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1. Introduction

The study of flux compactifications is strongly motivated by the necessity to fix the moduli

of the compact space. It leads to the consideration of flux backgrounds which lack certain

geometric features of Calabi-Yau manifolds: typically the closure of the two- and three-

forms of Calabi-Yau manifolds are spoiled by intrinsic torsion. Moreover, the duality

symmetries of string theory lead to backgrounds that are non-geometric in the sense that

the closed-string metric is not globally defined. This concept appeared first in various

incarnations in [1 – 5] and a unifying picture connecting these various points of view was

proposed using generalized geometry in [6].
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However, there is still some structure surviving in flux backgrounds preserving eight

supercharges in four dimensions: such backgrounds have to possess SU(3) × SU(3) struc-

ture [7 – 9]. This implies the existence of a pair of pure spinors of different parity Φ+

and Φ−, one being closed and inducing a generalized complex structure, so that the in-

ternal space is a generalized Calabi-Yau manifold [10, 11]. The other one is not closed

in the presence of Ramond-Ramond fluxes, but its imaginary part is, and gives rise to

calibrations [12 – 17].

SU(3)-structures form a geometric subclass of SU(3)×SU(3) structure manifolds, where

the pure spinors are denoted by Ω and eiJ , and there is no type-jumping. These manifolds

were established to be the mirrors of Calabi-Yau with so-called geometric or electric H-

flux in [18], which in the case of torus-bundles reduces to the statement that T-duality

exchanges the Chern-class of the bundle with the integral of the H-flux along the T-dualized

direction [1, 19, 20].

Special cases of non-geometric backgrounds have been identified as physical realizations

of the type-jumping phenomenon previously studied in generalized complex geometry [11,

6, 21]. Furthermore, the effective actions of string theory on backgrounds admitting SU(3)×

SU(3) structure exhibit symmetry properties under the exchange of Φ+ and Φ− [9]. This

exchange extends the action of mirror symmetry beyond the realm of Calabi-Yau manifolds,

in which the pure spinors are Φ+ = eiJ and Φ− = Ω, where J and Ω denote the Kähler

form and holomorphic three-form, respectively. The generalized calibrations are exchanged

in the same way as the ones governing stability of D-branes of type A and B on Calabi-Yau

manifolds [22, 15]. Fortunately generalized complex submanifolds share a lot of properties

with Abelian D-branes [23 – 25].

Flux backgrounds, while fixing moduli, have therefore violently shaken the geomet-

ric framework of Calabi-Yau compactifications, but still happen to possess good mirror-

symmetric properties. This begs for an explanation in terms of the action of T-duality on

the internal space in the presence of fluxes. In other words, we would like to know what

remains of the Strominger-Yau-Zaslow (SYZ) picture of mirror symmetry [26, 27], in the

case of SU(3) × SU(3) structure backgrounds.

The purpose of this paper is therefore to investigate the moduli space of calibrated

cycles in backgrounds with SU(3)×SU(3) structure, and to formulate the exchange between

Φ+ and Φ− in terms of T-duality along such cycles, thus extending mirror symmetry to

cases where much of the structure available in Calabi-Yau manifolds is missing.1

This can be done in several steps. After recalling the connection between the pure

spinors and the supercharges, we specialize to the case of internal manifolds with a so-

called static SU(2) structure. The type of the pure spinors are constant on such manifolds,

but never maximal, since they are equal to one and two, respectively. We shall see that

supersymmetric tori transverse to the product of the internal space M and its mirror M̂

have the entire M × M̂ as moduli space. In particular M and M̂ are still fibered by three-

tori, but the fibers are not supersymmetric by themselves. We illustrate this generalized

1For generalized Kähler manifolds an argument of mirror symmetry via T-duality for the topological

sigma-models was put forward in [28].

– 2 –



J
H
E
P
1
0
(
2
0
0
7
)
0
5
2

SYZ proposal for static SU(2) structure manifolds in various special cases and show that

it is compatible with the mirror map advocated in [9].

Then we address the case of generic SU(3) × SU(3) structures, that exhibit type-

jumping phenomena, and correspondingly open-string moduli fixing. We shall see that

zeroes or critical points of the coefficients relating the supercharges to each other dictate

the position moduli of supersymmetric cycles. Finally, we may perform T-duality along the

existing supersymmetric cycles, and obtain the type-jumping phenomena from the natural-

ity properties of Fourier-Mukai transform with respect to the so-called B- and β-transforms

of generalized complex geometry. This will be related to the covariance properties of the

differential operators on flux backgrounds, and confirm the mirror-symmetric form of the

superpotentials for SU(3) × SU(3) backgrounds.

2. Review and notations

2.1 Supersymmetry, pure spinors and structures

Generalized complex geometry contains both complex geometry and symplectic geometry.

An almost generalized complex structure on a manifold M is defined as an almost complex

structure on the sum of the tangent and cotangent bundles. It is a generalized complex

(GC) structure if its +i-eigenbundle is stable under the action of the Courant bracket [10,

11, 29]. We will give a more detailed review of the concepts in generalized geometry,

including GC submanifolds, in the next sub-section. Here we review the definition of

pure spinors in terms of supercharges. There is a one-to-one correspondence between GC

structures and pure spinors. A pure spinor is a sum of differential forms and may locally be

written in a unique way as the wedge product of k complex one-forms and the exponential

of a two-form:

θ1 ∧ · · · ∧ θk ∧ eB+iω. (2.1)

The integer k is called the type of the pure spinor. From now on we only consider six-

dimensional manifolds. The special case k = 0 corresponds to a symplectic structure on

the manifold, and the special case k = 3 to a complex structure. Not only can the type

assume other values, but it can also vary on the manifold. This is called the type-jumping

phenomenon [11]. We will mostly work with the pure spinors as the objects encoding the

GC structure.

Consider Type II compactifications on six-manifolds with SU(3)×SU(3) structure [10,

11, 7 – 9] (for more references see [30]). These are characterized by a pair of no-where

vanishing SU(3)-invariant spinors η1,2, which arise in the decomposition of the two SO(9, 1)

spinors ǫ1,2 of Type II under SO(3, 1) × SO(6).

Let M and M̂ be a (real) six-dimensional manifold and its mirror, both assumed to

have SU(3) × SU(3) structure. As such they respectively possess pure spinors Φ−,Φ+

and Φ̂−, Φ̂+, where the signs denote the parity of the type. The pure spinors on M are

constructed as bilinears of spinors:

Φ+ = η1
+ ⊗ η

2†
+

Φ− = η1
+ ⊗ η

2†
− ,

(2.2)
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|v+iw|   =1 

2
 |c|   =1 

|v+iw|  + |c|   =1 
2 2

2

Figure 1: Moduli space of spinors for SU(3) × SU(3) structure manifolds (depicted one dimen-

sion lower as an S2). The blue and red circles depict the SU(3) and the static SU(2) structures,

respectively, which do not intersect.

where η1 and η2 are related to each other by the equation

η2
+ = cη1

+ + (v + iw)mγmη1
− , (2.3)

defining the complex one-form v + iw and complex number c, which have to satifsy the

normalization condition

|c|2 + |v + iw|2 = 1 . (2.4)

There are analogous objects on M̂ and we shall occasionally refer to them just by putting

hats on the symbols we explicitly define on M .

At points where |c| = 1 (zeroes of v + iw), the two SU(3) spinors η1 and η2 become

proportional to each other, and the two SU(3) structures defined by bilinears of η1 and

η2 agree. At such points the pure spinors Φ− and Φ+ have type three and type zero

respectively, just as they do in the case of manifolds of SU(3) structures. Up to a B-

transform they read at such points

Φ−||c|=1 = Ω

Φ+||c|=1 = eiJ .
(2.5)

If |c| = 1 on the whole of M , then M has an SU(3) structure. Calabi-Yau manifolds

form the subclass of those manifolds for which both of Ω and eiJ are closed.

At generic points though, the spinors η1 and η2 are linearly independent, the two

SU(3) structures constructed from them do not agree, and their fundamental two-form

and complex three-form may be written as

J1 = j + v ∧ w , J2 = j − v ∧ w

Ω1 = ω ∧ (v + iw) , Ω2 = ω ∧ (v − iw) .
(2.6)
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The pure spinors in turn are expressed [7] in a way that allows to read-off their types, as

Φ− = −
1

8
(v + iw) ∧ ei(j+cω)

Φ+ = −
1

8
c̄ e−i(j+v∧w+ 1

c̄
ω) .

(2.7)

It can be observed that type-jumping (from one to three) occurs for Φ− at points where

|c| = 1 (zeroes of v + iw). The limit where v + iw goes to zero is ill-defined in those

expressions, and the pure spinors at such points are expressed as in formulas (2.5).

