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Abstract

We present the first X-ray reflection model for testing the assumption that the metric of astrophysical black holes is
described by the Kerr solution. We employ the formalism of the transfer function proposed by Cunningham. The
calculations of the reflection spectrum of a thin accretion disk are split into two parts: the calculation of the transfer
function and the calculation of the local spectrum at any emission point in the disk. The transfer function only
depends on the background metric and takes into account all the relativistic effects (gravitational redshift, Doppler
boosting, and light bending). Our code computes the transfer function for a spacetime described by the Johannsen
metric and can easily be extended to any stationary, axisymmetric, and asymptotically flat spacetime. Transfer
functions and single line shapes in the Kerr metric are compared tothose calculated from existing codes to check
that we reach the necessary accuracy. We also simulate some observations with NuSTAR and LAD/eXTP and fit
the data with our new model to show the potential capabilities of current and future observations to constrain
possible deviations from the Kerr metric.
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1. Introduction

The theory of general relativity was proposed by Einstein
about a century ago and is still the standard framework for the
description of the gravitational field and the chrono-geometrical
structure of the spacetime. The first test of general relativity can
be dated back to the measurement of light bending by the Sun
by Eddington in 1919(Dyson et al. 1920). In particular,over
the past 60years,there have been significant efforts to test the
theory in weak gravitational fields, mainly with precise
experiments in the solar system and accurate radio observations
of binary pulsars(Will 2014). Tests of general relativity in the
strong gravity regime are nowadays the new frontier, both with
electromagnetic radiation(Bambi et al. 2016; Johannsen 2016;
Bambi 2017) and gravitational waves(Yunes & Siemens 2013;
Yagi & Stein 2016).

Astrophysical black holes are the ideal laboratory for testing
strong gravity. In four-dimensional general relativity, an
uncharged black hole is described by the Kerr solution6 and is
completely described by only two parameters, namely the mass
M and the spin angular momentum J of the object. This is the
result of the “no-hair theorem” (Carter 1971; Robinson 1975). It
is remarkable that the spacetime around astrophysical black
holes should be well described by the Kerr metric. As soon as a
black hole is formed, initial deviations from the Kerr solution are
quickly radiated away with the emission of gravitational
waves(Price 1972). The equilibrium electric charge is extremely
small for macroscopic objects and completely negligible for the
spacetime geometry(Bambi et al. 2009). Accretion disks
typically have a mass of several orders of magnitude smaller

than the central object and their impact on the background metric
can be safely ignored(Bambi et al. 2014; Barausse et al. 2014).
Within Einstein’s theory of gravity, the Kerr metric should

well describe the spacetime around astrophysical black holes.
Nevertheless, macroscopic deviations from the Kerr spacetime
are possible in many scenarios. For instance, Herdeiro & Radu
(2014) have recently discovered a family of hairy black holes in
four-dimensional Einstein gravity minimally coupled to a
complex, massive scalar field. Hairy black holes generically
arise when scalar fields arenon-minimally coupled to gravity,
and an example is the dilaton in Einstein–dilaton–Gauss–
Bonnet gravity(Mignemi & Stewart 1993). Quantum gravity
effects might also produce macroscopic corrections to the Kerr
metric(Dvali & Gomez 2013a, 2013b; Giddings 2014).
Electromagnetic and gravitational radiations can test general

relativity in different ways. The properties of the electro-
magnetic radiation emitted by the accreting gas close to a black
hole depend on both the gas motion in the strong gravity region
and the photon propagation from the emission point in the disk
to the detection point in the flat faraway region. In this case, we
can test the Kerr metric in the same way as solar system
experiments have so far tested the Schwarzschild solution in
the weak field limit. However, it is not possible to distinguish a
Kerr black hole in general relativity from a Kerr black hole in
an alternative metric theory of gravity, because the geodesic
motion is the same(Psaltis et al. 2008). Gravitational waves
can instead probe the field equations of the theory, while they
are less suitable to perform model-independent tests. The two
approaches can thus be seen as complementary; see, e.g.,
Konoplya & Zhidenko (2016), Cárdenas-Avendaño et al.
(2016), and Bambi & Nampalliwar (2016).
With the electromagnetic approach, there are currentlytwo

leading techniques to probe the strong gravity region around a
black hole: the study of the thermal spectrum of thin disks
(continuum-fitting method; Zhang et al. 1997; Shafee et al. 2006;
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6 There are a number of assumptions behind this statement. In particular, the
spacetime must have fourdimensions and be stationary and asymptotically flat;
the exterior must be regular (no singularities or closed time-like curves); the
metric is a vacuum solution of the Einstein equations. See, e.g., Chruściel et al.
(2012) for more details.

1

mailto:bambi@fudan.edu.cn
https://doi.org/10.3847/1538-4357/aa74c0
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aa74c0&domain=pdf&date_stamp=2017-06-15
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aa74c0&domain=pdf&date_stamp=2017-06-15


McClintock et al. 2014) and the analysis of the relativistically
smeared reflection spectrum of thin disks (reflection method;
Fabian et al. 1989; Brenneman&Reynolds 2006; Reynolds 2014).
Both techniques have been developed for measuring black hole
spins under the assumption of Kerr background and can be
naturally extended for testing the Kerr metric(Torres 2002; Lu &
Torres 2003; Schee & Stuchlík 2009; Bambi & Barausse 2011;
Bambi 2013a, 2013b; Bambi & Malafarina 2013; Johannsen &
Psaltis 2013; Kong et al. 2014; Ni et al. 2016).

The reflection method has a number of advantages with
respect to the study of the thermal spectrum. It can be easily
applied to both stellar-mass and supermassive black holes.7 It is
independent of the black hole mass and distance, while the
inclination angle of the disk with respect to the line of sight of
the observer can be inferred from the fit of the reflection
spectrum; with the continuum-fitting method, these three
quantities have to be obtained from other measurements and
their uncertainty is often large. In the presence of high quality
data and the correct astrophysical model, the reflection method is
potentially quite a powerful tool to constrain the metric around
black holes(see, for instance, Jiang et al. 2015a, 2015b, 2016;
Cárdenas-Avendaño et al. 2016).

Theoretical models of X-ray reflection have been undergoing
active development over the past three decades(see Fabian &
Ross 2010for a review). Currently, the most advanced model
is XILLVER(García & Kallman 2010; García et al. 2013), and
its relativistic counterpart RELXILL(Dauser et al. 2013; García
et al. 2014). These are stateoftheart in modeling reflection in
strong gravity.

Compared to all earlier reflection codes, XILLVER provides a
superior treatment of the radiative transfer, as well as an
improved calculation of the ionization balance, by implementing
the photoionization routines from the XSTAR code(Kallman &
Bautista 2001), which incorporates the most complete atomic
database for modeling synthetic photoionized X-ray spectra. The
microphysics captured by XILLVER is much more rigorous than
for any earlier code, principally because of the detailed treatment
of the K-shell atomic properties of the prominent ions(e.g.,
Kallman et al. 2004; García et al. 2005, 2009).

