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Abstract

Carboxysomes are closed polyhedral cellular microcompartments that increase the efficiency
of carbon fixation in autotrophic bacteria. Carboxysome shells consist of small proteins
that form hexameric units with semi-permeable central pores containing binding sites for
anions. This feature is thought to selectively allow access to RuBisCO enzymes inside the
carboxysome by HCO−

3 (the dominant form of CO2 in the aqueous solution at pH 7.4) but not
O2, which leads to a non-productive reaction. To test this hypothesis, here we use molecular
dynamics simulations to characterize the energetics and permeability of CO2, O2, and HCO−

3

through the central pores of two different shell proteins, namely, CsoS1A of α-carboxysome
and CcmK4 of β-carboxysome shells. We find that the central pores are in fact selectively
permeable to anions such as HCO−

3 , as predicted by the model.

Introduction

All life depends on the ability of cells to fix atmospheric carbon into organic matter. The

key enzyme in this process is ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO),

which catalyzes the fixation reaction of CO2 and ribulose-1,5-bisphosphate (RuBP) molecules

to produce two molecules of 3-phosphoglycerate (3PGA), a precursor molecule for sugar and

amino acid biosynthesis. Besides fixing CO2 and RuBP, the enzyme fixes O2 and RuBP,

producing one molecule of 3PGA and one molecule of 2-phosphoglycolate, a wasteful com-

pound [1–5]. RuBisCO is notoriously inefficient with Km of >150µM for CO2 and kcat of the

∗Corresponding authors: G.J.J. jensen@caltech.edu; E.T. emad@life.illinois.edu
1Equal contribution

1

(which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint. http://dx.doi.org/10.1101/367714doi: bioRxiv preprint first posted online Jul. 11, 2018; 

http://dx.doi.org/10.1101/367714


reaction in the order of 10 s−1 [6–8]. It is important to note that the concentration of O2 in

the atmosphere is ∼21% whereas that of CO2 is only ∼0.04%, which is lower than the Km

of CO2 for the RuBisCO enzymes [3, 5].

To increase the efficiency of RuBisCO, cyanobacteria and carbon-fixing chemoautotrophic

bacteria encapsulate RuBisCO and carbonic anhydrase in specialized protein-enclosed cyto-

plasmic microcompartments called carboxysome [9–12]. To mitigate the occurrence of the O2

fixation reaction, the carboxysome needs to minimize the penetration of O2 into its lumen by

mechanisms which would also impact effective entry of CO2 due to its chemical resemblance

to O2. CO2 is envisioned to enter the carboxysomal lumen in the form of HCO−
3 [10, 11, 13],

its predominant form at physiological pH. Carbonic anhydrase then converts the HCO−
3 to

CO2 [14], providing a mechanism for concentrating CO2 in the immediate vicinity of the

RuBisCO enzymes.

CsoS1A CcmK4
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G42
G43 S41

Figure 1: Arrangement of carboxysome shell proteins CsoS1A and CcmK4. Top view from the concave
side (upper panel) and side view (lower panel). Individual colored molecular surfaces represent individual
subunits of the homohexamers. Each hexamer forms a central pore. The narrowest section (bottleneck) of
the pore is formed by six G43 residues for CsoS1A and six S41 residues for CcmK4.

Carboxysomes are classified into α and β types, based on their composition and evolu-

tionary history [3]. In their native forms, both types resemble icosahedral capsids with a

diameter of ∼1,000 Å [9, 15–18]. The outer shell of the carboxysome is formed by the assem-

bly of thousands of copies of a few proteins [2]. α carboxysomes are found in Prochlorococcus

and Synechococcus species such as Halothiobacillus neapolitanus, and in some other chemoau-
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totrophic bacteria [2, 3, 11, 13, 19]. Their main shell protein is CsoS1A, of which the structure

was determined from H. neapolitanus [20]. β carboxysomes are found in freshwater species

such as Synechococcus elongates PCC 7942 and Synechocytis sp. PCC 6803 [3, 11, 13, 19],

and their main shell proteins are CcmK1-4. These main shell proteins form hexamers and

are arranged in a hexagonal lattice with aqueous-exposed surfaces on either side [20–23] (Fig.

