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Operating at the multiple-user mode forces the signals corresponding
to different users to be independent, yet all users can pre-coordinate
powers, maintain the average power constraint. (TDMA is a simple
example). We conjecture that operating with the optimized number of
the transmitting users that maximizes throughput, optimization of su
power allocation sharing (mixed strategy) would not further increa
the throughput. Evidently, in case that the optimized number of trans-
mitting usersi.. is smaller than the actual number of uséfs “fair-
ness” could be imposed at no penalty in overall throughput, by permit-
ting different sets of\/,. out of M users to access the channel in some
uniform preassigned order.
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and outage) for single-user multiple-antenna wireless links operatibigpck probability of error for a single coherence interval goes to zero
in Rayleigh flat fading, where the receiver knows the propagatiasT andM grow large, with no knowledge of the propagation matrix
matrix. In particular, the capacity grows linearly with the smaller ofvailable to anybody. In effect, temporal diversity—which is unreli-
the number of transmit or receive antennas with no extra bandwidthle for stop-and-go mobiles—is replaced by spatial diversity. Thus,
or total power. Moreover, [3] discloses a practical scheme referradtocoding says that we may avoid channel coding that is normally
to as BLAST (Bell Labs Layered Space Time) for realizing a signifeerformed over many independent coherence intervals, and shift the
icant fraction of the capacity with small outage probability, using problem of achieving reliability to the problem of designing an effec-
divide-and-conquer strategy based on ordinary modulation and codtivg constellation off” x AM signals.

techniques. Achieving autocapacity theoretically requires unboundiedndT,

BLAST, as well as certain other space-time codes [14], requirbst the autocoding effect manifests itself for relatively sriiaiindM,
the receiver to know the propagation matrix between the transmit amod transmission rates that are a significant fraction of autocapacity can
receive antennas. This knowledge can be acquired by sending knaheoretically be supported with extremely small probabilities of error.
training signals. The required training interval is proportional to theor example, using/ = 7 transmit antennas amil = 4 receive an-
number of transmit antennas [9], and for many potential applicatioriennas, and with an expected signal-to-noise ratio (SNR) of 18 dB, a
training is an acceptable burden. However, in time-division musingle user can theoretically transmit 80 bits during a sidgle: 16
tiple-access (TDMA) applications with fast fading, for example, boteymbol coherence interval (rate 5 bits/symbol) with a block proba-
training and data transmission may have to occur during a relativedility of error less than 10°, all without any training or knowledge
short interval. Because both the training interval and capacity increadghe propagation matrix. These performance predictions are obtained
linearly with the number of transmit antennas, the total throughputly applying a union bound and an expression for pairwise probability
maximized by choosing the number of transmit antennas such that teflerror to a hypothetical codebook 6f= 2% independent isotropi-
of the interval is used for training, and half for data transmission [9]cally randoml6 x 7 unitary matrices.

Ideally, one would like to achieve BLAST-like transmission rates A constellation of 2 independent matrices is impossible to generate
with multiple antennas while circumventing training and channexhaustively or to store, and because of its lack of structure there is
estimation. Some steps in this direction are described in [1], [10iktle hope of ever finding a fast decoding scheme. This note proposes a
[6], [16], based on a piecewise-constant model for fading (also callggitary space-time constellation that, although random, is structured,
block fading [12], [2]). Here, the random propagation matrix (whicland has exactly the same union-bound performance as a constellation
nobody knows) remains constant foffasymbol coherence interval, of independent signals.
after which it jumps to a new independent value where it remains Section Il reviews the signal model, unitary space—time modulation,
for anotherT symbols, and so on. This constitutes a memorylesgpace—time autocoding, and the earlier systematic construction. Sec-
channel from one coherence interval to another for matrix-valu@@n Il explains the new construction. Section IV reinterprets earlier
signals, which permits a direct application of Shannon theory implisystematic constructions such as [8] in light of this new construction.
itly involving coding over many coherence intervals. During everyhe mathematical results required for many of the conclusions of this
coherence interval, & x M complex matrix is transmitted and acorrespondence are developed in the appendxes: Appendix A reviews
T x N complex matrix is received, wherd and NV are the number the isotropically random unitary matrix, and presents some unusual op-
of transmit and receive antennas, respectively. It was shown [l@ptions involving Dirac delta functions. Appendix B shows that any
that capacity cannot be increased by makidg > T, and that the power (larger than one) of an isotropically distributed unitary matrix is
capacity-attaining signals are equal to the product of two independ@et isotropically distributed. In fact, a limiting distribution is obtained
matrices: aI’ x M isotropically distributed unitary matrix, and anfor large enough finite powers.

