05 ) (Fig 5D). Of these drugs, eight
drugs (highlighted in color) impacted both cell types (Fig. 5 C
and D). Most drugs either did not affect abundances (∆w ≈ 0) or
increased monocyte abundance up to 5% (SI Appendix, Fig. S11
A and B).

The ability to find the transcriptional impacts of genes that
are universal across cell types can reveal important insights
into a drug’s fundamental mechanisms. In our screen, we dis-
covered that, although drug-responsive genes were mostly cell-
type-specific (Fig 5E), for some drugs, up to 15% of impacted
genes were shared between cell types (SI Appendix, Supplemen-
tary File 1, which supplies differentially expressed genes for
all drugs/cell types). For example, budesonide up-regulated 11
genes and down-regulated 14 genes in both T cells and mono-
cytes (Fig 5F). The overlapping down-regulated genes included
many genes associated with actin-based motility—such as actin
genes (beta-actin [ACTB] and ACTG1), an antiadhesion pep-
tide (CD52), a myosin-interacting protein (CD74) (31), and an
actin-sequestering protein (TSMB10) (32). This result is consis-
tent with earlier observations that glucocorticoids impede T cell
polarization and motility (33) and monocyte migratory behavior
(34) and suggests that broad leukocyte motility deficits may be
partly responsible for the general immunosuppressive effects of
glucocorticoids.

Our analyses also allowed us to discover a highly T cell-specific
drug, dexrazoxane, which exerted the largest changes on T cell
state (mean ∆µ = 2.64, P = 2.54e-5; Fig. 5G), but no changes in
monocytes (mean ∆µ = 0.29, P = 1; Fig 5H). Dexrazoxane did
not generate any differentially expressed genes in monocytes (Fig
5E). We found that in T cells, dexrazoxane up-regulated many
cell-survival genes, including antioxidant enzymes (GPX4 and
PRDX1) and CORO1A, which is essential for T cell survival (35)
(Fig 5I). Dexrazoxane is normally used as a chemoprotectant
agent to reduce toxic side effects of chemotherapy on cardiac
tissue (36). Our finding that dexrazoxane specifically impacts

T cells by up-regulating genes that reduce oxidative stress could
potentially be useful in modulating T cell behavior for other
diseases.

PopAlign allows us to rapidly identify cell-type-specific effects
of drugs. Identification of the most impactful drugs would be
difficult using common visualization approaches like tSNE (SI
Appendix, Fig. S12) or uniform manifold approximation and
projection (UMAP) (37), which show qualitative changes (see
highlighted conditions), but are not quantifiable due to the
nonlinear embedding. Here, using a small screen of 40 drugs
from an immunomodulatory compound library, we were able
to use PopAlign to discover universal and cell-type-specific
mechanisms of drugs, including the observation that glucocor-
ticoids broadly down-regulate motility genes and dexrazoxane
specifically impacts T cells by up-regulating prosurvival genes.
Understanding the cell-type-specific impacts of drugs, which
have so far been obscured, will be integral for designing precision
therapeutics that have targeted effects within a heterogeneous
tissue.

PopAlign Finds General and Treatment-Specific Signatures of MM.
Given the success of the PopAlign framework in extracting cell-
type-specific responses in the immune drug-response data, we
applied the method to study underlying changes in cell state due
to a disease process. As a model system, we applied PopAlign to
compare human PBMC samples from healthy donors to patients
being treated for MM. MM is an incurable malignancy of blood
plasma cells in the bone marrow. Both the disease and associated
treatments result in broad disruptions in cell function across the
immune system (38–41), further contributing to disease progres-
sion and treatment relapse. In MM patients, immune cells with
disrupted phenotypes can be detected in the peripheral blood
(40, 42, 43). An ability to monitor disease progression and treat-
ment in the peripheral blood could therefore provide a powerful
new strategy for making clinical decisions.

We obtained samples of frozen PBMCs from two healthy
and four MM patients undergoing various stages of treatment
(SI Appendix, Table S1). We profiled > 5, 000 cells from each
patient and constructed and aligned probabilistic models to one
reference healthy population (Fig. 6A).

PopAlign identified several common global signatures in the
MM samples at the level of cell-type abundance and gene expres-
sion. Across all samples, we found previously known signatures
of MM, including a deficiency in B cells (40, 44, 45), an expan-
sion of monocyte/myeloid derived cells (42), and, critically, new
impairments in T cell functions.