1). Along the 6-fold symmetry axis of each hexamer is a pore, termed “the central pore”,

with the bottleneck radius of ∼2 Å [2], potentially permitting small molecular species, such

as HCO−
3 , CO2 and/or O2 molecules to pass through.

Here, we examine the permeability of HCO−
3 , CO2, and O2 molecules through the central

pores of CsoS1A and CcmK4 complexes in full atomic details using molecular dynamics

simulations and free energy calculations. The umbrella sampling (US) technique is employed

to calculate the free energy profiles for HCO−
3 , CO2, and O2 insertion. We find that the

central pore of carboxysome shells are preferentially selective for HCO−
3 , over CO2 and O2 .

Materials and Methods

Simulation systems

The simulations were prepared using the crystal structures of CsoS1A from H. neapoli-

tanus (PDB entry 2EWH) resolved at 1.4 Å [20] and CcmK4 from Synechocytis sp. PCC

6803 (PDB entry 2A18) resolved at 2.28 Å [21]. CsoS1A is missing its first five amino

acids. CcmK4 is missing its first three amino acids and its last thirteen amino acids. Since

these amino acids are located neither near the central pore or at the interface of individual

monomeric subunits, they were not modeled. The asymmetric unit of CsoS1A structure is

provided by PDB as a monomer while that of CcmK4 structure is provided as a trimer. The

biologically relevant hexameric complexes were constructed by VMD [24] using the trans-

formation matrices provided in the PDB files. Each modeled hexamer was centered at the

origin so that the 6-fold symmetry axis (and the central pore) coincided with the z-axis. A

hexameric periodic box was constructed according to the crystallographic dimensions given

in the PDB files. Internal water molecules were added to each complex with DOWSER [25].

The complex was then solvated with TIP3P waters [26] and ionized with 150 mM NaCl. The

resulting hydrated hexameric CsoS1A and CcmK4 systems comprised 28,115 and 27,619

atoms, respectively.
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Simulation protocols

The simulations were performed using NAMD2 [27] with a time step of 2 fs and the

CHARMM36 force field [28, 29]. The periodic boundary condition (PBC) was used through-

out the simulations. All covalent bonds involving hydrogen atoms were kept rigid using the

SHAKE algorithm [30]. To evaluate long-range electrostatic interactions in PBC without

truncation, the particle mesh Ewald method [31] with a grid density of 1/Å3 was used. The

cutoff for van der Waals interactions was set at 12 Å. The simulations were performed under

NPT ensemble. The temperature was maintained at 300 K by Langevin dynamics [32] with

a damping coefficient γ of 1 /ps. The Nosé-Hoover Langevin piston method [32, 33] with a

piston period of 200 fs was used to maintain the pressure at 1 atm.

Equilibration and steered molecular dynamics

The equilibrations of the hydrated complexes of CsoS1A and CcmK4 began with 5,000

steps of energy minimization using the conjugated gradient algorithm, followed by 0.5-ns

protein heavy-atom restrained, 0.5-ns protein backbone-atom restrained and 1-ns protein