Another type-jumping phenomenon occurs at zeroes of c. At these points the two

spinors η1 and η2 become orthogonal, and there is a local SU(2) structure. The pure

spinors then read:
Φ− = (v + iw) ∧ eij

Φ+ = ω ∧ eiv∧w .
(2.8)

We notice that due to the normalization constraint relating c to v + iw, type-jumping

occurs at critical points of |c| and |v + iw|. The situation is depicted in figure 1. Manifolds

with v + iw = 0 everywhere form the particular class of manifolds with SU(3) structure.

Those with c = 0 everywhere form another particular class, the one of manifolds with static

SU(2) structure. On such manifolds the pure spinors Φ− and Φ+ have type one and type

two everywhere. The Euler characteristic of any manifold with static SU(2) structure is

zero, because otherwise the vector field corresponding to v + iw would have zeroes.

In summary the set of manifolds with SU(3) × SU(3) structure has two important

subclasses:

SU(3) × SU(3) structure :

(v + iw, c) ∈ S3

⊃
SU(3) structure :

v + iw = 0, |c| = 1

⊃
static SU(2) structure :

|v + iw| = 1, c = 0

(2.9)

2.2 Generalized geometry, generalized submanifolds and D-branes

For the sake of completeness, let us recall a few definitions from generalized complex (GC)

geometry [11]. Given an n-dimensional manifold M , with even n, a generalized almost

complex structure on M is defined as an almost complex structure on the sum of tangent

and cotangent bundles TM ⊕ T ∗M . For example, such a structure can be induced by an

ordinary complex structure J on M

JJ =

(
J 0

0 −J∗

)
, (2.10)

in which case it will sometimes be termed a diagonal GC structure, or by a symplectic

form ω on M

Jω =

(
0 −ω−1

ω 0

)
, (2.11)
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where the matrices are written in a basis adapted to the direct sum TM ⊕ T ∗M . Hy-

brid examples, other than these two extreme ones, are classified by a generalized Darboux

theorem [11], saying that any GC space is locally the sum of a complex space and a sym-

plectic space. Hybrid GC structures with no underlying complex or symplectic structure

do appear in N = 1 supersymmetric compactifications of string theory [31, 32].

Around every point p, the sum TpM⊕T ∗
p M is naturally endowed with an inner product

of signature (n, n),

〈X + ξ, Y + η〉 =
1

2
(ιXη + ιY ξ) . (2.12)

It also acts naturally on polyforms on M :

(X + ξ).φ = ιXφ + ξ ∧ φ. (2.13)

Acting twice on φ yields a Clifford algebra, and the +i eigenbundle of a GC structure is an

n-dimensional subspace, hence the one-to-one correspondence between GC structures and

pure spinors (polyforms with an n-dimensional annihilator). On a Calabi-Yau manifold,

the pure spinor associated to the diagonal GC structure induced by the ordinary complex

structure is the holomorphic n-form, while the pure spinor associated to the off-diagonal

GC structure induced by the symplectic structure is eiω, where ω denotes the Kähler form.

The inner product is conserved by an action of the group O(n, n), whose generic

element contains off-diagonal blocks that can be exponentiated into the so-called B- and

β-transforms

exp B =

(
1 0

B 1

)

: B : X + ξ 7→ X + ξ + ιXB

exp β =

(
1 β

0 1

)

: β : X + ξ 7→ X + ιξβ + ξ ,

(2.14)

where B and β are antisymmetric blocks identified with a two-form Bµν and a bivector βµν .

The correponding transforms act by conjugation on the matrices of the GC structures, and

by left-multiplication by eB or eβ on the corresponding pure spinors. These actions will

occur in section 6.

Let H be a closed three-form. A generalized submanifold is defined in [11] as a sub-

manifold N endowed with a two-form B such that H|N = dB. The generalized tangent

bundle τB
N of this generalized submanifold is defined as the B-transform of the sum of the

tangent bundle TN and conormal bundle (or annihilator) AnnTN , namely:

τB
N = {X + ξ ∈ TN ⊕ T ∗M |N , ξ|N = ιXB} , (2.15)

so that τ0
N = TN ⊕ Ann TN . A generalized tangent bundle is a maximally isotropic

subspace (i.e. , it is isotropic with respect to natural pairing and it has the maximal possible

dimension for an isotropic space in ambient signature (n, n), namely n.) Moreover, all the

maximally isotropic subspaces are of this form, for some submanifold N and two-form B.

Given a GC structure J , a generalized complex brane is defined in [11] as a generalized

submanifold whose generalized tangent bundle is stable under the action of J . In the case
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of a diagonal GC structure, the compatibility condition gives rise to the B-branes, as

expected due to the localization properties of the B-model on complex parameters [33].

The submanifold N namely has to be a complex submanifold, and F has to be of type

(1, 1) with respect to J

J(TN) ⊂ TN , J∗(ιXF ) + ιJXF = 0 . (2.16)

In the other extreme case of a symplectic structure, the definition yields all possible types of

A-branes, including the non-Lagrangian ones [34, 35]. These are two tests of the idea that

D-branes in generalized geometries are generalized submanifolds. This idea has passed fur-

ther tests: calibrating forms and pure spinors encoding stability conditions for topological

branes [36] are correctly exchanged by mirror symmetry [37, 22, 23, 14].

3. The SYZ argument for Calabi-Yau manifolds

Let us sketch the SYZ argument [26], assuming for a moment that M is an ordinary Calabi-

Yau manifold with a Calabi-Yau mirror M̂ . We break the argument up into steps, which

we shall then extend to generalized Calabi-Yau manifolds.

Step 1: consider the D0-branes of the B-model on M . As there is an ordinary

complex structure on M , one can always put stable D0-branes on it. In other words, the

moduli space of a D0-brane consists of the entire manifold M .

Step 2: Consider the A-model on the mirror manifold M̂ . As mirror symmetry

does not change moduli spaces, there must be a stable D-brane L on M̂ (a special La-

grangian submanifold (SLag) of M̂) that has the same moduli space, namely M . It is safe

to disregard the coisotropic D-branes of the A-model in this context [34, 38, 39], because

they are five-dimensional and one eventually considers D-branes that can be obtained from

D0-branes by three T-dualities, which rules out dimension five.

Step 3: Project out the gauge-bundle moduli. Moreover, this moduli space has a

fibered structure: it is fibered over the set of geometric moduli called MSLag(L), with fiber

given by the gauge-bundle moduli (the projection map π is given by “forgetting the bundle

data”):

M
π
−→ MSLag(L). (3.1)

M is therefore fibered by the gauge bundle data, with fiber given by the set of Wilson lines

T b1(L).

Step 4: Describe the local tangent space to the moduli space of supersymmet-

ric three-cycles. The tangent space at L to the moduli space of SLags [40] with flat

connections is given by

H1(L,C) ≃ H1(L) ⊕ H1(L), (3.2)

with the first term corresponding to geometric moduli and the second one to gauge-bundle

moduli (the Lagrangian and special condition are preserved by exactly those deformations

that are induced by harmonic one-forms, and the flat gauge connections are described by

the set of b1 monodromies around the non-trivial homology cycles in L).

– 7 –
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Step 5: Use the result of step 1 to compute the dimension of the fibers. The

moduli space of SLags with flat connections on M̂ (continuously connected to L) therefore

has real dimension 2b1(L), half of which comes from the moduli of flat connections. But

the fiber in the fibration (3.1) is a torus T b1(L). As this moduli space is M itself, we learn

that 2b1 = 6, and that M is fibered by three-tori.

Step 6: T-dualize along the three-cycles. Consider a D3-brane with flat connection

wrapping a T 3 fiber on M . T-dualizing along the three U(1) directions produces a D0-

brane on a T-dual manifold called M ′, whose moduli space is the whole of M ′. Consider

a D0-brane on M . Its moduli space is the whole of M . It sits at some point in a T 3 fiber.

T-dualizing along the three U(1) directions of this fiber produces a D3-brane with flat

connection wrapping a three-cycle on M ′. This describes a fibration of M ′ by three-tori,

whose moduli space is M . This is the same situation as with the couple of branes on M

and M̂ described above. Therefore M̂ = M ′ and T-duality along the torus fibers is mirror

symmetry.

4. Fibrations à la SYZ for static SU(2) structure manifolds

Manifolds with static SU(2) structure form an interesting but still tractable subclass of

backgrounds because they substantially differ from Calabi-Yau manifolds (in that they

admit no closed type-three pure spinor), and because they do not exhibit type-jumping

phenomena. They are relatively tractable, for the price of considering cycles that are

transverse to M and its mirror M̂ . Having type-one and type-two closed pure spinors, we

find it natural to form their wedge product, which induces a GC structure on the product

M × M̂ , because the wedge product starts with a complex three-form and allows for some

parallel treatment of the SYZ argument.