Plotting ∆w across all patients, we found high-level changes
in subpopulation abundances, which are known to be prog-
nostic of disease progression (43). We found that all MM
patients experienced a contraction in B cell numbers (Fig. 6B),
and two out of four saw a dramatic expansion (∆w� 0.2) of
monocytes (Fig. 6C). Changes in T cell levels, however, can
be highly variable. Most patients saw a reduction in effector
T cells (Fig. 6D) and no change in resting T cells (Fig. 6E).
However, outlier patient MM4 had a large increase in effec-
tor T cells (Fig. 6D; ∆w = 0.2) and a complete elimination
of resting T cells (Fig. 6E; ∆w = 0.2). For this patient, who
was receiving a thalidomide-derived drug therapy, these devia-
tions are consistent with thalidomide’s known stimulatory effects
on T cells (46).

In patients with apparently normal abundances (i.e., ∆w are
small), uncovering subpopulation-specific changes in transcrip-
tion can point to specific modes of immune dysfunction. We
used PopAlign to find that monocyte subpopulations in patients
acquire immunosuppressive phenotypes, evidenced by upregu-
lated expression of CD11b and CD33. Both genes are specific
markers of myeloid-derived suppressor cells (47), which are
negative regulators of immune function associated with cancer.

28790 | www.pnas.org/cgi/doi/10.1073/pnas.2005990117 Chen et al.
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Fig. 5. PopAlign identifies universal and cell-type-specific impacts of immunomodulatory drugs. (A) Rendering of Gaussian mixture model for CTRL1 pro-
jected onto the first two principal components. Abundance weights ( ) are represented by the size of the circle. (B) Drug ranking based on population-level
similarity to control population using the log-likelihood ratio metric (LLR). FDR-corrected P values using one-sample t-test of the six control replicates
against each drug are indicated. Dashed line, P = 0.05. (C and D) Gene-expression shifts (∆µ) for drug-exposed monocyte (C) and T cell (D) subpopulations
with respect to their aligned subpopulation in CTRL1. Each small black dot represents a separate bootstrapped model built from a randomly chosen sub-
sample (80%) of the same data. The large dot indicates the mean ∆µ and is colored by −log(P value). FDR-corrected P values using one-sample t test of
the six control replicates against each drug are indicated. Gray box: The 95% CI of the control mean. Dashed line: P = 0.05. (E) Number of T cell-specific,
monocyte-specific, and overlapping genes that are perturbed in response to top-ranking drugs. (F) Per-gene L1-distance metrics are shown for budesonide,
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By plotting the monocyte-specific mean gene-expression values
for both CD11b and CD33, we saw that all patients except patient
MM3 scored highly for both myeloid-derived suppressor cell

(MDSC) markers (Fig. 6F). Patients with high MDSC popula-
tions typically have a poor prognosis, underscoring the need to
monitor MDSC populations in patients.
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Fig. 6. Discovering signatures of disease and treatment in PBMCs from MM patients. (A) Experimental single-cell mRNA-seq data from two healthy donors
and four MM patients (MM1 to 4-) are projected into 16-dimensional gene-feature space. The 3D plots show single cells in a subset of three gene features
that highlight separation between different immune-cell types. Mixture model centroids (µ) are indicated by a numbered black dot. (B–E) Subpopulations in
test samples are aligned to the reference (healthy1), and changes in abundance (∆ ) are plotted for B cells (B), monocytes (C), effector T cells (D), and naive
T cells (E). (F) Mean gene-expression levels for two markers of MDSCs, CD33 and CD11b, are plotted for all monocyte subpopulations. Error bars denote CI
of the mean. (G) |∆µ| for naive T cell and effector T cell populations relative to healthy1. A.u., arbitrary units. (H) Heatmap of mixture component µ vectors
in terms of feature coefficients ci for aligned naive and effector T cells across samples. MM subpopulations exhibit reduced expression of two features (red
font): leukocyte motility and cytotoxic lymphocyte killing. (I) Distribution of ACTB expression for all effector T cell subpopulations across samples. Violin
shows distribution, and mean is denoted by white circle. (J) Distribution of PFN1 expression for all effector T cell subpopulations across samples. For single
gene plots—F, I, and J—units are in terms of normalized and log-transformed gene expression (log(ĝ + 1)).

Importantly, we also found that naive and effector T cells
across all MM patients had transcriptional defects in pathways
essential for T cell function. By plotting ∆µ, we show that
both populations of T cells experience large mean transcrip-
tional shifts, compared to T cells from our second healthy donor,
healthy2 (Fig. 6G). By examining the µ′s in terms of gene-
expression features (Fig. 6H), we found that in MM, T cells
reduce their expression of two key features—leukocyte motil-
ity and cytotoxic lymphocyte killing. Surprisingly, the impact on
motility is apparent even on the expression of ACTB (Fig. 6I),
a core subunit of the actin cytoskeleton, which was the top hit in
the leukocyte motility feature. We find similar declines in the dis-
tribution of Perforin 1 (PFN1), a pore-forming cytolytic protein
that was found as a top hit in the cytotoxic lymphocyte program
(Fig. 6J).

