A Caltech Library Service

Compact folded metasurface spectrometer

Faraji-Dana, MohammadSadegh and Arbabi, Ehsan and Arbabi, Amir and Kamali, Seyedeh Mahsa and Kwon, Hyounghan and Faraon, Andrei (2018) Compact folded metasurface spectrometer. Nature Communications, 9 . Art. No. 4196. ISSN 2041-1723. PMCID PMC6180047. doi:10.1038/s41467-018-06495-5.

[img] PDF - Published Version
Creative Commons Attribution.

[img] PDF - Submitted Version
See Usage Policy.

[img] PDF - Supplemental Material
Creative Commons Attribution.

[img] PDF (Peer Review File) - Supplemental Material
Creative Commons Attribution.


Use this Persistent URL to link to this item:


An optical design space that can highly benefit from the recent developments in metasurfaces is the folded optics architecture where light is confined between reflective surfaces, and the wavefront is controlled at the reflective interfaces. In this manuscript, we introduce the concept of folded metasurface optics by demonstrating a compact spectrometer made from a 1-mm-thick glass slab with a volume of 7 cubic millimeters. The spectrometer has a resolution of ~1.2 nm, resolving more than 80 spectral points from 760 to 860 nm. The device is composed of three reflective dielectric metasurfaces, all fabricated in a single lithographic step on one side of a substrate, which simultaneously acts as the propagation space for light. The folded metasystem design can be applied to many optical systems, such as optical signal processors, interferometers, hyperspectral imagers, and computational optical systems, significantly reducing their sizes and increasing their mechanical robustness and potential for integration.

Item Type:Article
Related URLs:
URLURL TypeDescription Paper CentralArticle
Arbabi, Ehsan0000-0002-5328-3863
Arbabi, Amir0000-0001-8831-7552
Kamali, Seyedeh Mahsa0000-0002-6968-811X
Faraon, Andrei0000-0002-8141-391X
Additional Information:© The Author(s) 2018. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit Received 01 August 2018; Accepted 05 September 2018; Published 10 October 2018. Data availability: The data that support the findings of this study are available from the corresponding author upon request. This work was supported by Samsung Electronics. M.F. was partly supported by The Natural Sciences and Engineering Research Council of Canada (NSERC). S.M.K. is supported as part of the Department of Energy (DOE) “Light-Material Interactions in Energy Conversions” Energy Frontier Research Center under grant no. DE-SC0001293. The device nano-fabrication was performed at the Kavli Nanoscience Institute at Caltech. We would like to thank Dr. Tian Zhong for providing the Nd:YVO_4 sample, and Dr. Seunghoon Han and Dr. Duhyun Lee for useful discussions. Author Contributions: M.F., E.A., A.A. and A.F. conceived the experiment. M.F. and E.A. fabricated the samples. M.F, E.A., A.A., S.M.K. and H.K. performed the simulations, measurements, and analyzed the data. M.F., E.A., A.A. and A.F. co-wrote the manuscript. All authors discussed the results and commented on the manuscript. The authors declare no competing interests.
Group:Kavli Nanoscience Institute
Funding AgencyGrant Number
Samsung ElectronicsUNSPECIFIED
Natural Sciences and Engineering Research Council of Canada (NSERC)UNSPECIFIED
Department of Energy (DOE)DE-SC0001293
PubMed Central ID:PMC6180047
Record Number:CaltechAUTHORS:20181010-105938075
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:90227
Deposited By: Tony Diaz
Deposited On:10 Oct 2018 18:07
Last Modified:02 Mar 2022 17:08

Repository Staff Only: item control page