Cα-atom restrained simulations with k = 1 kcal/mol/Å2, and finally 10-20 ns unrestrained

simulations. In the CsoS1A system, one of the simulated Cl− ions entered the central pore

and bound to residues G43 (of the hexamer) located at the center of the pore during the

unrestrained simulation. The binding of a Cl− ion was also observed in the equivalent

section of CcmK4, corresponding to the backbones of residues S41. To simulate HCO−
3 , CO2

or O2 molecule, the bound Cl− molecule was replaced by HCO−
3 , CO2 or O2 molecules. The

force field parameters of these substrate molecules are available in the CHARMM general

force field [34]. For the simulation systems with a CO2 or O2 molecule, one Na+ ion was

removed for neutralization. 5,000 steps of energy minimization and 100 ps of equilibration

were performed on these three systems. Steered molecular dynamics simulations [35] were

performed to generate starting structures for the US simulations, described in the following

section. The backbone nitrogen atoms of residues G42 of CsoS1A or residues S41 of CcmK4

were used to mark the center of the pore, and these were considered to be at z = 0. Using the

center of the pore as the starting point, the localized substrate molecule was pulled out of

the pore at a velocity of 10 Å/ns using a force constant k = 10 kcal/mol/Å2. The simulation

consisted of two sets. In one set, the molecule was pulled from z = 0 to z = 20 Å (towards

the concave surface). In the other set, it was pulled from z = 0 to z = -15 Å (towards the

convex surface). To prevent protein translation artificially induced by the force applied on

the pulling of the substrate molecule, the positions of Cα atoms of residue G6 of CsoS1A
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and those of residues E11 of CcmK4, located away from the pore, were restrained with

k = 10 kcal/mol/Å2.

Umbrella sampling and free energy calculations

The free energy (∆G) profiles of HCO−
3 , CO2 and O2 translocation along the central

pores were calculated using the US technique [36–38]. The starting frames for the US sim-

ulations were taken from the steered molecular dynamics trajectories described above. US

simulations spanned from z = -15 Å to z = 20 Å, comprising 71 0.5-Å windows, and each sim-

ulation lasted 2.5 ns. This 35-Å length is about the thickness of the carboxysome shell

determined from cryo-electron tomography and atomic force microscopy [15, 16, 39]. A

harmonic potential with k = 10 kcal/mol/Å2 was applied to confine the substrate molecule

to the center of each window. To construct the ∆G profiles, the last 2-ns trajectories of

all of the simulations of a substrate were combined and analyzed using the weighted his-

togram analysis method (WHAM) [40], with a 0.25-Å histogram bin. Insertion ∆G val-

ues of the substrate in individual bins (∆Gi) were subtracted by ∆G in the bulk solu-

tion (∆Gbulk), yielding relative insertion free energies (∆Gi,bulk). The WHAM code was

implemented by Professor Alan Grossfield at the University of Rochester Medical Center

(http : //membrane.urmc.rochester.edu/content/wham).

Results and Discussion

Hydration along the central pores

The hydrated complexes of CsoS1A and CcmK4 were simulated for 20 ns without RuBisCO

substrates (i.e., HCO−
3 , CO2, and O2) in order to relax the proteins and prepare initial

structures used for the US simulations.

Although the central pores were initially dehydrated, they became hydrated in less than

1 ns (Fig. 2). To determine the degree of hydration along each of the pores, a 14-Å radius

cylinder covering the entire pore, including its concave and convex funnels, was defined. The

z-coordinates of the oxygen atoms of water molecules localized within the cylinder during

the last 10 ns of the simulations were recorded and clustered into a histogram with 0.5-Å

bins, yielding a distribution profile of the water. The pore radius profiles were calculated

using the HOLE program [41] to determine the degree of accessibility of the pores, and the

water profiles were normalized with respect to cross-sectional areas along the sections within
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Figure 2: Hydration and Cl− partitioning along the central pores. Left panels, taken from the equilibrium
simulations, delineate the localizations of water and Cl− (green spheres) within the central pores. Middle and
right panels show the distribution profiles of water molecules and Cl− ions normalized using cross-sectional
areas along the sections within the proes. The backbone nitrogen atoms of residues G43 of CsoS1A and S41
of CcmK4 mark the center of the pore and are considered z = 0.

the pores. The normalized profiles shown in the middle panels of Fig. 2 represent the lowest

occupancy site for water molecules at z = 0, which corresponds to the narrowest section, or

the bottleneck, of the pore (Fig. 3, right panels). For CsoS1A, this bottleneck is formed by

residues G42 and G43. For CcmK4, the equivalent section is formed by residues S41.