The model RELXILL is the result from the combination of
XILLVER with the relativistic blurring code RELCONV(Dauser
et al. 2010). RELCONV is a relativistic convolution code that,
assuming the Kerr metric, requires as input the local spectrum
at any emission point in the disk and gives as output the
spectrum measured by a distant observer. The aim of our work
here is to construct a model to extend RELXILL to a generic
stationary, axisymmetric, and asymptotically flat black hole
metric. We replace RELCONV with a more general relativistic
convolution code, while we maintain XILLVER because the
microphysics of the local spectrum does not change.

In this paper, we present a new code to compute transfer
functions in any stationary, axisymmetric, and asymptotically
flat black hole metric and extend RELXILL for testing the
Kerr black hole hypothesis. Current studies along this line
of research model the X-ray spectrum with a simple power
law plus a relativistically broadened iron line(Jiang
et al. 2015a, 2015b, 2016). This can be sufficient for a
preliminary study and a qualitative analysis. However, this is
definitively not adequate if we really want to test general

relativity. Here we employ the formalism of the transfer function
for thin accretion disks(Cunningham 1975). In this framework,
the calculations of the reflection spectrum are split into two parts:
the calculation of the transfer function and the calculation of the
reflection spectrum in the rest frame of the gas. The transfer
function only depends on the metric of the background and takes
into account all the relativistic effects (gravitational redshift,
Doppler boosting, light bending). The local spectrum is obtained
by solving radiation transfer on a plane-parallel, one-dimensional
slab and is not strictly related to the metric of the spacetime.
In order to test the Kerr metric, our model must be able to

compute the X-ray reflection spectrum of a thin disk in a
background that ismore general than the Kerr solution and that
includes the Kerr solution as a special case. The test-metric is
described by the mass M and the spin angular momentum J of
the object, as well as by a number of “deformation parameters.”
The latter are used to quantify possible deviations from the
Kerr metric and are the parameters to constrain from
observations to verify the Kerr black hole hypothesis. The
Kerr metric is recovered when all the deformation parameters
vanish, while there are deviations from the Kerr solution in the
presence of at least one non-vanishing deformation parameter.
In the standard case of the Kerr metric, the calculations of the

transfer function exploit some specific properties of the Kerr
solution(Cunningham 1975; Speith et al. 1995). Because of the
presence of the Carter constant, the equations of motionare
separable. More importantly, the equations in the r, q( ) plane
can be reduced to elliptic integrals. This significantly simplifies
the calculations of the transfer function. In our more general
case, the transfer function is evaluated by integrating the photon
geodesic equations from the point of detection in the plane of the
distant observer backward in time to the point of emission in the
accretion disk. Our calculations are inevitably longer than those
in the Kerr metric that solve elliptic integrals.
The paper is organized as follows. In Section 2, we review

the formalism of the transfer function and, in Section 3, the
Johannsen metric(Johannsen 2013), which is the one adopted
in our current version of the code. Section 4 describes our
numerical method to compute the transfer function. In
Section 5, we compare transfer functions and single iron line
shapes produced by our code for a few Kerr solutions with
those calculated by existing codes. Section 6 shows some
examples of transfer functions and single line shapes in the
Johannsen metric. In Section 7, we simulate several observa-
tions of a bright black hole binary with NuSTAR and LAD/
eXTP and we fit the data with our new version of RELXILL to
constrain one of the deformation parameters in the Johannsen
metric as an illustrative example of the application of the new
model and the constraining power of current and future X-ray
missions. Summary and conclusions are reported in Section 8.
In theAppendix, we present all the formulas to compute the
transfer function for a thin accretion disk in a generic
stationary, axisymmetric, and asymptotically flat black hole
spacetime. Throughout the paper, we employ units in which
G c 1N = = and the convention of a metric with signature
-+++( ). In Section 3, we explicitly show the black hole mass
parameter M as defined in the Kerr and Johannsen metrics,
while in the rest of the paper we set M = 1.

2. Transfer Function for Thin Accretion Disks

In this section, we review the formalism of the transfer
function for geometrically thin and optically thick accretion

7 The continuum-fitting method has also been applied to supermassive black
holes, but only in very special cases(e.g., Czerny et al. 2011; Done
et al. 2013).
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disks(Cunningham 1975; Speith et al. 1995). The observed
flux of a thin accretion disk (measured, for instance, in
erg s−1 cm−2 Hz−1) can be written as

F I X Y d g I r d, , , , . 1o o o o
3

e e e eò òn n n J= W = W( ) ( ) ˜ ( ) ˜ ( )

Io and Ie are, respectively, the specific intensity of the radiation
detected by the distant observer and the specific intensity of the
radiation as measured by the emitter (for instance, in
erg s−1 cm−2 str−1 Hz−1). X and Y are the Cartesian coordinates
of the image of the disk in the plane of the distant observer.
d dXdY D2W =˜ is the element of the solid angle subtended by
the image of the disk in the observer’s sky and D is the distance
of the observer from the source. I g Io

3
e= follows from

Liouville’s theorem, where g o en n= is the redshift factor, on
is the photon frequency as measured by the distant observer,
and en is the photon frequency in the rest frame of the emitter. re

is the emission radius in the disk and eJ is the emission angle
(which can be different from the viewing angle of the observer i
because of the effect of light bending).

Introducing the transfer function f, the observed flux can be
rewritten as
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where rin and rout are, respectively, the inner and the outer edge
of the accretion disk. In the Novikov–Thorne model(Novikov
et al. 1973; Page & Thorne 1974), the inner edge of the disk is
assumed to be located at the innermost stable circular orbit
(ISCO). The outer edge can be set at some large radius where
the emission becomes negligible; in our calculation it will be
located at ∼1000. The expression of the transfer function f
is(Cunningham 1975)

f g r i
r

g g g
X Y

g r
, ,

1
1

,

,
, 3e

e ep
= -
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* * *
*

( ) ( ) ( )
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where the relative redshift factor g* is defined as

g
g g

g g
, 4min

max min

=
-
-

* ( )

which ranges from 0 to 1. Here g g r i,max max e= ( ) and
g g r i,min min e= ( ) are, respectively, the maximum and the
minimum values of the redshift factor g for the photons
emitted from the radial coordinate re and detected by a distant
observer with polar coordinate i. X Y g r, , e¶ ¶ *∣ ( ) ( )∣ is the
Jacobian. The transfer function thus acts as an integration
kernel to calculate the spectrum detected by the distant
observer starting from the local spectrum at any point of the
disk. Let us note that in the specific intensity Ie, en ,and eJ must
be written in terms of g* and re. In our model, only the primary
image of the accretion disk is taken into account; that is, we
neglect secondary and higher order images generated by
photons crossing the equatorial plane and then landing on
the disk.