M x M diagonal, real, nonnegative matrix. This structure motivates
the use olinitary space—time modulatidfi] involving a constellation Il. BACKGROUND AND PROBLEM STATEMENT
of L T x M unitary matrice®o, ..., ®,_1}, where®, ®, = Iy,

. . S . A single user has access to a multiple-antenna wireless link in a
chosen according to a design criterion that differs markedly from t g P

o . . ) . rIi?ayleigh flat-fading environment with no knowledge of the propaga-
familiar maX|mum-Euclldeaq-d|stance cnt_erlon. . tion matrix, and the goal is to transmit a large number of bits reliably

. Som_e Sma”(_]‘ = _64) umtary_space—t}me constellatlor_ls are deéluring one coherence interval. The recently discovered space—time au-
_S|gned n [6] usinga S|mp|e_ lterative aIgo_nthm. A systematic approa‘fgcoding effect implies that, for any rate less than the autocapacity, the
is pursued in [8], where an initidl x M unitary matrix is successively p,,.y oropability of error goes to zero as the duration of the coherence
rotat_edL -1 times to generate the entire c_onstellatlon of signals. Theeral and the number of transmit antennas increase simultaneously.
rotation matrix is" x T' diagonal, with its diaganal elements equal O significant fraction of the autocapacity can theoretically be realized

Lth fOF“S OT un_lty, and W'th_ the initial signal Comp”s'd‘é‘ co!umns_ in a typical scenario with low probability of error using a large constel-
from aT x T discrete Fourier transform (DFT) unitary matrix. US'nQation of isotropically random unitary space—time signals.
iterative random search, the roots that characterize the rotation matrix

are chosen to give a low raw (uncoded) block probability of error fg&
the constellation, based on pairwise probabilities of error. The search
is facilitated by the fact that the correlation between the signals, whichThere arelM transmit antennas anf receive antennas operating
determines the pairwise probabilities of error, has a circulant structuiie @ Rayleigh flat-fading environment. Duringfasymbol coherence
Using this approach, constellations larger tHar= 2000 have been interval, over which the propagation coefficients are constant, a single
designed. However, it was not established how restrictive the circula$er transmits & x A complex matrixS, and another user receives
structure is, or whether significant improvements in performance aecomplexi’” x N matrix X

Signal Model

possible by relaxing this structure.

The recenspace—time autocodirgffect [7] implies that arbitrarily X = \/E SH+ W, (@)
reliable communication can be achieved within a single coherence in- .
terval if T and M simultaneously become large. There is a positiveehere H is anM x N propagation matrix, whose elements are inde-
autocapacity such that for any rat& less than the autocapacity, thependentCA’(0, 1), andW is an independerf x N receiver noise
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Fig. 1. Wireless link comprising/ transmitter andV receiver antennas. We wish to transiRit T bits of information reliably in asinglecoherence intervar’,
whereR is the rate in bits per symbol.

matrix whose elements are independ@nt(0, 1). There is a power C. Earlier Systematic Constructions [8]

constraint The design of constellations of unitary space—time signals when the

M propagation matrix is unknown involves a criterion that differs con-

E {i Z |stm|2} =1 (2) siderably from the usual maximum Euclidean distance criterion [6],
M = [8]. We see from (5) that making the singular values of the “corre-
lation matrix” &, as small as possible is beneficial. In particular,

making @Ifl)l = 0 is ideal, but this is not generally possible for all
od)a- ibl irs of elements in a constellation. Constellations of unitar

ossible pairs 0 y
space—time signals have a block probability of error that is invariant to
certain transformations: 1) left multiplication by a comniBx 1" uni-
tary matrix,®, — \IIT<I>L;, (=0, ..., L—1;2)rightmultiplication by