These simulations along with previous structural studies suggest favorable anion binding

along the central pores. During the 20-ns period of each of the simulations, spontaneous

binding of Cl− ions was observed. The Cl− ions bound the amine groups of residues G43

of CsoS1A and those of residues S41 of CcmK4. As shown in the left panels of Fig. 2,

the highest Cl− occupancy site was located at z = 3 Å. For CcmK4, apparent accumulation

of Cl− ions was also found near residues R38, which lie between z = 8 Å and z = 14 Å. The

binding of other ions such as SO4
2− has also been reported by X-ray crystallography [20, 42].

The crystal structure of CsoS1A, which was used in the simulations, contains one SO4
2−

molecule bound to the amine groups of G43 [20]. The same binding is also found in the

crystal structures of CcmK1 and CcmK2, which are homologues of CcmK4 [42]. For CcmK1

and CcmK2, the serine residues equivalent to S41 of CcmK4 bind a SO4
2− molecule. These
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results all point to the presence of a positive electrostatic potential within the pore attracting

negatively charged molecules.

Selectivity of anionic substrates

Free energy (∆G) profiles of HCO−
3 , CO2, and O2 insertion (Fig. 3, left panels) were

calculated in order to determine the selectivity of the central pores for these substrates. In

agreement with the results of our equilibrium simulations, the resulting free energy profiles

demonstrate favorable binding of anionic species (i.e., HCO−
3 ) to the central pores, in both

CsoS1A and CcmK4. For HCO−
3 insertion in CsoS1A, a free energy well was found in the re-

gion between z = 1 Å and z = 5 Å. The lowest ∆G was located at z = 3 Å and is ∼-2 kcal/mol.

For CcmK4, favorable HCO−
3 binding regions (relative to bulk water) spanned from z = 1 Å

to z = 15 Å, with the global ∆G minimum of ∼-2.5 kcal/mol occurring between z = 2 Å and

z = 5 Å. Another binding region with a weaker insertion free energy (∼-2 kcal/mol) is dis-

cernible between z = 8 Å and z = 14 Å, and corresponds to the position of a second Cl−

binding site observed in one of our equilibrium simulations (Fig. 2, bottom panels).

While the binding of HCO−
3 in the central pore is generally favorable, in both CsoS1A

and CcmK4 central pores, this substrate has to overcome uphill free energy changes during

its translocation from one side of the shell proteins to the other. Both CsoS1A and CcmK4

exhibited high free energy values at z = -2.5 Å (Fig. 3, left panels). These barriers are sig-

nificantly smaller for HCO−
3 when compared to CO2 (see below). Furthermore, the presence

of a long attractive region (at 0 < z < 5 Å) will provide a high probability for the substrate

presence right next to the high-energy region.

In contrast to HCO−
3 , the permeation of CO2 and O2 through these central pores was

more unfavorable with insertion ∆G of 2-4 kcal/mol, extending from z = 5 Å to z = -5 Å. The

highest ∆G for CO2 and O2 insertion, ∼4 kcal/mol, was located at z =∼3 Å, corresponding

to the global ∆G minima for HCO−
3 insertion (Fig. 3, left panels). The same section was

found to have a high density of water molecules and Cl− ions (Fig. 2). In CsoS1A too, this

highest barrier coincides with the region where the mobility of water molecules (as well as

other molecular species) was found to be minimum (Fig. 4, left panel).