The transfer function f g r i, ,e
*( ) only depends on the metric

of the spacetime and the position of the distant observer. It

takes into account all the relativistic effects (gravitational
redshift, Doppler boosting, light bending). For a fixed emission
radius re and viewing angle i, the transfer function is a closed
curve parameterized by g*, see Figures 1 and 2. This is true
except in the special cases i=0 and 2p . There is only one
point in the disk for which g 1=* and only one point for which
g 0=* . These points are connected by two curves, so we have
two branches of the transfer function, say f g r i, ,1

e
*( )( ) and

f g r i, ,2
e

*( )( ) . In the case of isotropic emission (Ie independent
of eJ and of the emission azimuthal angle) in an axisymmetric
system (e.g., no orbiting spots), Equation (2) can be written as
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If Ie does depend on eJ , it is necessary to perform the integral
twice, one for the upper branch, one for the lower one, so

Figure 1. Impact of the viewing angle i on the transfer function f. Here the
spacetime is described by the Kerr metric with the spin parameter a 0.998* =
and the emission radius is r 4e = . The values of the viewing angle are
indicated.

Figure 2. Impact of the dimensionless spin parameter a* on the transfer
function f. Here the spacetime is described by the Kerr metric, the emission
radius is r 7e = , and the viewing angle is i 30= . The values of the spin
parameter are indicated.
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Equation (2) becomes
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where e
1J( ) and e

2J( ) indicate the emission angles with relative
redshift factor g*, respectively, in the branches 1 and 2.

3. Non-Kerr Model

Model-independent tests of the Kerr metric can be performed
by adopting a background that ismore general than the Kerr
solution and that includes the Kerr solution as a special case. In
addition to the mass M and the spin angular momentum J, the
metric has a number of deformation parameters used to
quantify possible deviations from the Kerr spacetime. The
values of these deformation parameters can be constrained by
observations. If astrophysical black holes are Kerr black holes,
observations should require vanishing deformation parameters.
If observations require that at least one of the deformation
parameters is non-vanishing, this may be interpreted as an
indication of the presence of new physics.

Our current code adopts the Johannsen metric with four
deformation parameters(Johannsen 2013). In Boyer–Lindquist
coordinates, the line element reads

ds
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The deformation parameters are 3 , 13a , 22a , and 52a and are
dimensionless. Such a metric has the correct Newtonian limit and
is consistent with the current PPN constraints(Johannsen 2013).
It exactly reduces to the Kerr metric for 3 13 22 a a= = =

052a = .
The Johannsen metric also hasa Carter-like constant. The

normal of the disk at the point of emission becomes (see the

Appendix for more details)
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The emission angle eJ can now be written as
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where q E2 2= , is the Carter-like constant of the photon,
and E is the photon energy. In the Johannsen metric, the Carter-
like constant has the same form as the Carter constant in the
Kerr metric even for non-vanishing deformation parameters
(Johannsen 2014), and k qkt=q when the photon hits the disk
in the equatorial plane. q can be inferred from the photon initial
conditions (as in the Kerr metric)

X
i

Y q a i i
sin

, cos cot , 120 0
2 2 2 2 2l

l= = + - ( )

where L Ezl = .
In the Kerr metric, we have an exterior regular spacetime for

a M∣ ∣ , which is the condition for the existence of an event
horizon. For a M>∣ ∣ , the spacetime has a naked singularity. In
the Johannsen metric, if we require a regular exterior region (no
singularities or closed time-like curves) we have the following
conditions on the deformation parameters(Johannsen 2013)
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We impose these conditions on the deformation parameters in
order to avoid spacetimes with pathological properties.

4. Numerical Method

In this section, we describe our algorithm for calculating the
transfer function and creating the Master Table that is used to
construct the model for RELCONV. The Master Table has data
in three dimensions: spin, deformation parameter, and inclina-
tion angle. The grid sizes along each dimension are 30, 30,and
22, respectively. The points along the spin and inclination
angle grids are non-uniform and independent of each other. The
points along the deformation parameter grid depend on the
spin: the points are chosen such that the ISCO radii at each
spin, for the range of deformation parameters at that spin, span
the range from the minimum Kerr ISCO radius to the maximum
Kerr ISCO radius. Figure 3 shows these grid points for the
deformation parameter 13a .
At each configuration (namely a grid point with a specific

spin, deformation parameter, and inclination angle), we
discretize the accretion disk with a grid of 100emission radii
re and at each emission radius we tabulate the transfer function
at 20equally spaced values of g* on each branch.8 The scheme
for choosing emission radii and g* and the values of spin and
inclination angles along the gridare the same as thoseused in

8 g 0=* and g 1=* are replaced, respectively, by g 0.002=* and
g 0.998=* for numerical reasons, because the Jacobian diverges at g 0=*

and 1.
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the standard RELCONV model. The resulting Master Table has
sufficient resolution such that the transfer functions at arbitrary
configurations can be interpolated accurately.

Notice that the choice of the range of the deformation
parameters is somewhat arbitrary. If we adopt the point of view
that deviations from the Kerr metric must be small and that the
deformation parameters in Equation (9) are the leading order
terms in an expansion, these deformation parameters must also be
small and we may restrict the attention to the ranges of(−1, 1).
However, here we adopt the same spirit as Johannsen (2014); we
do not impose that the deformation parameters must be small
quantities. Since the impact of each deformation parameter on the
reflection spectrum is different (see Section 6), it is convenient to
adopt different ranges for different deformation parameters.

Before describing each step in detail, we draw an outline of
the code. The first step to calculate the transfer function table
for each configuration, i.e., for specific values of (a*, 3 , 13a ,

22a , 52a , i), is to determine the radius of the ISCO. After that,
we determine 100 values of the emission radius re at which we
will evaluate the transfer function. We then consider an
observer at the distance D 108= M, so that the spacetime near
the observer can be assumed to be flat. We create a grid in the
observer plane and, from each point of this grid, we fire
photons and calculate their trajectories backward in time from
the point of detection in the image plane to the point of
emission on the disk. We adjust the position of the photons in
the grid adaptively such that they arrive precisely at the radius
re of interest in the accretion disk. We denote by central photon
each photon that hits the accretion disk at one of the target
emission radii. We then evaluate the redshift factor g and the
emission angle eJ for each central photon. At this point, we fire
four photons in a small grid around the central photon and
evaluate the Jacobian at each central photon. The size of this
small grid is chosen to ensure that the value of the Jacobian has
converged and does not change for any smaller grid size. We
also use an adaptive method to determine the minimum and
maximum values of the redshift factor for each radius re. After
finding enough central photons to produce a transfer function
curve, we split the central photons into two branches according
to their position on the grid relative to the photons associated
with the minimum and the maximum redshift factors.
Subsequently, we calculate g* and the transfer function, as
defined in Equation (3) at each central photon. Since the
transfer function at each branch is evaluated at 20 equally

spaced values of g*, we interpolate our transfer functions as a
function of g* and obtain their values at the requisite g* values.
This is performed for each of the 100 emission radii of interest.
We repeat this process for any configuration (a*, 3 , 13a , 22a ,