4.1 Supersymmetric cycles on M × M̂

Consider a generalized Calabi-Yau manifold M and its mirror M̂ , both with static SU(2)-

structure.2 There is a nowhere-vanishing complex one-form field v + iw, inducing on every

local four-dimensional transverse space a real two-form j and a complex two-form ω. The

corresponding two pure spinors are

Φ− = (v + iw) ∧ eij

Φ+ = ω ∧ eiv∧w .
(4.1)

They are exchanged under mirror symmetry with analogous objects on the mirror M̂ built

from a nowhere-vanishing complex one-form field v̂ + iŵ, inducing on every local four-

dimensional transverse space a real two-form ĵ and a complex two-form ω̂:

Φ̂− = (v̂ + iŵ) ∧ eiĵ

Φ̂+ = ω̂ ∧ eiv̂∧ŵ .
(4.2)

2For recent developments based on the physics of SU(2) structure manifolds as gravity duals of defor-

mations of super Yang-Mills theories, see for instance [41].
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This is a case of the generalized Darboux theorem with types one and two, and we can

choose local coordinates that are adapted to it:

j =: dx3 ∧ dx4 + dx5 ∧ dx6 , ĵ =: dx̂3 ∧ dx̂4 + dx̂5 ∧ dx̂6,

ω =: d(x3 + ix4) ∧ d(x5 + ix6) , ω̂ =: d(x̂3 + ix̂4) ∧ d(x̂5 + ix̂6) .
(4.3)

The pure spinors Φ−, Φ+, Φ̂− and Φ̂+ induce almost GC structures on M and M̂ denoted

by J−, J+, Ĵ− and Ĵ+.

Step 1. Where can we place points? In order to parallel the first step of the SYZ

argument for Calabi-Yau manifolds, we need to be able to move points on a six-dimensional

space. This cannot be M or M̂ , because the GC structure induced by Φ− always maps

some tangent vectors to some normal vectors. This prevents the generalized tangent bundle

to a point from being stable under the action of the GC structure.

Consider instead supersymmetric cycles on M × M̂ . There are several possible choices

for structures and calibrations, and we will be interested in the following combinations:

• GC branes w.r.t. the GC structure J−⊕Ĵ+, calibrated by Φ+ ∧ Φ̂−, which we call Σ

• GC branes w.r.t. the GC structure J+ ⊕ Ĵ−, calibrated by Φ− ∧ Φ̂+, which we call

Σ̂.

In a basis of the local tangent space to M × M̂ adapted to the local splitting into 2+4

dimensions, we have the following matrix representation for the GC structures, where the

symbols Jω and Jω̂ denote the almost complex structures corresponding to ω and ω̂ in the

local four-dimensional subspaces, so that we obtain

J− ⊕ Ĵ+ =





Jv+iw 0 0 0

0 −J∗
v+iw 0 0

0 0 0 −j−1

0 0 j 0




⊕





0 −v̂ ∧ ŵ−1 0 0

v̂ ∧ ŵ 0 0 0

0 0 Jω̂ 0

0 0 0 −J∗
ω̂




,

J+ ⊕ Ĵ− =





0 −v ∧ w−1 0 0

v ∧ w 0 0 0

0 0 Jω 0

0 0 0 −J∗
ω




⊕





Jv̂+iŵ 0 0 0

0 −J∗
v̂+iŵ 0 0

0 0 0 −ĵ−1

0 0 ĵ 0




.

(4.4)

Let us describe the generalized tangent bundle τ0
Σ (with zero field strength), of the GC

submanifold Σ of M × M̂ . As the two GC structures we consider on M × M̂ are block-

diagonal with blocks of the same size , the projections of the generalized tangent bundle

onto the sums of blocks and dual blocks are separately generalized complex and calibrated

w.r.t. the corresponding blocks.

We may choose Σ to have zero-dimensional projections onto Vect(v,w) and

Vect(v̂, ŵ)⊥. chosen to be trivial, the projections of τ0
Σ onto Vect(v̂, ŵ) and Vect(v,w)⊥

have to be Lagrangian w.r.t. v̂ ∧ ŵ and j respectively, and calibrated by v̂ + iŵ and ω.

This gives one-dimensional and two-dimensional projections on Vect(v̂, ŵ) and Vect(v,w)⊥

respectively for the world-volume of Σ

j + v̂ ∧ ŵ|Σ = 0 (4.5)
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Figure 2: Supersymmetric cycles Σ and Σ̂ and their location within M × M̂ .

Im (ω ∧ (v̂ + iŵ)) |Σ = 0 . (4.6)

They look like the Lagrangian and special conditions, but live on a six-dimensional subspace

of M × M̂ , transverse to both M and M̂ . To sum up, a possible local generalized tangent

bundle is given in the coordinates chosen above as:

τ0
Σ =

〈
v,w,

∂

∂x3
+ idx4,

∂

∂x5
+ idx6, v̂∗ + iŵ∗, dx̂3, dx̂4, dx̂5, dx̂6

〉
. (4.7)

The supersymmetric cycle Σ is therefore three-dimensional, but neither of its projections

on M or M̂ is (they are two- and one-dimensional respectively). The situation is depicted

in figure 2.

The same linear-algebraic exercise can be repeated with hats exchanged to yield the

local generalized tangent bundle of the cycle called Σ̂ (with a somewhat misleading notation

because Σ̂ is not mirror to Σ; both are their own mirror):

v ∧ w + ĵ|Σ̂ = 0 (4.8)

Im ((v + iw) ∧ ω̂) |Σ̂ = 0 , (4.9)

with the generalized tangent bundle given by

τ0
Σ̂

=

〈
v∗ + iw∗, dx3, dx4, dx5, dx6, v̂, ŵ,

∂

∂x̂3
+ idx̂4,

∂

∂x̂5
+ idx̂6

〉
. (4.10)

We thus obtain the situation in figure 2. The supersymmetric cycles we have just described

are sketched as submanifolds of M × M̂ that are transverse to both M and M̂ , whereas

the tree-dimensional supersymmetric cycles on a mirror pair of Calabi-Yau manifolds are

longitudinal either to M or to M̂ . If one thinks of a supersymmetric three-cycle as a leg,

then the SYZ picture of mirror pairs correspond to standing on M × M̂ with one leg on
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M and one leg on M̂ . What we have just argued is that standing on M × M̂ with M and

M̂ generalized Calabi-Yau manifolds with static SU(2) structure can be achieved, but only

with the legs crossed.

4.2 The fibration of M × M̂

We are ready to turn to Step 3 and Step 4. So far we have exhibited two three-dimensional

supersymmetric cycles on M × M̂ , called Σ and Σ̂, each of which possesses six position

moduli given by the projections onto the subspaces of M × M̂ that are complex w.r.t.

(v + iw) ∧ ω̂ and ω ∧ (v̂ + iŵ). We want to show that they both have the topology of a

three-torus, and that the moduli space of Σ×Σ̂ on M×M̂ is the whole of M×M̂×M×M̂ .

We have worked out the generalized tangent spaces of both cycles Σ and Σ̂. This gives

only local informations, essentially counting dimensions. For some point p in M × M̂ , on

the local tangent space Tp(M × M̂) in which Φ−, Φ+, Φ̂− and Φ̂+ have the generalized

Darboux expressions we wrote above, the projections of τ0
Σ onto the subspace Vect(v,w)

and Vect(v̂, ŵ)⊥ have dimension zero. So have the projections of τ0
Σ̂

on Vect(v,w)⊥ and

Vect(v̂, ŵ). We have just described a projector

τ0
Σ × τ0

Σ̂
→ Tp(M × M̂) . (4.11)

This is the tangent application to the projection

Σ × Σ̂ 7→ p ∈ M × M̂ . (4.12)

There are therefore position moduli for Σ× Σ̂ in all the twelve directions, which correspond

to moving Σ × Σ̂ around p in the coordinate patch.