We wish to transmit a total oR - 1" bits, for some rate?, during individual M x M unitary matricesp, — ®,Y,,{ =0, ..., L — 1.
a single coherence interval as illustrated in Fig. 1. There is a positi@y constellations that are related by transformations of this type are
autocapacityC’, [7], such that for allR < C.,, there exists a code considered to be equivalent.
such that the block probability of error goes to zero exponentially asThe problem of constructing moderately large constellations of uni-
T, M — oo. The autocapacity, in units of bits per symbol, is given byary space-time signals is addressed in [8] with the goal of achieving
the simple formula a low block probability of error. The construction proposed in [8] in-

volves successive rotations of an initial signalflirdimensional com-
C, = Nlog(1+ p). (3) plex space

andp represents the expected SNR at each receive antenna.
We assume throughout the correspondence that the random pr
gation matrix is unknown to both the transmitter and the receiver.

B. Space-Time Autocoding and Unitary Space—Time Modulation

_ Ot ) _
Within a finite duration coherence intervall < oo, bits can theo- Do =2 Do, =0,....L-1 ©

retically be transmitted at rates below the autocapacity with low profgare is a7 x T unitary matrix, andb, is theT' x M initial signal

ability of error using a random_codeboqk bflnqlep(_end_ent_lsoFropl- obeyingﬂtbo = I. A judicious choice of2 and®, is needed to
cally random (Section 11l describes the isotropic distribution in some . . .
. A, . . : ) make the columns @b, zig-zag over the surface of tifé-dimensional

detail) 7' x M unitary space-time signals [#S: = VTP, { =

ORT complex sphere.
0,..., L -1}, whereL = 2*** | and where the column vectors of . o . o

1 o There is no loss of generality in assuming thids diagonal because
each®, are orthonormakp; ®, = Irr. The block probability of error e schyr factorization [13] implies that any square unitary matrix
P. may be upper-bounded through the union bound has the eigenvector—eigenvalue decomposition

P. < 28T By, 4, {P.{® vs.®s}} @) 0 =voul )
whereV¥ is T x T unitary, andd is aT x T diagonal matrix of eigen-

where I'. {€, versust. } is the pairwise (e.g., two-signal constella o ) The transformatios, — ¥1®, produces an equivalent

tion) probablllty of error that IS associated with any distinct pair of S'%onstellation that is generated by a diagonal rotation matrix that com-
nals in the constellation [6], given by the exact formula . . -
prises the eigenvalues of

P.{®, versusdb, } P, = (—)[@0, {=0,...,L—1. (8)
N In [8], further structure is imposed by choosing@)to be anLth

1 /2 it cos? @ . . - . 2wy )T,
== / d6 — 5 (5) root of the identity matrix, implying tha®., = ¢"“™“*/*, whereu; €
T Jo m=1 | c0s? 0 + % {0, 1, ..., L —1};b)®, to compriseM distinct columns of & x T'
DFT matrix. The integers,, ..., v, and the DFT columns are chosen
whered,, ..., das are the singular values of the x M matrix@lqn. by iterative random search with the goal of minimizing the maximum

The expectation with respect to the singular values may be brougdrwise probability of error (more precisely, an upper bound on the
inside the integral in (5) and, when the two signals are independeﬁ’ﬂ,emOﬁ bound) between all distinct pairs of signals in the constella-
may be obtained in closed forré;can be integrated numerically. Wetion.

omit all the details and refer the interested reader to [7]. Choosing® to be anLth root of the identity matrix makes the cor-
Fig. 2 displays the bound (4) as a function of the transmission rdglation between the signals, which determines the pairwise probabil-
R, for an 18-dB expected SNRY = 4 receive antennas, f&f = ities of error, have a circulant structure, i.é.:,r,@ depends only on