52a , i).
The grid of the plane of the distant observer is adaptive,

based on a standard elliptical grid. The points in the grid are
defined as

X r r
Y r r i

, cos ,
, sin cos , 14

0

0

f f
f f

=
=

( )
( ) ( )

where i is again the inclination angle of the disk with respect to
the line of sight of the distant observer and

N
j j N

2
1, 2 ,..., , 15f

p
= = { } ( )

r r k 1, 2 ,..., 100 . 16ke= =( ) { } ( )

N is chosen to be 61. The photon trajectories are calculated
from the image plane of the distant observer to the emission
point in the disk by solving the geodesic equations with the
ray-tracing code of Bambi (2012), which employs an adaptive
step-size fourth-order Runge–Kutta–Nyström algorithm(Lund
et al. 2009). The Christoffel symbols appearing in the geodesic
equations are evaluated from their analytical formulas, which
have been implemented in the code. Due to gravitational
bending, the initial grid of photons does not always hit the
accretion disk at the requisite radii. Therefore, the code adjusts
r until the photon hits the accretion disk at the emission radius
of interest with a precision of 10−6.
Around each central photon, we choose four photons, for

which thelocation on the observer grid relative to the central
photon is X X Y Y,0 0 D  D( ), where

X X Y Y10 10 , 10 10 . 174 4
0

4 4
0D = + D = +- - - - ( )

The Jacobian in the expression of the transfer function is
calculated at each central photon from
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Using the preliminary f grid defined in Equation (15), we
find the minimum and maximum redshift factor, gmin and
gmax,respectively, for any specific emission radius re. While
evaluating the central photons along the f grid, we record that
central photon as our preliminary gmin (gmax), which has the
smallest (largest) redshift factor among the central photons on
the grid. We then evaluate the redshift factor on either side of
these preliminary extrema with adaptive step-size to move
toward the actual gmin (gmax). For each of the extrema, when the
change in redshift factor between two consecutive steps is
below 10−6, we assign that central photon as describing those
extrema. Using gmin and gmax, we then calculate g* at every
other central photon. Let us denote the f values corresponding
to gmin and gmax as minf and maxf , respectively. minf and maxf
then divide the whole range of f (from 0 to 2p) into two
branches:

19min maxf f f< < ( )

Figure 3. Points of the grid of the Master Table for the spin parameter a* and
the deformation parameter 13a .
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and

. 20min maxf f f> > ( )

Due to strong gravitational bending, especially at emission
radii near the ISCO, it may happen that minf and maxf are close
to each other. In this case, the preliminary f grid is unable to
provide enough central photons on both branches. Conse-
quently, an interpolation of the transfer function can perform
poorly. To avoid this, we compare g* for each consecutive pair
of central photons on the initial f grid. If the difference
between consecutive g*ʼs is larger than 0.05, we find additional
central photons between the two, such that there are enough g*

to obtain a good interpolation.
The above procedure is repeated for each configuration (a*,

3 , 13a , 22a , 52a , i). The data obtained are then fed into a Python
routine. For each configuration and each emission radius re, the
Python routine splits the data into two branches according to
Equations (19) and(20), performs a linear interpolation, and
generates a pair of transfer functions at constantly spaced g*.
Additionally, the emission angles at central photons are also
interpolated in the same way to obtain their values at the
requisite g*. For each configuration, the data, which comprise
of the values of re, gmin, gmax, transfer functions, and emission
angles eJ , are stored in a list, and a FITS file (Master Table) is
generated with all the configurations.

5. Comparison with Existing Codes for the Kerr Metric

In this section, we want to test if the lineshapes and transfer
functions produced by the code discussed in thispaper agree
with existing simulations for the Kerr case. We will use the
RELLINE model to incorporate the non-Kerr relativistic
smearing of the reflection spectrum and therefore this model
is also used forcomparison. The very good agreement of the
RELLINE model with other existing model codes has been
shown previously (see Dauser et al. 2010).

The transfer functions and additional information of the ray-
tracing simulations are stored in a table, which is in the same
format as the table used by the RELLINE model. This allows us
to use the RELLINE model code to predict the line shape for the
non-Kerr spacetimes and directly compare the calculated
shapes and transfer functions for the Kerr case.

Table 1 shows the values of the transfer functions from our
code and from RELLINE for the Kerr metric with the spin
parameter a 0.9982* = and the cosine of the viewing angle
μ=0.3221819 (viewing angle i 71 .21=  ). For illustration, we
report three emission radii, namely r 1.2468e = , 4.7197, and
41.309, and five relative redshift factors g*. The actual values
of the redshift factor, g, as computed by the two codes, are also
shown. For every re and g*,there are two values of the transfer
function; the first line refers to the values of the transfer
function in the first branch, f 1( ) in Equation (6), the second line
to the values of the transfer function in the second branch, f 2( ).
Table 2 shows the values of the emission angles, e

1J( ) and e
2J( ),

for the same configuration. Tables 3 and 4 report the transfer
functions and the cosines of the emission angles for the Kerr
metric with a 0.45* = - and 0.8622873m = (viewing
angle i 30 .43=  ).

In Figure 4,we compare the relativistic line between our
code and RELLINE for a few representative cases. In the top
panels, we have a fast-rotating black hole with spin parameter
a 0.998* = . In the bottom panels, we have the iron line from a
retrograde disk and the black hole spin is a 0.5* = - . In the left

panels, the viewing angle is i 30= , while it is i 70=  in the
right panels. The box below every panel shows the difference
in percentage between the two lines. This is usually within 1%.
As can be seen, both line shapes are in very good agreement
and therefore we conclude that the presented ray-tracing code
agrees with existing model codes for calculating relativistic
reflection.
As a last check, we perform a more quantitative analysis to

compare the level of accuracy of our transfer functions. We
simulate some observations with LAD/eXTP(Zhang
et al. 2016). eXTP is a future X-ray mission and LAD will
have an effective area of 3.4m2 at 6keV. The theoretical
model is a power law plus an iron line generated by RELLINE.
We consider the case of a bright binary (flux between 2 and
10 keV at the level of 10−9 erg s−1 cm−2) and the equivalent
width of the iron line is ∼400eV. We adopt an exposure time
of 1Ms. All these parameters (brightness of the source,
equivalent width of the iron line, exposure time) are quite
optimistic, so we can obtain a good measurement. We then fit
the simulated data with both our single iron lines for Kerr and
with RELLINE, and we compare the difference.