Let us call M the moduli space of supersymmetric cycles of M × M̂ that are continu-

ously connected to Σ× Σ̂. We have just argued that there is a twelve-dimensional subspace

consisting of translation moduli, so there must exist other moduli, which make up some

subspace M′ consisting of deformations that leave the projection of Σ × Σ̂ onto the local

complex subspaces of M × M̂ fixed:

TΣ×Σ̂M = Tp(M × M̂ ) × TΣ×Σ̂M
′ . (4.13)

Consider now the projection π that “forgets the gauge bundle” along the two cycles

Σ and Σ̂. It induces a fibration of M′ over some base B consisting of the Lagrangian

deformations of Σ × Σ̂ w.r.t. v ∧ w ∧ j ∧ v̂ ∧ ŵ ∧ ĵ:

M′ π
−→ B (4.14)

The space M′ has the following topological meaning, as the fiberwise projection of the

generalized tangent bundle is isomorphic to the complexified dual of the ordinary tangent

space to Σ × Σ̂ as a bundle and as a Lie algebroid (cf. section 7.2 of [17]):

M′ = H1
(
L(Σ × Σ̂, 0)|p

)
= H1

dR(Σ × Σ̂,C). (4.15)

The dimension of the moduli space M′ is therefore twice the Betti number of the six-

dimensional cycle Σ × Σ̂.
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In order to compute this dimension, we are going to perform T-duality along Σ × Σ̂,

with the point p still fixed. This implies that gauge connections will be fixed on the image

of Σ × Σ̂, which will only have translation moduli. The moduli space is not changed by

T-duality, but it is now described as follows. The one-dimensional projection of Σ onto

TpM , with moduli from flat connection and normal deformations (all in M′), is mapped to

a point-like projection onto TpM̂ with two translation moduli. The fixed zero-dimensional

projection of Σ onto TpM̂ , is mapped to a one-dimensional projection onto TpM sitting at

some fixed w∗ = 0, extended along v∗ and with fixed flat connection. The two-dimensional

projection of Σ onto TpM̂ is mapped to a point of M with four translation moduli. So

Σ is mapped to itself, but the fiber moduli are traded for translational ones, living in

the subspace Vect(v̂∗, ŵ∗) ⊕ Vect(v∗, w∗)
⊥. By T-dualizing Σ̂ along Σ × Σ̂, one trades

in the same way the deformation moduli for translational ones, living in the subspace

Vect(v∗, w∗) ⊕ Vect(v̂∗, ŵ∗)
⊥, so that the tangent space at Σ × Σ̂ to the moduli space M′

is isomorphic (by dimension counting) to

Vect(v̂∗, ŵ∗) ⊕ Vect(v∗, w∗)
⊥ ⊕ Vect(v∗, w∗) ⊕ Vect(v̂∗, ŵ∗)

⊥ = Tp(M × M̂) . (4.16)

The moduli (sub)-space M′ therefore has dimension twelve.

Let us move to Step 5. We have just computed the dimension of M′, which is accessible

to our local computations, but its T-dual interpretation in homology promotes the result

to a Betti number, a global quantity. From this T-duality argument we learn that

dimTΣ×Σ̂M
′ = 2b1(Σ × Σ̂) = dim(M × M̂) = 12 . (4.17)

Hence Σ × Σ̂ is a six-torus, the product of two supersymmetric three-tori, and its moduli

space is M × M̂ × M × M̂ .

Note that Σ or Σ̂ by itself does not have M × M̂ as its moduli space, nor M ×M nor

M̂ × M̂ , as it is only the case for SU(3) structures.

5. Illustrations in flux compactifications

So far we have drawn the conclusions of there being transverse three-dimensional super-

symmetric cycles on a mirror pair of manifolds with static SU(2) structures. This begs for

a few checks. We shall first T-dualize the three-tori and check that the pure spinors are

exchanged by this transformation. We shall then turn to the example of K3 × T 2, which

was of course available in the Calabi-Yau case, but can also be endowed with a static

SU(2) structure. Finally, in order to make contact with open problems in flux compact-

ifications (where the nature of non-geometric fluxes is still under investigation), we shall

take the analog of Step 6 by turning on all the possible fluxes on a six-torus with static

SU(2)-structure, thus putting our T-duality proposal to the test.

5.1 Mirror images of the pure spinors

Let us perform a Fourier-Mukai transform (F.T.) on the pure spinors, by weighting them

with the Poincaré connection on Σ × Σ̂ we worked out. As we have established that the
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three-dimensional intersection of Σ× Σ̂ and M are the directions which are T-dualized, the

Fourier-Mukai transform of the pure spinors reads

F.T. (Φ−) =

∫

(Σ×Σ̂)∩M

(v + iw) ∧ eij ∧ ev∧v̂+dx3∧dx̂3+dx5∧dx̂5
= eiv̂∧w ∧ ω = Φ̂+, (5.1)

F.T. (Φ+) =

∫

(Σ×Σ̂)∩M

eiv∧w ∧ ω ∧ ev∧v̂+dx3∧dx̂3+dx5∧dx̂5
= (v̂ + iw) ∧ eiĵ = Φ̂−, (5.2)

with the value of the base coordinates unchanged, namely provided w = ŵ, which makes

sense, because the local coordinates w or ŵ are not T-dualized. The mapping of pure spinors

under Fourier-Mukai transform coincides with what is expected from mirror symmetry.

5.2 The K3 × T 2 example

As the Euler characteristic is multiplicative, the manifold K3×T 2 has Euler characteristic

zero. There may therefore be a nowhere-vanishing vector field on it. Real and imaginary

part of the complex coordinate of T 2 as an elliptic curve indeed serve as v and w vector

fields.3

In the present case, ω and j are a complex and a Kähler form on K3, while ω̂ and ĵ

are the same objects on the mirror K3. Of course in this case we have a global picture of

the cycles: Σ is a point in T 2 times a special Lagrangian torus with respect to j, times a

Lagrangian circle in the mirror torus times a point in the mirror K3, while Σ̂ is the mirror

circle on the first torus times a point in the first K3 times a point in the second T 2 times

the dual torus in the second K3. The projection is just given by associating the points to

Σ× Σ̂. This is just the ordinary SYZ case but with the complex structures of the two-tori

exchanged. It is a straightforward consequence of the Calabi-Yau case because crossing the

legs amounts to permuting the two two-tori.

5.3 Static SU(2) structure with non-geometric fluxes

Let us apply this analysis to the case of a six-torus endowed with a static SU(2) structure.

This seems of course to be an over-simplification, as many torus fibrations can be explicitly

found in such a geometry. However, T-duality leads from geometric to non-geometric

fluxes, which in the terminology [5] are called Q- and R-fluxes according to the number

of T-dualized directions supporting a B-field. With each double arrow symbolizing one

T-duality, these notations are summarized in the following way:

Habc ↔ fa
bc ↔ Qab

c ↔ Rabc. (5.3)

The embedding of three-tori into M × M̂ along which T-duality is performed is key to

the map between geometric and non-geometric fluxes. Finding the mirror of a generic flux

configuration is therefore a non-trivial check of our proposal.4 We are going to complete

3For a thorough treatment of the reduction of IIA supergravity on K3 × T
2 endowed with an SU(2)

structure, see [42].
4Choosing a static SU(2) structure protects us against type-jumping phenomena; those will of course be

crucial in the generic SU(3) × SU(3) case, which will be elaborated on in the next section, in a much less

thorough way though.
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the study of fluxes on the SU(2) structure background of [9], first including all the non-

geometric fluxes (which indeed fill all the entries of the charge matrix), and then to obtain

the mirror configuration by T-duality along the transverse supersymmetric fibers.

5.3.1 Charge matrix

We consider a six-torus endowed with a static SU(2) structure. The holomorphic vector

e3 = v + iw is completed to a basis by (e1, e2, e3), and likewise for the mirror the basis is

denoted by (ê1, ê2, ê3). The GC submanifolds Σ and Σ̂ solving the structure and stability

equations (4.5)–(4.9) are chosen as

Σ Σ̂

ℜ(e1) ℜ(ê1)

ℜ(e2) ℜ(ê2)

ℜ(ê3) ℜ(e3)

, (5.4)

which have trivial projection onto the base spanned by (ℑ(e1),ℑ(e2),ℑ(e3)) and Σ projects

trivially upon e3 = v + iw etc. as required.

The generic SU(3)×SU(3) structure is described by a symplectic basis with forms that

are not necessarily closed. Denote the two bases by

Σ− =

(
αI

βI

)
, Σ+ =

(
ωA

ω̃B

)
, (5.5)

where the entries of Σ± are odd/even formal sums of forms. In particular dΣ± 6= 0 and

can therefore be expanded in Σ∓, i.e.

dΣ− = QΣ+ . (5.6)

The matrix Q is called the charge matrix. In the present case it is a four-by-four matrix.