Our analysis establishes that we can extract consistent and also
patient-specific transcriptional signatures of human disease and
treatment response from PBMCs. Interpreting these signatures

in the context of disease progression or drug response can pro-
vide insight into treatment efficacy and can form the basis of
a personalized medicine approach. Our framework provides a
highly scalable way of extracting, aligning, and comparing these
disease signatures, across many patients at one time.

Discussion
In this paper, we introduce PopAlign, a computational and math-
ematical framework for tracking changes in gene-expression
state and cell abundance in heterogeneous cell populations
across experimental conditions. The central advance in the
method is a probabilistic modeling framework that represents
a cell population as a mixture of Gaussian probability densi-
ties within a low-dimensional space of gene-expression features.
Models are aligned and compared across experimental samples,
and by analyzing shifts in model parameters, we can pinpoint
gene-expression and cell-abundance changes in individual cell
populations.

28792 | www.pnas.org/cgi/doi/10.1073/pnas.2005990117 Chen et al.
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PopAlign constitutes a conceptual advance over existing
single-cell analytical methods. PopAlign is explicitly designed
to track changes within complex cell populations. Since human
diseases like cancer and neurodegeneration arise due to inter-
actions between a wide variety of cell types within a tissue,
population-level models will be essential for building a single-
cell picture of human disease and for understanding how disease
interventions like drug treatments impact the wide range of cell
types within a tissue.

Mathematically, existing single-cell analysis methods rely on
heuristic cluster-based analysis to extract subpopulations of cells.
Fundamentally, such approaches lack well-defined statistical
metrics for making comparisons across samples. By conceptu-
alizing a single-cell population as a probability distribution in
gene-expression space, we define a discrete mathematical object
whose parameters can be interpreted and which can be used to
explicitly calculate quantitative statistical metrics for subpopu-
lation alignment. Our probabilistic representation allows us to
quickly and scalably learn drug responses, even on a complex
mixture of cells, in “one shot.” This scalability allowed us to
analyze data from large-scale drug screens on resting human
immune cells and identify both universal and cell-type-specific
mechanisms of drugs.

In the future, we hope that PopAlign can be used as a part of
a workbench for single-cell analysis and treatment of human dis-
ease. By applying PopAlign to datasets from the human immune
system, we highlight the potential power of PopAlign for identify-
ing drug/signal targets and for deconstructing single-cell disease
states. PopAlign identified cell-type-specific signatures of dis-
ease treatment in MM patients, exposing a potential defect in T
cell activation and motility in three patient samples. This result
points to a potential use of PopAlign for guiding treatment inter-
ventions by exposing the spectrum of transcriptional states within
a diseased tissue and revealing the impact of drug treatments on
diseased cell states, as well as the cellular microenvironment and
immune-cell types. Such insights could lead to single-cell target-
ing of drug combinations to treat human disease as an essentially
population-level phenomena.

Methods
Mathematical Framework. Discussion of the mathematical framework,
including data normalization, selection of feature number, analysis of model
error, alignment of models, and model interpretation through parameter
analysis, is provided in SI Appendix.

Single-Cell RNA-Seq for MM and Healthy Donor Samples. All human cell sam-
ples cryopreserved PBMCs were thawed in warm Roswell Park Memorial
Institute Medium (RPMI-1640) at 37 ◦C and pelleted at 300 × g for 2 min.
Cells were resuspended to 1e6 cells/mL in RPMI-1640. For each sample,
17,400 cells were loaded into a 10X Genomics lane using single-cell 3′ v2
reagents.

Multiplexed Single-Cell RNA-Seq Using Multiseq. Cryopreserved PBMCs
sourced from Hemacare were thawed and rested in RPMI-1640 in CO2

incubator at 37 ◦C for 16 h before drug exposure. After resting, 200,000
cells were seeded into each well of a 96-well plate and exposed to 40
drugs selected from the immunology- and inflammation-related small-
molecule compound library sold by SelleckChem. Drugs were used at
1 µM concentrations in RPMI-1640 plus 10% fetal bovine serum. After
24 h of exposure, cells were dissociated into a single-cell suspension
by using TrypLE and multiplexed by using Multiseq lipid-modified oligos
(11) before running on two 10X Genomics lanes using single-cell 3′ v3
reagents.

Study Approval. All studies were performed on PBMCs obtained com-
mercially from Hemacare. The California Institute of Technology Institu-
tional Review board (IRB) has determined that this work is exempt from
the requirement for IRB review and approval (Reference #17-0727), and
informed consent was not required.

Data Availability. Single-cell gene-expression data have been deposited in
Figshare (https://doi.org/10.6084/m9.figshare.11837097) (48). The software
package, implemented in Python 3, can be found at GitHub, https://github.
com/thomsonlab/popalign.
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