Table 1
Transfer function: comparison with RELLINE

g*

r 1.2468e = 2 7 11 15 19

This work g 0.06573 0.19584 0.29993 0.40401 0.50810
f 1( ) 0.10682 0.12469 0.12479 0.11934 0.10365
f 2( ) 0.02651 0.02935 0.03863 0.05128 0.07216

RELLINE g 0.06571 0.19568 0.29965 0.40363 0.50761
f 1( ) 0.10729 0.12462 0.12473 0.11897 0.10385
f 2( ) 0.02639 0.02929 0.03862 0.05122 0.07188

g*

r 4.7197e = 2 7 11 15 19

This work g 0.48405 0.71230 0.89491 1.07752 1.26013
f 1( ) 0.18295 0.19639 0.21602 0.23010 0.18632
f 2( ) 0.11339 0.09843 0.10058 0.10676 0.12315

RELLINE g 0.48406 0.71229 0.89486 1.07745 1.26003
f 1( ) 0.18286 0.19636 0.21598 0.23007 0.18653
f 2( ) 0.11314 0.09837 0.10054 0.10672 0.12305

g*

r 41.309e = 2 7 11 15 19

This work g 0.85331 0.93102 0.99318 1.05535 1.11751
f 1( ) 0.11711 0.12170 0.12347 0.13112 0.11257
f 2( ) 0.10404 0.10249 0.10245 0.10287 0.10442

RELLINE g 0.85331 0.93102 0.99318 1.05535 1.11751
f 1( ) 0.11710 0.12169 0.12344 0.13129 0.11258
f 2( ) 0.10403 0.10248 0.10244 0.10287 0.10440

Comparison between the redshift factors g and the transfer functions calculated
by the code described in this paper and by RELLINE at three different values of
the emission radius re and five values of g* (the Master Table has 20 equally
spaced values of g* with g 1 0.002=* ( ) and g 20 0.998=* ( ) , see the text for
details). These quantities are calculated for the Kerr metric with the spin
parameter a 0.9982* = and the cosine of the viewing angle 0.3221819m =
(viewing angle i 71» ). For every g*, there are two values for the transfer
function, corresponding, respectively, to the values of the transfer function in
the upper (first line) and lower (second line) branches.
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The two models provide measurements in very good
agreement, suggesting that our code can compute the transfer
function in the Kerr metric with the necessary precision for
very accurate measurements. Figure 5 shows the result of one
of our simulations. The input spin parameter and the input
viewing angle of the simulations are, respectively, a 0.9* =
and i 45= . When we fit the simulated data with the table of
transfer functions generated by our new code, we find (here the
error is at the 90% confidence level)

a i0.8996 0.0008, 44 .977 0 .010. 21* =  =    ( )

When we use RELLINE, we obtain

a i0.8997 0.0008, 44 .992 0 .010. 22* =  =    ( )

The difference between the two models is much smaller than
what one can imagine to measure with the next generation of
X-ray satellites (and maybe even with X-ray reflection
spectroscopy in general). Figure 5 shows the contour of 2cD .
We have obtained similar results with different input
parameters.

6. Single Line Shapes in Non-Kerr Spacetimes

Unlike existing codes for the Kerr metric, our transfer
function code uses formulas valid for any stationary, axisym-
metric, and asymptotically flat black hole spacetime. It is
sufficient to set the deformation parameters to a non-vanishing
value to obtain the corresponding transfer function and single
line shape.
Examples of transfer functions in theJohannsen metric are

shown in Figure 6. Each panel shows the impact of one of the
deformation parameters on the transfer function, assuming that
the other three deformation parameters vanish. All the transfer

Table 2
Transfer function: comparison with RELLINE

g*

r 1.2468e = 2 7 11 15 19

This work cos e
1J( ) 0.18493 0.38686 0.45599 0.4796 0.44072

cos e
2J( ) 0.02857 0.06524 0.11042 0.17416 0.28502

RELLINE cos e
1J( ) 0.18712 0.38670 0.45563 0.47917 0.44027

cos e
2J( ) 0.02856 0.06510 0.110244 0.17391 0.28299

g*

r 4.7197e = 2 7 11 15 19

This work cos e
1J( ) 0.50880 0.88950 0.92303 0.81484 0.62527

cos e
2J( ) 0.17497 0.23108 0.29274 0.36383 0.46190

RELLINE cos e
1J( ) 0.51160 0.88938 0.92291 0.81471 0.62541

cos e
2J( ) 0.17485 0.23094 0.29263 0.36369 0.46160

g*

r 41.309e = 2 7 11 15 19

This work cos e
1J( ) 0.29837 0.46283 0.48959 0.41144 0.38035

cos e
2J( ) 0.27747 0.30030 0.32028 0.34107 0.36408

RELLINE cos e
1J( ) 0.29831 0.46284 0.48977 0.41098 0.38034

cos e
2J( ) 0.27746 0.30028 0.32026 0.34105 0.36404

Same as in Table 1 for the cosine of the emission angle. e
1J( ) and e

2J( ) refer, respectively, to the upper and lower branches.

Table 3
Transfer function: comparison with RELLINE

g*

r 7.5154e = 2 7 11 15 19

This work g 0.64784 0.73789 0.80994 0.88199 0.95403
f 1( ) 0.25996 0.25413 0.25311 0.25484 0.25644
f 2( ) 0.24950 0.24350 0.24375 0.24604 0.25107

RELLINE g 0.64784 0.73789 0.80994 0.88198 0.95402
f 1( ) 0.25997 0.25414 0.25309 0.25482 0.25644
f 2( ) 0.24946 0.24347 0.24372 0.24601 0.25099

g*

r 25.786e = 2 7 11 15 19

This work g 0.86191 0.91369 0.95511 0.99653 1.03795
f 1( ) 0.27586 0.27202 0.27114 0.27350 0.27544
f 2( ) 0.27185 0.26957 0.26945 0.27018 0.27221

RELLINE g 0.86191 0.91369 0.95511 0.99653 1.03795
f 1( ) 0.27587 0.27199 0.27113 0.27350 0.27545
f 2( ) 0.27184 0.26956 0.26945 0.27016 0.27226

g*

r 158.52e = 2 7 11 15 19

This work g 0.95632 0.97738 0.99422 1.01106 1.02791
f 1( ) 0.27496 0.27419 0.27388 0.27449 0.27494
f 2( ) 0.27424 0.27385 0.27381 0.27391 0.27427

RELLINE g 0.95632 0.97738 0.99422 1.01106 1.02791
f 1( ) 0.27487 0.27419 0.27388 0.27449 0.27496
f 2( ) 0.27425 0.27385 0.27381 0.27391 0.27428

Same as in Table 1, but for the Kerr metric with the spin parameter
a 0.45* = - and the cosine of the viewing angle 0.8622873m = (viewing
angle i 30» ).
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functions have been evaluated at the emission radius
r 6.855e = , for a viewing angle i 30= , and for a spin
parameter a 0.8* = . The transfer function for the Kerr metric
with 03 13 22 52 a a a= = = = is the black solid curve. The
other curves correspond to the transfer functions for 13 = 
and ±2 (top left panel), 113a =  and ±2 (top right panel),

122a =  and ±2 (bottom left panel), and 152a =  and ±2
(bottom right panel).