Furthermore define the generalized symplectic basis Σ± in terms of the basis ei as

follows

Σ− =





2ℜ(e3)

−2ℑ(e3) + ℜ(e3)j

−ℑ(e3)j2

1
3ℜ(e3)j2 + 4

3ℑ(e3)j




, (5.7)

and

Σ+ =





4ℜ(e1) ∧ ℜ(e2)

8
(
ℑ(e1) ∧ ℜ(e2) + ℜ(e1) ∧ ℑ(e2)

)
− 16ℜ(e1) ∧ ℜ(e2) ∧ ℜ(e3) ∧ ℑ(e3)

16ℑ(e1) ∧ ℑ(e2) ∧ ℜ(e3) ∧ ℑ(e3)
4
3ℑ(e1) ∧ ℑ(e2) + 4

3 (ℑ(e1) ∧ ℜ(e2) + ℜ(e1) ∧ ℑ(e2)) ∧ ℜ(e3) ∧ ℑ(e3)



 ,

(5.8)

where we defined

j = 2i(e1 ∧ e1̄ + e2 ∧ e2̄) = 4
(
ℜ(e1) ∧ ℑ(e1) + ℜ(e2) ∧ ℑ(e2)

)
. (5.9)
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[ 1 ] [3] [5]
H Q f QRf

[2] [4]

Figure 3: Mapping of cohomology degrees under the fluxes f , H , Q and R.

As discussed earlier, the standard relation between the two symplectic basis vectors

is (5.6). Turning on fluxes — both geometric H-flux and non-geometric Q- and R-fluxes

— has the effect of twisting the the differential operator d

(d + H ∧ + Q · + R·)Σ− ∼ QΣ+ . (5.10)

Here we denote by ∼ equality up to terms that are perpendicular to all elements in the

symplectic basis with respect to the symplectic pairing

∫

M

〈σ, ρ〉 =

∫

M

(
∑

p

(−1)[
p+1
2

]σp ∧ ρ6−p

)
, (5.11)

where σ =
∑

p σp is a polyform (the sum runs over the degrees) and 〈, 〉 denotes the Mukai

pairing. In particular the symplectic basis obeys
∫

M

〈αI , βJ 〉 = δJ
I ,

∫

M

〈ωA, ω̃B〉 = δB
A . (5.12)

Note that the action on cohomologies is as follows

d : Hp → Hp+1

H : Hp → Hp+3

Q· : Hp → Hp−1

R· : Hp → Hp−3 ,

(5.13)

in agreement with Q having two vector and one form index and R being a tri-vector. Note

that d acts on the one-forms as dei = f i
jke

j ∧ek. The mapping of the various degrees under

the fluxes (5.13) can be depicted as in figure 3. Here [p], with p = 1, 2, . . . denotes the

degree of the forms.

The various flux components then follow by noting that

Σ− =





[1]

[1] + [3]

[5]

[3] + [5]




, Σ+ =





[2]

[2] + [4]

[4]

[2] + [4]




, (5.14)

and further allowing additional terms compatible with the equivalence relation ∼.
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5.3.2 Geometric fluxes

The effect of the geometric fluxes (both H and f) was already discussed in [9]. There it

was found that with the geometric flux parameters one can switch on the following entries

in the charge matrix

(d + H∧)Σ− ∼





F11 F12 + H12 H13 F14 + H14

F21 F22 + H22 F23 + H23 F24 + H24

0 0 0 0

0 F42 F43 F44



 Σ+ . (5.15)

The geometric flux charges (a.k.a. torsion charges) Fi follow from the relation

de
I = f I

JKe
J ∧ e

K , (5.16)

where e
I = ℜ(ei) for I = i and e

I = ℑ(ei) for I = ī.

To sum up, the f -flux we have to turn on in order to generate the above charge entries

are

f = + 2F11ℜ(∂3) ∧ ℜ(e1) ∧ ℜ(e2)

+ 8F12

(
ℜ(∂3) ∧ ℑ(e1) ∧ ℜ(e2) + ℜ(∂3) ∧ ℜ(e1) ∧ ℑ(e2)

)

+
4

3
F14ℜ(∂3) ∧ ℑ(e1) ∧ ℑ(e2)

− 2F21ℑ(∂3) ∧ ℜ(e1) ∧ ℜ(e2)

− 4F22(ℑ(∂3) ∧ ℑ(e1) ∧ ℜ(e2) + ℑ(∂3) ∧ ℜ(e1) ∧ ℑ(e2))

− 2F22(ℑ(∂1) ∧ ℜ(e2) ∧ ℑ(e3) + ℑ(∂2) ∧ ℑ(e3) ∧ ℜ(e1))

+ 2F23(ℜ(∂1) ∧ ℑ(e3) ∧ ℑ(e2) + ℜ(∂2) ∧ ℑ(e1) ∧ ℑ(e3))

−
1

3
F24

(
2ℑ(∂3) ∧ ℑ(e1) ∧ ℑ(e2) + ℜ(∂1) ∧ ℜ(e2) ∧ ℑ(e3) + ℜ(∂2) ∧ ℑ(e3) ∧ ℜ(e1)

)

+ 3F42(−ℜ(e2) ∧ ℑ(∂1) + ℜ(e1) ∧ ℑ(∂2)) ∧ ℜ(e3)

+
3

2
F43(ℜ(∂1) ∧ ℑ(e2) ∧ ℜ(e3) + ℜ(∂2) ∧ ℜ(e3) ∧ ℑ(e1))

+
1

2
F44(ℑ(e2) ∧ ℑ(∂1) + ℑ(∂2) ∧ ℑ(e1)) ∧ ℜ(e3) .

(5.17)

We should perhaps add a word of explanation. Recall that the relations between the two

symplectic basis is only up to the equivalence w.r.t. ∼. This in particular allows one to

switch on f -flux to generate the Q12 charge entry, without turning on H-flux simultane-

ously. To be more explicit

f = 8F12

(
ℜ(∂3) ∧ ℑ(e1) ∧ ℜ(e2) + ℜ(∂3) ∧ ℜ(e1) ∧ ℑ(e2)

)
(5.18)

acting upon Σ−
1 = 2ℜ(e3) will only generate the two-form part of Σ+

2 , denoted by Σ+
2

∣∣
[2]

fΣ−
1 = 2F12 Σ+

2

∣∣
[2]

. (5.19)
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However, this can be written as

fΣ−
1 = F12Σ

+
2 + Ω , (5.20)

where

Ω = F12

(
Σ+

2

∣∣
[2]

− Σ+
2

∣∣
[4]

)
, (5.21)

which is perpendicular to all other basis elements

〈Ω,Σ±
i 〉 = 0 , (5.22)

and thus

fΣ−
1 ∼ F12Σ

+
2 . (5.23)

Likewise the H-flux can be determined as

H = + 16H12ℜ(e1) ∧ ℜ(e2) ∧ ℑ(e3)

− 8H13ℑ(e1) ∧ ℑ(e2) ∧ ℑ(e3)

+
4

3
H14

(
ℜ(e2) ∧ ℑ(e1) −ℜ(e1) ∧ ℑ(e2)

)
∧ ℑ(e3)

+ 16H22ℜ(e1) ∧ ℜ(e2) ∧ ℜ(e3)

− 8H23ℑ(e1) ∧ ℑ(e2) ∧ ℜ(e3)

−
4

3
H24

(
ℑ(e1) ∧ ℜ(e2) ∧ ℜ(e3) + ℜ(e1) ∧ ℑ(e2) ∧ ℜ(e3)

)
.

(5.24)

The resulting charge matrix entries are as we indicated in (5.15).

5.3.3 Non-geometric fluxes

Here we wish to study the effect of the Q- and R-fluxes, which can be done by linear

superposition with the results from [9]. We find by simple dimensional analysis that the

effect of these non-geometric fluxes on the charge matrix can be only of the following type:

(Q + R)Σ− ∼





0 0 0 0

Q21 Q22 0 Q24

R31 Q32 + R32 Q33 Q34 + R34

R41 Q42 + R42 Q43 Q44 + R44




Σ+ . (5.25)

We can determine the corresponding non-geometric fluxes which will turn on these

charge entries by analyzing the structure of the linear equations and keeping in mind the

liberty to add terms perpendicular to all basis elements in the symplectic basis. We find
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the following Q-fluxes (are one-forms and bi-vectors)

Q = +
1

2
Q21

(
ℜ(e2) ∧ ℑ(∂1) −ℜ(e1) ∧ ℑ(∂2)

)
∧ ℜ(∂3)

+ Q22

(
−ℜ(e2) ∧ ℜ(∂1) + ℑ(e2) ∧ ℑ(∂1) −ℑ(e1) ∧ ℑ(∂2) + ℜ(e1) ∧ ℜ(∂2)

)
∧ ℜ(∂3)

+
1

3
Q24

(
ℑ(e1) ∧ ℜ(∂2) −ℑ(e2) ∧ ℜ(∂1)

)
∧ ℜ(∂3)

+ Q32ℑ(∂1) ∧ ℑ(∂2) ∧ ℜ(e3)