Because compacted water molecules can hinder the passage of relatively nonpolar CO2 and

O2, we analyzed the mobility of HCO−
3 , CO2 and O2 along the central pores by calculating

lateral diffusion coefficients (D) of these molecules. The diffusion profiles showed that as any
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Figure 3: Partitioning of the substrates along the central pores. Left, free energy (∆G) profiles for inserting
substrates of the RuBisCO enzymes along the pores. Right, pore radius profiles of the central pores in the
presence and absence of the substrate. HCO−

3 was used to represent the substrate as the other substrates
similar profiles showed similar profiles.

of these molecules approach the bottleneck, their diffusivity becomes significantly diminished,

by 10-40 fold (Fig. 4), consistent with a decrease in pore size (Fig. 3, right panels).

Dynamics of protein and substrates

The movement of a molecule through a protein may involve not only structural pertur-

bations of the protein, from breathing motions of lining amino acids [43–46] to largescale

conformational changes [47–51], but also the dynamics of the passing molecule (substrate or

ligand) [52]. Although the pores of CsoS1A and CcmK4 are relatively wide to accommodate

a free passage of small molecules, such as HCO−
3 , CO2 and O2, the calculated ∆G profiles

indicated that such molecules cannot pass through easily.

Pore radii along the central pores were re-calculated upon the localization of a substrate

molecule within the bottleneck. For CsoS1A, the bottleneck pore radius remained ∼2 Å (Fig.
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Figure 4: Lateral diffusion coefficient (D) profiles of HCO−
3 , CO2, O2, and water molecules along the central

pores of CsoS1A and CcmK4 hexamers. D is defined as < (∆x)2 + (∆y)2 > / 4∆t, where ∆x and ∆y were
the displacements of the molecule along the x-axis and the y-axis, respectively, at a z position and ∆t = 10 ps.
< ... > denotes mean.

3, upper right panel). For CcmK4, it increased from 1.5 to 2 Å (Fig. 3, lower right panel).

This change indicates a slight opening of the pathway, consistent with an increase in the

radius of gyration between the six hydroxyl groups of S41 from 3 to 4 Å. In this configuration,

the hydroxyl groups of S41 are oriented away from the pathway. Nevertheless, the bottleneck

pore radii of both CsoS1A and CcmK4 are ∼2 Å, suggesting that the permeating molecules

have to orient themselves just right to transit through the bottleneck.

Conformational selectivity of the substrates was determined by calculating P1 and P2 order

parameters, shown in Fig. 6, delineating the binding orientation of the substrate molecules

upon migrating along the pore. As shown in Fig. 6, the orientation of the substrates was

isotropic near the protein surface or in the bulk solution (z<-10 Å or z>15 Å). HCO−
3 became

conformationally restricted when approaching or being within the bottleneck of the central

pores. Upon positioning towards the concave surface, its negatively charged carboxylate

faced the bottleneck when located at the ∆G minimum or z = 3 Å, as indicated by P1 ∼-

1. The molecule flipped by 180◦ during the transition between the ∆G minimum and the

bottleneck, as indicated by P1 ∼1. Between the bottleneck and z = -5 Å (convex funnel), it

became perpendicularly oriented with respect to the pore, indicated by P2 ∼-0.5.
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Figure 5: Conformational changes of bottlneck residues in CcmK4 upon substrate binding along the pore
determined by calculating the radius of gyration (Rgyr) of the hydroxyl groups of residues S41. This Rgyr

was calculated because in the crystal structure, the hydroxyl groups of these bottleneck amino acids appear
to constrict the permeation pathway.

Charge distributions along the central pores

Electrostatic potential surface calculations support the preferential selectivity of the cen-

tral pores of CsoS1A and CcmK4 for anions over nonpolar molecules. Time-averaged electro-

static potentials of the protein complexes were calculated using the structures of the protein

hexamers generated from the last 10 ns of the equilibrium simulations (Fig. 7). The calcu-

lated electrostatic potential surfaces are consistent with ones previously calculated using the

crystal structures [20, 21], supporting the idea that the pores are highly charged.

These calculations also rationalize the features observed in the calculated ∆G profiles

(Fig. 3, left panels). For CcmK4, the central pore is positive, which provides attraction for

HCO3
− molecules. For CsoS1A, on the other hand, electrostatic potentials along the pore

were asymmetrically distributed. The funnel from the concave surface to the bottleneck was

positively charged, whereas the one from its convex surface was negatively charged (Fig.