The single iron line shapes of the spacetimes considered in
Figure 6 are shown in Figure 7. The emission line is at
E 6.4 keVe = . The inner edge of the disk is set at the ISCO
radius, while the other edge is at r 400out = . The local spectrum
Ie is modeled with a power law with anemissivity index equal
to 3, namely I r1e e

3µ . As already discussed in Johannsen
(2013), 13a and 22a strongly affect the ISCO radius and the iron
line shape, 3 has a moderate impact on both the ISCO radius
and the iron line shape, while 52a does not affect the ISCO
radius and has an extremely weak impact on the iron line
shape.

In Figure 7, the maximum energy of the line does not change
with the value of the deformation parameter. For i 30= , the
Doppler effect is moderate, and the photons with the highest
energies come from relatively large radii (r M10 20e » – ). This
suggests that the effects of these deformation parameters are
localized quite close to the black hole. For larger viewing
angles, the Doppler effect is stronger, while the gravitational
redshift is the same because it does not depend on i. The result
is that the photons with the highest energies come from smaller
radii. Figure 8 shows the iron lines in Figure 7 for i 80= . The
impact of the deformation parameters is now stronger, and, in
particular, the very high energy part of the line does depend on
the value of the deformation parameters. Even a non-vanishing

52a , which had an extremely weak effect for a line seen at
i 30= , produces some clear effects for i 80= .

7. Reflection Spectrum

In this section, we consider the full reflection spectrum of the
accretion disk and we illustrate with some examples how we can
constrain the deformation parameters. We simulate observations
with NuSTAR and LAD/eXTP to show the constraining power
of current and future X-ray missions, respectively. A detailed
analysis to study the parameter degeneracy will be presented in a
forthcoming paper.
We consider the case of a bright black hole binary, which is

expected to be the most suitable source for this kind of test, and
we set its energy flux in the 2–10keV range at
10−9 erg s−1 cm−2. The exposure time is 50ks. The resulting
total number of counts is 106~ for NuSTAR and 108~ for
LAD/eXTP. We simulate three observations with the extended
RELXILL. The values of the input parameters are shown in
Table 5. The photon index of the continuum is 1.6;G = the
spin parameter is always a 0.8;* = the emissivity profile is
assumed to be a simple powerlaw with index 3, namely

r1 ;e
3µ the ionization parameter is log 3.1x = (ξ in units

oferg cm/s); the iron abundance is A 5Fe = (in units of Solar
iron abundance); the energy cut-off of the continuum is
E 120 keV;cut = the reflection fraction is chosen to be 3. In
Simulation1, we have a Kerr black hole observed from the
viewing angle i 30= . In Simulations2, we have a non-Kerr
black hole with the deformation parameter 213a = - (all the
other deformation parameters vanish); the inclination angle is
still i 30= . In Simulation3, we have a Kerr black hole
observed from the viewing angle i 80= .
The last column in Table 5 shows which parameters are free

and which are frozen in the fit. Since here we are merely
interested in some examples to illustrate the constraints from
possible observations with current and future X-ray missions,
the initial values of the fit are chosen close to the actual values
employed in the simulation. With NuSTAR, we analyze the data

Table 4
Transfer function: comparison with RELLINE

g*

r 7.5154e = 2 7 11 15 19

This work cos e
1J( ) 0.68396 0.85172 0.93467 0.98443 0.99378

cos e
2J( ) 0.60012 0.66383 0.73092 0.80741 0.90622

RELLINE cos e
1J( ) 0.68407 0.85165 0.93461 0.98437 0.99393

cos e
2J( ) 0.60003 0.66374 0.73079 0.80732 0.90588

g*

r 25.786e = 2 7 11 15 19

This work cos e
1J( ) 0.79098 0.87153 0.91439 0.94004 0.94934

cos e
2J( ) 0.76046 0.79832 0.83424 0.87305 0.91854

RELLINE cos e
1J( ) 0.79099 0.87160 0.91437 0.94005 0.94944

cos e
2J( ) 0.76040 0.79829 0.83420 0.87300 0.91847

g*

r 158.52e = 2 7 11 15 19

This work cos e
1J( ) 0.83306 0.85766 0.87355 0.88583 0.89515

cos e
2J( ) 0.82783 0.84466 0.85909 0.87939 0.88995

RELLINE cos e
1J( ) 0.83307 0.85768 0.87354 0.88584 0.89517

cos e
2J( ) 0.82782 0.84465 0.8591 0.87398 0.88994

Same as in Table 2, but for the Kerr metric with the spin parameter a 0.45* = - and the cosine of the viewing angle 0.8622873m = (viewing angle i 30» ).
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in the range of3–70keV, while in the case of LAD/eXTP the
range is 1–70keV. Figure 9 shows the map of 2cD for the spin
parameter and the deformation parameter 13a for Simulation1;

the left panel is the result from the simulation with NuSTAR
and the right panel is that for LAD/eXTP. The red, green, and
blue curves indicate, respectively, the 1−, 2−, 3−σ limits. For
the simulation with LAD/eXTP, we only show the blue 3−σ
contour because the allowed region is extremely thin. The gray
region is not analyzed because the spacetimes there do not meet
the condition on 13a in(13). The confidence contours for
Simulation2 are shown in Figure 10 and those for Simula-
tion3 in Figure 11.
The degeneracy between the spin and the deformation

parameter 13a is clear. While this depends on the choice of the
deformation parameter, so in our case 13a , it is quite a common
feature, especially when the deformation parameter has a strong
impact on the value of the ISCO radius. In Figure 9, the
contours for NuSTAR show that we could potentially find a
large spin for either positive or negative deformations. The
negative branch is removed with LAD/eXTP, but despitethe
very small uncertainty, the positive branch is still there, which
means that for small inclinations the problem of degeneracy
may persist despite the large effective area. In Figure 11, the
inclination angle is large, which maximizes the relativistic
effects and helps to break the parameter degeneracy. While this
looks indeed to be the best case for NuSTAR, the problem of
degeneracy persists.
The remarkable difference between the constraining power

of NuSTAR and LAD/eXTP was already pointed out in Ni
et al. (2016). We note that LAD/eXTP can potentially provide
constraints that are stringent enough on the deformation

Figure 4. Comparison between single iron line shapes in the Kerr metric generated by our new code (red dashed lines) and by RELLINE (black lines) for different
values of the spin parameter a* and the viewing angle i. The difference in percentage between the two lines at every energy bin is shown in the box below every panel
and it is usually within 1%. Top left panel: a 0.998* = and i 30= . Top right panel: a 0.998* = and i 70= . Bottom left panel: a 0.5* = - and i 30= . Bottom
right panel: a 0.5* = - and i 70= .