−
1

2
Q33ℜ(∂1) ∧ ℜ(∂2) ∧ ℜ(e3)

−
1

12
Q34(ℑ(∂2) ∧ ℜ(∂1) + ℜ(∂2) ∧ ℑ(∂1)) ∧ ℜ(e3)

+ 3Q42ℑ(∂1) ∧ ℑ(∂2) ∧ ℑ(e3)

−
3

2
Q43ℜ(∂1) ∧ ℜ(∂2) ∧ ℑ(e3)

−
1

4
Q44(ℑ(∂2) ∧ ℜ(∂1) + ℜ(∂2) ∧ ℑ(∂1)) ∧ ℑ(e3) ,

(5.26)

as well as R-fluxes of the type

R = −
1

8
R31ℑ(∂1) ∧ ℑ(∂2) ∧ ℑ(∂3)

−
1

2
R32(ℜ(∂1) ∧ ℑ(∂2) −ℜ(∂2) ∧ ℑ(∂1)) ∧ ℑ(∂3)

−
1

12
R34ℜ(∂1) ∧ ℜ(∂2) ∧ ℑ(∂3)

+
3

8
R41ℑ(∂1) ∧ ℑ(∂2) ∧ ℜ(∂3)

−
3

2
R42(ℜ(∂1) ∧ ℑ(∂2) −ℜ(∂2) ∧ ℑ(∂1)) ∧ ℜ(∂3)

+
1

4
R44ℜ(∂1) ∧ ℜ(∂2) ∧ ℜ(∂3) .

(5.27)

In summary we have shown that the full charge matrix can be constructed by switching

on geometric as well as non-geometric fluxes:

Q =





F11 F12 + H12 H13 F14 + H14

F21 + Q21 F22 + H22 + Q22 F23 + H23 F24 + H24 + Q24

R31 Q32 + R32 Q33 Q34 + R34

R41 F42 + Q42 + R42 F43 + Q43 F44 + Q44 + R44




. (5.28)

5.3.4 Mirror symmetry

We now wish to test out generalized SYZ proposal in this setup. This should in particular

be compatible with the proposed mirror map of [9]. The mirror fluxes are obtained by first

recalling that we dualize along ℜ(e1), ℜ(e2) and ℜ(e3) and that thereby the mirror map is

realized as

ℜ(ei) ←→ ℜ(∂i) . (5.29)
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The mirror fluxes are determined straight-forwardly from our expressions for the fluxes.

The mirrors of the geometric fluxes are

f̂ = +2F11ℜ(e3) ∧ ℜ(∂1) ∧ ℜ(∂2)

+8F12

(
ℜ(e3) ∧ ℑ(e1) ∧ ℜ(∂2) + ℜ(e3) ∧ ℜ(∂1) ∧ ℑ(e2)

)

+
4

3
F14ℜ(e3) ∧ ℑ(e1) ∧ ℑ(e2)

−2F21ℑ(∂3) ∧ ℜ(∂1) ∧ ℜ(∂2)

−4F22(ℑ(∂3) ∧ ℑ(e1) ∧ ℜ(∂2) + ℑ(∂3) ∧ ℜ(∂1) ∧ ℑ(e2))

−2F22(ℑ(∂1) ∧ ℜ(∂2) ∧ ℑ(e3) + ℑ(∂2) ∧ ℑ(e3) ∧ ℜ(∂1))

+2F23(ℜ(e1) ∧ ℑ(e3) ∧ ℑ(e2) + ℜ(e2) ∧ ℑ(e1) ∧ ℑ(e3))

−
1

3
F24

(
2ℑ(∂3) ∧ ℑ(e1) ∧ ℑ(e2) + ℜ(e1) ∧ ℜ(∂2) ∧ ℑ(e3) + ℜ(e2) ∧ ℑ(e3) ∧ ℜ(∂1)

)

+3F42(−ℜ(∂2) ∧ ℑ(∂1) + ℜ(∂1) ∧ ℑ(∂2)) ∧ ℜ(∂3)

+
3

2
F43(ℜ(e1) ∧ ℑ(e2) ∧ ℜ(∂3) + ℜ(e2) ∧ ℜ(∂3) ∧ ℑ(e1))

+
1

2
F44(ℑ(e2) ∧ ℑ(∂1) + ℑ(∂2) ∧ ℑ(e1)) ∧ ℜ(∂3) , (5.30)

and

Ĥ = +16H12ℜ(∂1) ∧ ℜ(∂2) ∧ ℑ(e3)

−8H13ℑ(e1) ∧ ℑ(e2) ∧ ℑ(e3)

+
4

3
H14

(
ℜ(∂2) ∧ ℑ(e1) −ℜ(∂1) ∧ ℑ(e2)

)
∧ ℑ(e3)

+16H22ℜ(∂1) ∧ ℜ(∂2) ∧ ℜ(∂3)

−8H23ℑ(e1) ∧ ℑ(e2) ∧ ℜ(∂3)

−
4

3
H24

(
ℑ(e1) ∧ ℜ(∂2) ∧ ℜ(∂3) + ℜ(∂1) ∧ ℑ(e2) ∧ ℜ(∂3)

)
. (5.31)

These include of course both geometric and non-geometric fluxes.

Likewise the non-geometric mirrors are

Q̂ = +
1

2
Q21 (ℜ(∂2) ∧ ℑ(∂1) −ℜ(∂1) ∧ ℑ(∂2)) ∧ ℜ(e3)

+Q22

(
−ℜ(∂2) ∧ ℜ(e1) + ℑ(e2) ∧ ℑ(∂1) −ℑ(e1) ∧ ℑ(∂2) + ℜ(∂1) ∧ ℜ(e2)

)
∧ ℜ(e3)

+
1

3
Q24

(
ℑ(e1) ∧ ℜ(e2) −ℑ(e2) ∧ ℜ(e1)

)
∧ ℜ(e3)

+Q32ℑ(∂1) ∧ ℑ(∂2) ∧ ℜ(∂3)

−
1

2
Q33ℜ(e1) ∧ ℜ(e2) ∧ ℜ(∂3)

−
1

12
Q34(ℑ(∂2) ∧ ℜ(e1) + ℜ(e2) ∧ ℑ(∂1)) ∧ ℜ(∂3)

+3Q42ℑ(∂1) ∧ ℑ(∂2) ∧ ℑ(e3)

−
3

2
Q43ℜ(e1) ∧ ℜ(e2) ∧ ℑ(e3)

−
1

4
Q44(ℑ(∂2) ∧ ℜ(e1) + ℜ(e2) ∧ ℑ(∂1)) ∧ ℑ(e3) , (5.32)
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and

R̂ = −
1

8
R31ℑ(∂1) ∧ ℑ(∂2) ∧ ℑ(∂3)

−
1

2
R32(ℜ(e1) ∧ ℑ(∂2) −ℜ(e2) ∧ ℑ(∂1)) ∧ ℑ(∂3)

−
1

12
R34ℜ(e1) ∧ ℜ(e2) ∧ ℑ(∂3)

+
3

8
R41ℑ(∂1) ∧ ℑ(∂2) ∧ ℜ(e3)

−
3

2
R42(ℜ(e1) ∧ ℑ(∂2) −ℜ(e2) ∧ ℑ(∂1)) ∧ ℜ(e3)

+
1

4
R44ℜ(e1) ∧ ℜ(e2) ∧ ℜ(e3) .

(5.33)

Acting with the mirror fluxes on the basis yields the mirror charge matrix Q̂ to be

Q̂ =





−1
4Q33

3
16F43 −

3
32Q43 H13 −6F23 − 6H23

−1
6Q34 + 1

24R34
1
8F44 + 1

8Q44 + 1
16R44 −1

6F14 + 2
3H14 −F24 − 2H24 + 1

4Q24

R31
3
8R41 −4F11 −24F21 − 6Q21

8
3Q32 + 2

3R32 −2F42 + Q42 + 1
2R42

16
3 F12 −

32
3 H12 16F22 − 64H22 + 2Q22



 .

(5.34)

Note this is nicely confirming the conjectured mirror map on the charge matrix as of [9]

where it was conjectured that the charge entries appear as

Q =

(
pI

A eIB

qIA mI
B

)

→ Q̂ =

(
mI

A eBI

qAI −pI
B

)

. (5.35)

Recall that this was derived by comparing the Killing prepotentials, and thus does not fix

the mapping of the charges up to linear transformations that leave the blocks invariant.

We confirmed the mapping of the charges and explicitly worked out the charge entries of

Q̂.

We should note that in addition to the linear conditions that arise from the action of

the fluxes on the basis, there are also quadratic constraints, which arise from the condition

that the differential has to be nilpotent, upon the entries of the charge matrix. These will

have to be taken into account, in order to discuss physical flux configurations. The factors

in the above matrix could then be taken care of by allowing only fluxes that solve the

quadratic constraints.