7). This charge separation provides an explanation for the nature of the permeation ∆G

barrier for HCO−
3 at the bottleneck. Because the convex surface is negatively charged, it

is unfavorable for negatively charged molecules, such as HCO−
3 , to spontaneously transit

through the bottleneck (z = -2.5 Å) from the concave surface to the convex surface. This

is in agreement with the ∆G calculations, which showed a 2 kcal/mol higher barrier for a

HCO−
3 molecule to enter the pore from the concave surface than from the convex surface.
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Figure 6: Binding orientation of substrates along the central pores (P1 or P2 order parameters versus sub-
strate’s positions along the z axis). P1 =<cosθ> and P2 =<(3cos2θ-1)/2>. P1 is ∼±1 when a substrate
molecule is oriented parallel to the pore axis and ∼0 when it is oriented either isotropically or perpendic-
ularly with respect to the pore axis. P2 differentiates between isotropic average orientation (P2 = 0) and
orthogonality (P2 = -0.5), in which the molecule is in a perpendicular orientation. θ corresponds to the tilt
angle with respect to the pore. For HCO−

3 , θ is the angle between the C-OH bond vector and the pore axis.
For linear CO2 and O2 molecules, θ is the angle between the main axis of the substrate and the pore axis.
The right panels show several snapshots of HCO−

3 taken from the US simulations.

Conclusion

The results of the simulations and free energy calculations presented in this study show that

the central pores of carboxysome shell protein complexes favor HCO−
3 over either CO2 or O2.

Once within the carboxysomal lumen, HCO−
3 is converted to CO2 by carbonic anhydrase.

The poor permeability of the carboxysome shell to CO2 and O2 can improve the productivity

of RuBisCO in two ways; not only can it minimize outward leakage of CO2 from carboxysomal

lumen upon production by carbonic anhydrase, but it will also prevent unwanted entry of

O2 into the lumen. These results substantiate, at a molecular level, how carboxysomes

maintain the high local CO2 concentrations around the RuBisCO enzymes necessary for

adequate performance of these otherwise inefficient enzymes. Consistent with the idea that

the carboxysome shell acts as a barrier against the permeation of CO2, and that of O2, the
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Figure 7: Electrostatic potential maps of the shell proteins. The maps were calculated using PMEpot plugin
of VMD [24, 53], which uses the particle mesh Ewald method [54]. The ensemble of protein conformations
collected in every 10 ps was used in each calculation. Electrostatic potentials shown in this figure are with
threshold ranging from -20 (red) to +20 (blue) kT/e. “positive” z is towards the concave surface, while
“negative” z is towards the convex surface.

experimental study by Dou et al [55] on H. neapolitanus suggests that the CO2 supply into

the carboxysome is provided mainly thorugh the entry of HCO−
3 molecules. The activity

of freely soluble RuBisCO enzymes was compared to the activity of the enzymes contained

inside the intact carboxysome. The intact carboxysome devoid of carbonic anhydrase showed

a 3-fold increase in Km of CO2 with no change in Vmax, while the ruptured carboxysome and

carboxysome-free RuBisCO enzymes showed similar Km and Vmax to the wild type. As a

consequence, they found that H. neapolitanus mutants lacking carbonic anhydrase required

elevated CO2 to grow.

The observed substrate selectivity appears to originate from electrostatic properties of

the central pores. Positive electrostatic potentials along the central pores establish strong

binding affinities for negatively charged molecules, such as HCO−
3 and Cl− ions. This notion

is supported by the calculated favorable insertion free energies of HCO−
3 from the umbrella

sampling simulations and the captures of spontaneous Cl− binding during the equilibrium

simulations. Favorable binding of HCO−
3 facilitates its passage through the pore.
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