Figure 5. 2cD contours of the simulations described at the end of Section 5.
The simulated data have been obtained by RELLINE, plugging the spin
parameter a 0.9* = and the viewing angle i 45= . The data have been fitted
with the iron lines in the Kerr metric generated by the code presented in this
work (dashed curves) and with the iron lines generated by RELLINE (solid
curves). The black cross indicates the position of the minimum of 2c , while the
red, blue, and green curves indicate, respectively, the 1−, 2−, 3−σ limits. See
the text for more details.
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Figure 6. Impact of the deformation parameters 3 , 13a , 22a , and 52a on the transfer function f. The spacetime is described by the Johannsen metric with the spin
parameter a 0.8* = . The emission radius is r 6.855em = and the viewing angle is i 30= . In every plot, one of the deformation parameters assumes the values 0
(black solid line), ±1, and ±2, while the other deformation parameters vanish.

Figure 7. Impact of the deformation parameters 3 , 13a , 22a , and 52a on the iron line shape. The spacetime is described by the Johannsen metric with the spin
parameter a 0.8* = . The viewing angle is i 30= . The profile of the emissivity is modeled with a simple power law with emissivity index q=3, namely I r1e e

3µ .
The inner edge of the disk is at the ISCO radius r rin ISCO= , and the outer edge is at r 400out = .
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parameters that the choice of the correct theoretical model, e.g.,
the choice of the form of the emissivity profile, will be crucial
to get reliable constraints on the spacetime metric.

8. Summary and Conclusions

In this paper, we present the first X-ray reflection model for
testing the spacetime metric around astrophysical black holes.
Previous work suggests that the reflection method is quite a
promising technique to test the Kerr black hole hypothesis with
electromagnetic radiation. However, current studies employ
simplified models. In the best cases, the X-ray spectrum is
approximated by a power law with an iron line. Similar models
can work for preliminary studies, but they are definitively
inadequate to perform precise tests of general relativity in the
strong gravity regime.

RELXILL is currently the most sophisticated model to fit the
X-ray reflection spectrum of black holes under the assumption
that the spacetime is described by the Kerr solution. It results
from the combination of the relativistic convolution model for
the Kerr metric RELCONV and the reflection code for the local
spectrum XILLVER. By calculating the transfer function for a
generic background, we have a new relativistic convolution
model to replace RELCONV. After merging our new relativistic
convolution model with XILLVER, we obtain the extension of
RELXILL to generic stationary, axisymmetric, and asymptoti-
cally flat black hole spacetime.
We have described our new code and the relevant formulas

for the calculation of the transfer function. We have shown that
our calculations reach the necessary accuracy for our tests. We
have simulated some observations of a bright black hole binary
with NuSTAR and LAD/eXTP to illustrate the constraining
power of current and future X-ray missions. The current version
of the code adopts the Johannsen metric, but it is straightforward
to employ any other stationary, axisymmetric, and asymptoti-
cally flat black hole metric. Work on other non-Kerr metrics,
such as that proposed in Konoplya et al. (2016), is currently

Figure 8. Same as in Figure 7, but for the viewing angle i 80= .

Table 5
Summary of the simulations

Parameter Simulation Fit

Energy flux (2–10 keV) 10−9 erg s−1 cm−2

Exposure time 50ks

Γ 1.6 free
q 3 free
rin r ISCO frozen
rout 400 frozen
z 0 frozen
log x 3.1 free
AFe 5 free
Ecut 120keV frozen
Reflection fraction 3 free

13a 0 free
Simulation1 a* 0.8 free

i 30 free

13a −2 free
Simulation2 a* 0.8 free

i 30 free

13a 0 free
Simulation3 a* 0.8 free

i 80° free

Summary of the values of the parameters employed in our simulations and fits.
Γ is the photon index of the power-law component, q is the emissivity index, z
is the cosmological redshift, log x is the ionization parameter, and AFe is the
iron abundance (in units of solar iron abundance).
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underway. In a forthcoming paper, we will apply our new model
to a specific source for constraining the deformation parameters
of the Johannsen metric from available X-ray data.
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Figure 9. 1−, 2−, 3−σ confidence contours for the spin parameter a* and the deformation parameter 13a from a simulated observation of a bright black hole binary
with NuSTAR (left panel) and LAD/eXTP (right panel). The spacetime metric of the simulation has 013a = (Kerr) and a 0.8;* = the viewing angle is i 30= 
(Simulation 1). The grayed region is outside the range prescribed for 13a in(13) and therefore we restrict our analysis to the regions above. See the text for more
details.

Figure 10. Same as in Figure 9 for 213a = - , a 0.8* = , and i 30=  (Simulation 2). See the text for more details.

Figure 11. Same as in Figure 9 for 013a = (Kerr), a 0.8* = , and i 80=  (Simulation 3). See the text for more details.
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Appendix
Calculations of the Transfer Function

In order to calculate the transfer function in Equation (3), we
have to map the emission points in the disk onto the image
plane of the distant observer. This can be achieved by
calculating the photon trajectories connecting the emission
points to the detection points.

A.1. Photon Initial Conditions

The first step is to write the photon initial conditions in the
image plane of the distant observer(Johannsen & Psaltis 2010;
Bambi 2012). Let us consider a black hole surrounded by an
accretion disk and an observer at the distant D from the black
hole and with the viewing angle i, as sketched in Figure 12.
The image plane of the distant observer is provided with a
system of Cartesian coordinates X Y Z, ,( ). Another system of
Cartesian coordinates x y z, ,( ) is centered at the black hole. The
two Cartesian coordinates are related by

x D i Y i Z i
y X
z D i Y i Z i

sin cos sin ,
,
cos sin cos . 23

= - +
=
= + + ( )

Let us assume that the black hole metric is expressed in
spherical-like coordinates. Far from the compact object, the
spatial coordinates reduce to the usual spherical coordinates in
flat spacetime and they are related to x y z, ,( ) by

r x y z

z

r
y

x

,

arccos ,

arctan . 24

2 2 2

q

f

= + +

=

= ⎜ ⎟
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⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

Let us consider a photon at the position X Y, , 00 0( ) and with
3-momentum k k Z0 0= - ˆ perpendicular to the image plane.
The initial conditions for the photon position are

t

r X Y D

Y i D i

r
X

D i Y i

0,

,

arccos
sin cos

,

arctan
sin cos

. 25
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2 2

0
0

0

0
0

0

q

f

=

= + +

=
+

=
-
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The photon 4-momentum is k x x k= ¶ ¶m m a a( ˜ ) ˜ , where
k k k, 0, 0,0 0= -a˜ ( ) is the photon 4-momentum in the
Cartesian coordinates, and we find

k

k

k

k
D

r

k
i Y i D i
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kt0 can be obtained from the condition g k k 0=mn
m n with the

metric tensor of a flat spacetime, so

k k r k r ksin . 27t r
0 0

2
0
2

0
2

0
2 2

0 0
2q= + +q f( ) ( ) ( ) ( )

A.2. Photon Trajectory

With the photon initial conditions(25)–(27), we can
integrate the geodesic equations backward in time from any
detection point X Y, , 00 0( ) in the image plane of the distant
observer to the emission point in the disk:

d x

d

dx

d

dx

d
0, 28

2

2t t t
+ G =

m

nr
m

n r
( )

where τ is an affine parameter. In the case of the Kerr metric, it
is not necessary to directly integrate the geodesic equations and
the calculations are thus different(Cunningham 1975; Speith
et al. 1995). In the Kerr metric in Boyer–Lindquist coordinates,
the equations of motion are separable and we can restrict the
attention to the motion in the r, q( ) plane; the corresponding
equations can be solved in terms of elliptic integrals.