6. Supersymmetric cycles on generic SU(3)×SU(3) structure backgrounds

In this section we want to investigate the generic case of SU(3) × SU(3) structure back-

grounds, where the underlying manifold (in some duality frame) has non-zero Euler number.

Relaxing the topological condition χ(M) = 0 implies that there is no static SU(2) structure

at all. Not only do we have to face the loss of ordinary complex structure on M , but we are

going to encounter type-jumping phenomena. The following two closed subsets are indeed

going to be of special interest:

{c−1(1)} : type-three and type-zero pure spinors , (6.1)

– 20 –



J
H
E
P
1
0
(
2
0
0
7
)
0
5
2

as in the case of SU(3) structures (this set was empty in the previous part of our analysis),

and

{c−1(0)} : type-one and type-two pure spinors , (6.2)

as in the case of SU(2) structures. They correspond to the two big circles we have depicted

on figure (1). So far we have been confined to only one of them, because of the topological

assumption we have made.

Some three-tori will be supersymmetric on M ×M̂ , either in transverse or longitudinal

position, but they will always be situated above points of these two special subsets. Away

from those subsets, types of pure spinors are too low to allow for stable D0-branes. This

is T-dual to the disappearance of most of the supersymmetric three-torus fibers. We shall

describe this in terms of mass generation for moduli through fluxes.

Motivated by this observation concerning D0-branes, we want to address the existence,

stability and moduli space of three-dimensional supersymmetric cycles. We shall see that

for SU(3) × SU(3) structures that are not static SU(2) structures, such cycles still exist at

type-jumping points. As T-duality does not change moduli spaces, we expect some moduli

of those cycles to be fixed. In particular, three-dimensional supersymmetric cycles are not

likely to give rise to a fibered structure of a whole manifold with generic SU(3) × SU(3)

structure. But they can still allow for the exchange of pure spinors Φ− and Φ+ by mirror

symmetry as a T-duality along a three-dimensional supersymmetric cycle.

6.1 D3-branes and D0-branes through maximum-type points

Consider a mirror pair of manifolds M and M̂ with SU(3)× SU(3) structures, that do not

fall into the class of static SU(2) structures (as they have opposite Euler characteristics,

assuming that one has non-zero Euler characteristic is sufficient to ensure the condition).

We assume both sides of the mirror correspondence to have a geometric description in the

sense of a sigma model. Consider some point p on M at which the complex one-form v+ iw

vanishes. At that point the pure spinors assume the same forms as in the Calabi-Yau case.

We may write for some complex coordinates X,Y,Z

Φ−|p = Ω|p = dX ∧ dY ∧ dZ

Φ+|p = eiJ |p = e
i
2
(dX∧dX̄+dY ∧dȲ +dZ∧dZ̄) ,

(6.3)

and one may put a D0-brane of the B-model, that is generalized complex w.r.t. to Ω, or a

D3-brane of the A-model, i.e. a Lagrangian D-brane which will be denoted by L.

Let us T-dualize along L, which we assume to have the topology of a torus, correspond-

ing to the three isometries we need to perform T-duality.5 Let there be local coordinates

x′,y′ and z′ on L (that are imaginary parts of complex coordinates X = x+ix′, Y = y+iy′,

Z = z+iz′ defined on the locus with equation v+iw = 0), so that Fourier-Mukai transform

5The assumption is reasonable because we have two SU(3) structures, each of which gives rise to a

fibration by three-tori, and at points the two fibers are the same, the fiber is supersymmetric; but such

points are exactly the zeroes of v + iw.
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yields

F.T.
(
Φ−|F.T.(L)

)
=

∫

L

ei(dx′∧dx̂′+dy′∧dŷ′+dz′∧dẑ′)dX ∧ dY ∧ dZ

= exp
(
i(dx̂′ ∧ dx + dŷ′ ∧ dy + dẑ′ ∧ dz)

)

= Φ̂+|p̂ =: eiĴ |p̂

F.T.
(
Φ+|F.T.(L)

)
= Φ̂−|p̂ =: Ω̂|p̂ ,

(6.4)

which are the expressions of the pure spinors on the T-dual point p̂ on which a supersym-

metric D0-brane sits. Of course p̂ has to be in the set of zeroes of v̂ + iŵ, or ĉ−1(1), which

is not empty since the mirror manifold M̂ also has non-zero Euler number.

6.2 Away from maximum-type points through fluxes

It has long been appreciated that the behaviour of pure spinors under mirror symmetry is

transparent to B-transforms by a two-form whose components are extended in directions

transverse to the T-dualized directions, while non-geometry occurs when the two-form has

components that are longitudinal. In terms of the previous local complex coordinates,

B-transforms by two-forms of type (1, 1) are still B-transforms on the mirror, while those

of type (0, 2) or (2, 0) are β-transforms on the mirror. This can be seen in local charts by

wedging together pairs of the following naturality properties derived in lemma 6.2 of the

second reference in [23], where v and φ denote a longitudinal vector and one-form, and w

and ψ denote a transverse vector and one-form:

i) F.T.(ιv ∧ Φ) = v̂ ∧ (F.T.(Φ))

ii) F.T.(ιw ∧ Φ) = ιw(F.T.(Φ))

iii) F.T.(φ ∧ Φ) = ι
φ̂
(F.T.(Φ))

iv) F.T.(ψ ∧ Φ) = ψ ∧ F.T.(Φ) .

In other words covariant and contravariant tensors stay so under T-duality if their compo-

nents are transverse to the dualized directions, while they are flipped if they are longitu-

dinal.

So far we have seen how T-duality maps pure spinors Φ+ and Φ− to each other along

the maximum-type locus of equation v + iw = 0. It looked formally the same as in the

Calabi-Yau or SU(3) structure case. Suppose an H-flux is turned on on both sides of the

mirror correspondence. Choosing a gauge for the local B-field from which the flux derives

induces various B- and β-transforms on M and M̂ , according to the way the support of

the B-field intersects with the T-dualized directions. Generically, going away from the

maximum-type locus should induce a β-transform that will lower the type of Φ− to one,

which is the most generic type for an odd pure spinor (i.e. the lowest type allowed by

parity).

Thanks to property iv), B-fields of type (1, 1) in the complex structure described above

pull back to zero on the three-cycle L. They act as B-transforms on both sides of the mirror

correspondence and do not lower the type of the pure spinors

eB ∧ Φ± ←→ eB ∧ Φ̂∓ . (6.5)
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We have to take into account possible B-transforms by longitudinal B-fields, that give

rise to non-geometric fluxes on the mirror (we will restrict to the case of Q-fluxes on the

mirror, with two indices of the B-field along T-dualized directions). Consider an H-flux

on the space M , with one unit of flux along a three-cycle C:

∫

C
H = 1 . (6.6)

In order for L to be a supersymmetric three-cycle, the local B-field, which gives rise to the

flux, has to pull-back to zero on L.

We are interested in the application of T-duality in two directions carrying indices of

non-zero components of the H-flux. These directions, denoted by y and z, are two U(1)

isometries, spanning a two-torus. Consider the one-form valued integral of H along this

torus. It is closed because the three-form H is:

d

∫

T 2

H = 0. (6.7)

One can locally integrate the one-form, so that there exists (locally) a scalar function X

such that ∫

T 2

H = dX , (6.8)

which amounts to a gauge choice, because the B-field

B := XvolT 2 , (6.9)

where volT 2 is the volume form of T 2, is compatible with the quantization of H. Upon

T-duality along the two U(1) isometry directions y and z, this B-field is mapped to a

bivector living on the T -dual manifold

F.T.(ei(J+Xdy∧dz)) = Xι∂ŷ
ι∂ẑ

(
F.T.(eiJ)

)
+ F.T.(eiJ ) . (6.10)

This way the lowest component of the odd pure spinor we read-off from the r.h.s. is

the one-form Xι∂ŷ
ι∂ẑ

Ω, that appears to be weighted by the local coordinate X. We may

thus identify the first term in the expansion of the polyform on the r.h.s. with the

mirror of the fiberwise components of the H-field. It should also be equal to the one-form

v + iw. Thus, we have seen that the (0, 2) part of the argument of the exponential in the

expression of Φ+ is mirror to the complex vector v + iw. We can rewrite this mapping in

a coordinate-independent way as

Φ+ = eB(0,2)
∧ eiJ −→ eβΩ̂ = Φ−, (6.11)

where the r.h.s. has now type one and contains an overall factor of v̂ + iŵ.

