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Fig.	S1.	The	living	brain	coral	(Diploria	labyrinthiformis)	cored	for	this	study.	The	diameter	

of	this	coral	is	~1	m.	
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Fig.	S2.	Comparison	of	the	relative	fractions	of	N	supply	to	the	euphotic	zone	in	the	

subtropical	North	Atlantic	and	South	China	Sea	for	the	year	2000	following	the	isotope	

mixing	approach	in	(1).	The	“weak	feedback”	scenarios	assume	a	constant	N	fixation	rate	

over	the	study	periods	while	the	“strong	feedback”	scenarios	include	a	decrease	of	N	

fixation	rate	as	AAN	deposition	rate	increases	(in	a	one-to-one	proportion).	In	the	

subtropical	North	Atlantic,	the	upward	nitrate	supply	has	been	estimated	to	be	0.5-0.8	mol	

N	m-2	year-1	(2-4).	The	N	fixation	rate	estimation	in	the	subtropical	North	Atlantic	ranges	

from	0.01	to	0.08	mol	N	m-2	year-1	(5-7),	representing	2-14%	of	total	N	supply	to	the	

euphotic	zone.	Here	we	use	an	intermediate	N	fixation	rate	in	our	calculation,	representing	

8%	of	total	N	supply.	Regardless	of	the	N	fixation	rates	used	in	this	calculation,	across	all	

scenarios,	AAN	deposition	contributes	less	than	5%	of	total	N	supply	to	the	euphotic	zone.	 	
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Fig.	S3.	Magnitude-squared	coherence	(A),	cross	spectrum	phase	(B),	and	time-dependent	

correlation	coefficients	(C)	between	the	smoothed	CS-d15N	and	NAO	records	in	Fig.	3.	At	the	
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frequency	ranges	of	1/25	to	1/19	(red	and	blue	dashed	lines),	the	magnitude-squared	

coherence	(A)	has	values	higher	than	0.7,	indicating	high	correlation	between	CS-d15N	and	

NAO.	Correspondingly,	the	cross	spectrum	phase	analysis	(B)	shows	that	NAO	leads	CS-

d15N	by	12-17	years	at	the	frequency	ranges	of	1/25	to	1/19.	Consistent	with	the	cross	

spectrum	phase,	the	time-dependent	correlation	analysis	(C)	shows	maximum	correlation	

(r=	0.7)	between	CS-d15N	and	NAO	when	NAO	leads	CS-d15N	by	13	years.	
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Fig.	S4.	Calculation	of	the	[NO3-]/d15N	relationship	in	the	Sargasso	Sea	following	strong	

Subtropical	Mode	Water	formation	during	a	negative	phase	of	NAO.	(A)	Measured	nitrate	

concentration	and	d15N	at	BATS	following	a	period	of	positive	NAO.	The	circles	(color	coded	

by	depth)	are	based	on	data	averaged	over	18	cruises	at	BATS(8)	since	2005.	The	red	line	is	

the	mixing	trend	between	the	water	in	the	shallow	thermocline	at	200m	([NO3-]	=	3.5µM,	

d15N	=	2.5‰)	and	the	water	at	the	base	of	the	thermocline	at	1000m	([NO3-]	=	21.2µM,	

d15N	=	5.0‰).	The	black	line	is	the	regression	line	fitted	with	an	exponential	function.	The	
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gray	area	indicates	the	difference	between	the	mixing	line	and	the	regression	line,	which	is	

caused	by	the	remineralization	of	low-d15N	newly	fixed	N	occurring	throughout	the	full	

depth	of	thermocline(9).	(B)	Calculated	[NO3-]/d15N	relationship	at	BATS	after	a	period	of	

strong	STMW	formation.	The	red	line	is	the	mixing	trend	between	the	water	at	200m	([NO3-]	

=	2.2µM,	d15N	=	1.8‰)	and	the	water	at	1000m	([NO3-]	=	21.2µM,	d15N	=	5.0‰)	when	a	

strong	STMW	layer	appears	at	BATS.	The	nitrate	d15N	at	200m	with	STMW	is	based	on	the	

observed	CS-d15N	in	the	1980s	(i.e.,	CS-d15N	suggests	that	the	nitrate	d15N	at	200m	was	0.7‰	

lower	than	the	modern	condition).	The	[NO3-]/d15N	relationship	with	a	thick	STMW	layer	is	

calculated	by	subtracting	the	gray	area	in	(A)	from	the	mixing	line	in	(B).	This	[NO3-]/d15N	

relationship	is	then	used	to	estimate	the	depth	profile	of	nitrate	d15N	during	a	negative	

phase	of	NAO	in	Fig.	S5.	  
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Fig.	S5.	Depth	profiles	of	temperature,	nitrate	concentrations	and	nitrate	d15N	near	

Bermuda	as	in	Fig.	4	during	phases	of	positive	(black	lines)	and	negative	(red	lines)	NAO.	

The	measured	temperature	(A)	and	nitrate	concentration	(B)	depth	profiles	are	from	a	

previous	study(10).	The	nitrate	d15N	(C)	depth	profile	under	positive	NAO	is	from	Fig.	1,	

while	the	nitrate	d15N	depth	profile	under	negative	NAO	is	calculated	from	the	[NO3-]/d15N	

relationship	in	Fig.	S4.	The	shaded	area	is	the	error	(1s)	associated	with	this	calculation	

based	on	Monte-Carlo	simulations.	
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