A.3. Accretion Disk

The integration of the geodesic equations stops when the
photon either hits the accretion disk or misses it. In the latter
case, the photon either hits the black hole or crosses the
equatorial plane between the black hole and the inner edge of
the disk. In our model, only the primary image of the accretion
disk is take into account, and there is noemission between the
black hole and the inner edge of the disk. The inner edge of the
disk is assumed at the ISCO radius and, for a generic
stationary, axisymmetric, and asymptotically flat spacetime
can be inferred as follows. We write the line element in the
canonical form, namely,

ds g dt g dtd g dr g d g d2 , 29tt t rr
2 2 2 2 2f q f= + + + +f qq ff ( )

where the metric coefficients are independent of t and f. The
motion of a test particle in the metric background is governed
by the Lagrangian

g x x
1

2
, 30 = mn

m n˙ ˙ ( )

Figure 12. Cartesian coordinates x y z, ,( ) are centered at the black hole, while
the Cartesian coordinates X Y Z, ,( ) are for the image plane of the distant
observer, whichis located at the distant D from the black hole and with an
inclination angle i.
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where d d. t= . Since the metric is independent of the
coordinates t and f, we have two constants of motion, namely
the specific energy at infinity E and the axial component of the
specific angular momentum at infinity Lz:

d

d t t
p

t
g t g E0 , 31t tt t

  
t

f
¶
¶

-
¶
¶

=  º
¶
¶

= + = -f˙ ˙
˙ ˙ ( )

d

d
p g t g L0 . 32t z

  
t f f f

f
¶
¶

-
¶
¶

=  º
¶
¶

= + =f f ff˙ ˙ ˙ ˙ ( )

The term “specific” is used to indicate that E and Lz are,
respectively, the energy and angular momentum per unit rest-
mass. Equations (31) and (32) can be solved to find the t- and
the f-component of the 4-velocity of thetest particle

t
Eg L g

g g g

Eg L g

g g g
, . 33

z t

t tt

t z tt

t tt
2 2

f=
+

-
= -

+

-
ff f

f ff

f

f ff

˙ ˙ ( )

The accretion disk is described by the Novikov–Thorne
model(Novikov et al. 1973; Page & Thorne 1974). The disk is
in the equatorial plane perpendicular to the black hole spin. The
particles of the gas follow nearly geodesic, equatorial,
andcircular orbits. We write the geodesic equations as

d

d
g x g x x

1

2
. 34

t
= ¶mn

n
m nr

n r( ˙ ) ( ) ˙ ˙ ( )

Since r r̈ 0q= = =˙ ˙ for equatorial circular orbits, the radial
component of Equation (34) reduces to

g t g t g2 0. 35r tt r t r
2 2f f¶ + ¶ + ¶ =f ff( ) ˙ ( ) ˙˙ ( ) ˙ ( )

The angular velocity tfW = ˙ ˙ is

g g g g

g
, 36

r t r t r tt r

r

2

W =
-¶  ¶ - ¶ ¶

¶
f f ff

ff

( ) ( )( )
( )

where the upper (lower) sign refers to corotating (counter-
rotating) orbits, namely orbits with angular momentum parallel
(antiparallel) to the spin of the central object.

From g x x 1= -mn
m n˙ ˙ with r 0q= =˙ ˙ , we can write

t
g g g

1

2
. 37

tt t
2

=
- - W - Wf ff

˙ ( )

Equation (31) becomes

E g g t
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tt t
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f
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In the same way, Equation (32) becomes

L g g t

g g

g g g2
. 39

z t

t

tt t
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= + W

=
+ W
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f ff

f ff

f ff
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From g x x 1= -mn
m n˙ ˙ and with the use of Equation (33), we

can now write

g r g V r E L, , , , 40rr z
2 2 2

effq q+ =qq˙ ˙ ( ) ( )

where V r E L, , , zeff q( ) is the effective potential of the test
particle with energy E and axial component of the angular

momentum Lz

V
E g EL g L g

g g g

2
1. 41

z t z tt

t tt
eff

2 2

2
=

+ +

-
-ff f

f ff

( )

In the case of equatorial circular orbits, r r̈ ¨ 0q q= = = =˙ ˙
and therefore V V V 0reff eff eff= ¶ = ¶ =q . The orbit is radially
(vertically) stable if V 0r

2
eff¶ < ( V 02

eff¶ <q ) and radially
(vertically) unstable if V 0r

2
eff¶ > ( V 02

eff¶ >q ). The ISCO
radius rISCO is given by

V V r r0 or 0 . 42r
2

eff
2

eff ISCO¶ = ¶ =  =q ( )

A.4. Redshift Factor and Emission Angle

Once we know the emission point in the disk, we can
evaluate the redshift factor g and the emission angle eJ . The
redshift factor g is

g
u k

u k
, 43o

e

o

e

n
n

= =
-

-

m
m

n
n

( )

where u 1, 0, 0, 0o =m ( ) is the 4-velocity of the distant
observer, km is the 4-momentum of the photon, and
u u 1, 0, 0,t

e e= Wn ( ) is the 4-velocity of the particles of the
gas. u tt

e = ,̇ which is given by Equation (37). Plugging
Equation (37) into Equation (43), we obtain

g
g g g2

1
, 44

tt t
2

l
=

- - W - W

- W
f ff ( )

where k ktl = - f is a constant of motion along the photon
trajectory and can be evaluated from the initial conditions.
If the local spectrum depends on the emission angle eJ , the

latter must be rewritten in terms of the emission radius and
redshift factor. The normal of the disk is

n g0,0, , 0 , 45r , 2e e=m qq
q p=( )∣ ( )

and therefore the cosine of the emission angle eJ is

n k

u k
g

g g g k

k
cos

2

1
, 46

tt t
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e

e e

2

J
l

= =
- - W - W
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m
m

n
n

qq f ff q ( )

where kθ is the θ-component of the 4-momentum of the photon
at the point of emission in the disk and, in the general case, it is
determined at the end of the geodesic integration.
At the end of the integration of the photon trajectory, we

have r r X Y,e e= ( ), g g X Y,= ( ), and X Y,e eJ J= ( ). From the
first two relations, it is possible to numerically compute the
Jacobian in the transfer function

X Y

g r
g g

X

g

Y

r

X

r

Y

g

,

,
. 47

e
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e e
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This completes the calculations of the transfer function f for a
specific background metric. If we know the local spectrum of
the radiation Ie, we can obtain the observed flux via
Equation (2).
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