Likewise we can start with Φ−. Again H can be locally written as H = d(Xdy ∧ dz)

and thus

F.T.(eXdy∧dz ∧ Ω) = eX∂y∧∂zF.T.(Ω) . (6.12)
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Furthermore F.T.(Ω) = eiJ with J = J1,2 = j ± v ∧ w being one of the two-forms of the

two SU(3) structures (2.6). We have thus established that

eB(0,2)
∧ Ω −→ eβeiJ , (6.13)

with β = X∂y∧∂z. Apart from this we know that the contraction between β and j vanishes,

just as ω∧ j vanishes for SU(2) structures. Hence contractions between the bivector β and

the polyform eiJ only involve j and is therefore unambiguous. So the contraction between

β and the higher powers of J just selects the square of j, and gives rise to a (2, 0) form

called B′, which squares to zero. Using the expansion (6.3) we find:

eβ(eiJ ) = 1 + iJ + β

(
−

J2

2

)
−

J2

2
+ β

(
−i

J3

6

)
− i

J3

6
. (6.14)

Defining

B′ := β

(
−

J2

2

)
, (6.15)

this can be rewritten in the following way

eβ
(
eiJ

)
= 1 + iJ + B′ + B′ ∧ iJ −

J2

2
− i

J3

6
= eB′

∧ eiJ . (6.16)

Thus, one may say that the β-transform of the type-zero pure spinors assumes the same

form as a B-transform for accidental dimensional reasons. We therefore write the β-

transform of the type-zero spinor as a B-transform by B′, which of course is still of the

most generic type zero:

eB(0,2)
∧ Ω −→ eB′+iv∧w+ij . (6.17)

This formula was already derived assuming a T 3-fibration in [32] as a clue that SU(3) ×

SU(3) structures could account for non-geometric situations involving T-dualizing with a

B-field extended along two fiberwise directions. Here we see that it actually holds for a

mere topological reason on spaces with non-zero Euler number and SU(3)×SU(3) structure.

On such spaces v + iw have zeroes on which odd pure spinors have type three, thus giving

rise to supersymmetric three-cycles; the mirror formula between Φ− and Φ+ follows from

the naturality properties of B- and β-transforms w.r.t. T-duality along the three-cycles,

even if the SYZ argument is spoiled away from the zeroes of v + iw due to the absence

of supersymmetric D0-branes. Moreover, T-dualizing along L and exploiting properties of

the Fourier-Mukai transform allowed us to go the other way around, which lowers the type

of Φ−. To sum up, putting all the possible B- and β-transforms on both sides, we have

argued that the following T-duality holds in an open neighborhood of type-jumping point:

Φ+ = eβ̃+B′(0,2)+B(1,1)
exp(iJ) ←→ eβ′+B̃(0,2)+B(1,1)

Ω̂ = Φ̂−

β̃ ←→ B̃(0,2)

B′(0,2)
←→ β′

B(1,1) ←→ B(1,1) , (6.18)

where the odd pure spinor has type one as β′ (or equivalently B′(0,2)) is non-zero.
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6.3 Moduli spaces

As D0-branes can only be stable at points where the odd pure spinors has type three,

their moduli space must be evaluated by looking at massless infinitesimal deformations at

such exceptional points. Going away from such a point involves a β-transform. If one goes

along the subset c−1(1) the β-transform is trivial and we have found a translation modulus;

otherwise the direction along which we are going is a fixed modulus. On the other hand,

the first cohomology of the Lie algebroid of a D0-brane was evaluated in [17] as the set of

vectors X l such that the β-transform that acts on the pure spinor satisfies

∂lβ
µνX l∂µ ∧ ∂ν = 0 . (6.19)

This makes for a five-dimensional moduli space, as a gauge may be chosen in which β only

depends on one coordinate, the one along the direction v. Consider the three-dimenional

D-brane going through such a point. It also has a five-dimensional moduli space, since

the normal deformation in the direction v is not allowed anymore, and it is exactly the

modulus that has disappeared for D0-branes.

In the more generic cases we want to investigate here, we have to compute the mass

matrix of the deformations of our three-dimensional supersymmetric tori. Moduli that are

fixed by the flux should get a mass.

One can make an observation in local coordinates around a point where the pure

spinors have type zero and type three. The fundamental two-form J takes the expression

J =
i

2

(
dX ∧ dX̄ + dY ∧ dȲ + dZ ∧ dZ̄

)
, (6.20)

and imagine we start with a supersymmetric three-torus extended along the directions x,

y and Z and the T-dual of an H-flux deriving from the coordinate x is a β-transform with

β = X∂y ∧ ∂z, so that it is easy to repeat the argument of the previous subsection for the

computation of B′. In a neighborhood of the point we considered, Φ+ assumes the form:

eβeiJ = eXdȲ dZ̄eiJ , (6.21)

so that a four-chain B that is bounded by the supersymmetric three-cycle and some gener-

alized cycle (Σ, F ) at the other end will go (along the X direction) through cycles carrying

non-zero field strength

F = PΣ(XdȲ dZ̄), (6.22)

where PΣ denotes the pull-back to Σ. Hence the three-cycle (Σ, F ) cannot be generalized

complex if it goes into the X direction. This loss of structure fixes the position moduli X

for the three-cycle, which fact is mirror to X acquiring a mass as a translation modulus

for a D0-brane.

7. Conclusions and outlook

The SYZ argument has been shown to extend to a class of generalized Calabi-Yau spaces,

namely so-called static SU(2) structure manifolds. We have shown that there are no su-

persymmetric three-tori on M or its mirror M̂ , but the product M × M̂ is doubly fibered
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by three-tori, both families of fibers are transverse to M and M̂ , and the resulting six-tori

are calibrated generalized submanifolds of M × M̂ . Moreover mirror symmetry is per-

formed by T-dualizing the three-dimensional intersection of such generalized submanifold

with M . This transversality property is reminiscent of the (much more general) conjectures

formulated by Gualtieri in the final section of [11].

It is somewhat surprising that this argument is applicable also when including non-

geometric fluxes, in particular R-fluxes. These non-geometric fluxes are expected to spoil

the geometric description of the background even locally. In the R-flux case, the geometry

is expected to be replaced by some non-associative algebra [43]. However we did not

encounter such a necessity. We suspect that the case of static SU(2) structure, which

prevents the type of the pure spinors from jumping, guards us against the destabilizing

effects of non-geometric fluxes on D-branes.

The large-volume limit which was assumed in the SYZ argument for Calabi-Yau man-

ifolds is also highly questionable in generic flux backgrounds. Again the topological condi-

tion of a static SU(2) with a non-vanishing vector field allows for more globally well-defined

quantities than the ordinary complex torus studied in [44, 6]. This is consistent with the ob-

servation made in [9] that more charges can be turned on geometrically on SU(2) structure

backgrounds than on generic ones.

The case of generic SU(3) × SU(3) structures is much less transparent.6 We have

identified a set of three-cycles, T-dual to type-jumping points on the mirror. They cannot

fiber the manifold or even its product with its mirror. This fact is mirror to the mass that

fluxes give to the translation moduli of D0-branes, spoiling the very first step of the SYZ

argument. T-dualizing the surviving three-tori and asking for functorial properties w.r.t.

B- and β-transforms of generalized geometry gives however a correct mirror exchange

between type-zero and type-one pure spinors. Our argument was limited to the use of

classical geometry.

In order to formulate an SYZ argument for the generic case, it seems natural to con-

sider non-commutative fibrations. It has been observed that T-dualizing directions that

support more than one index of a non-zero component of a B-field leads to non-commutative

fibrations through an uncertainty principle for D-branes [46, 47]. Of course allowing non-

commutative fibers, with non-commutativity scale proportional to the quanta of fluxes

and to the discrepancy between the pair of SU(3) × SU(3) structures, would be a way of

fibering generalized backgrounds by (further) generalized submanifolds. The only fibers

we are able to see in the present approach are the ones along which the two structures

agree, which results in type-jumping and in a commutative fiber. It might be that non-

commutative fibrations on more general bases than a torus will be equivalent to fibrations

by T-folds [4], and that going away from type jumping points will require acting on the

fibers with transition functions involving T-dualities.

We hope to gain more insight into these issues by studying the proper reduction on

generic SU(3)×SU(3) structure manifolds. Initial results have appeared in [9] and the case

6We have disregarded Ramond-Ramond fluxes, in the presence of which a one of the two pure spinors

cannot be closed [13]. Bianchi identity in the presence of Ramond-Ramond fluxes requires an orientifold

projection, see [45].
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of SU(3) structures was discussed in [48]. We trust that the analog of harmonic forms will

be generalized or twisted harmonic forms, i.e. forms that are harmonic w.r.t. the Laplacian

twisted by all fluxes (geometric and non-geometric). This should in particular allow one

to determine the mass terms that we discussed in at the end of this paper, and thus the

disappearance of geometric moduli will become more transparent. We shall come back to

these points in due time.
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