2, 4, 8, 16,andforM =1, 2, 3, 7, respectively. For the larger values(¢' — {) mod L. Conversely, any constellation that has circulant corre-
of T', transmission rates as high as 25% of the autocap@gity 24.01 lation structure is equivalent to one that has the construction (8).
bits/symbol can theoretically be sustained with very low probability of The circulant structure implies that the conditional probability of
error. However, to realize the autocoding effect we need constellatiarsor is the same for every signal in the constellation, it simplifies the
of unprecedented sizé (= 2%° for T = 16, andR = 5). iterative design since onlf — 1 rather thar(L? — L)/2 correlations
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Fig. 2. Reference [7] upper bound on block probability of error versus transmission rate (bits/symbol) for random codebook of unitary spaoeddinia sig
N =4,p=18dB,andT, M) = (2, 1),(4, 2),(8, 3),(16, 7). Autocapacity is equal to 24.01 bits/symbol.

have to be checked, and it has some intuitive appeal. However, nowhere theS),, ..., Qrp are independent’ x T isotropically dis-
dication is given in [8] as to how restrictive this structure really is, aributed unitary matrices. We lekoo...0 be an independenif x M
whether significant improvements could be obtained by relaxing thisotropically distributed unitary matrix.
structure. Moreover, the iterative optimization could never be used forA 7" x T' random unitary matriX2 is isotropically distributed if its
anL = 2% constellation. probability density is unchanged wheris premultiplied by any/” x T

In what follows, we show that gains can indeed be obtained by réeterministic unitary matrix. From this definition, one may deduce [10]
laxing the structure, and propose a method for designing constellatidhat a) there is exactly one probability density that possesses this prop-

that can readily generaté®2signals. erty, with the formula given by (A1); b) the density is invariant to post-
multiplication of Q2 by any deterministic unitary matrix. Likewise, a
l1l. STRUCTURED CONSTELLATION WITH GOOD AVERAGE T x M random unitary matrix®, i.e., ®/® = I, is isotropically
PERFORMANCE distributed if its probability density is invariant to premultiplication by

. ) ) ) any deterministid” x T unitary matrix. An oblong matrix of this type
Our approach to specifying constellations of unitary space-time Si%ss the same density as ahiy columns of &’ x T isotropically dis-
nals is based on the observation that the union bound (4), where mﬁuted unitary matrix

expected pairwise probability of error is identical for all distinct pairs, We now show that the signal matrices (9) are marginally isotropically

only requiresb,, and®. to be pairwise independent isotropically dis-y;gtyipted and pairwise independent. They are marginally isotropically
tributed matrices for all’ # .1 Any constellation having marginally distributed because any signal is equal to’the M isotropically dis-

isotropically random and pairwise independent signals would have buted unitary matrixboo...o premultiplied by an independefitx T

actly the same union-t_)ound performance (as_ given by Fig. 2, for %itary matrix. Conditioned on thi§ x T factor, the signal is there-
ample) as a constellation of independent unitary space

~time Sign%?e isotropically distributed and not dependent on this factor. Since

no matter what other probability dependencies they may have. We gy o gitional density is independent of the factor it follows that the
demonstrate a construction that has pairwise independence and is SAYnditional distribution is also isotropic.

to gener.ate. . . Let ¢ denote the vector comprising th&7 binary indexes
Our signals are represented By- T' binary indexes, and they are s, 1 and consider two distinct signals from the constella-

generated as follows: tion (9), &, and®,, for & # (. We wish to establish that the signals

Bty = QIOL QBT Boo. 0, (1, by ..y Lrr € {0, 1) are independent. Witli = 0 denoting the vector of all zeros, the
signals may be expressed as
P, ==D and P == Do
Yn fact, the random coding exponent only depends on pairwise independedeere=, and=; are products of certain subsets{6t:, ..., Qrr}.

[41. At least one ofS, or = has a factof?, that is not contained in the
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other. Assume without loss of generality tifaf is a factor ofZ, (but  Indeed, if this were true, the successive rotatihd, would zig-zag

not of =;) which then takes the form uniformly over the surface of th€-dimensional complex sphere, as
=, = AQ,B. hoped. However, this turns out not to be true. The reason follows di-
rectly from the eigenvector/eigenvalue decomposition (7). The eigen-
Consider the following argument. vectors and the eigenvalues of an isotropic matrix are independent of
« ), does not appear i, B, orZ;, and thereforel, is indepen- each other, th& x T eigenvector matrix¥ is itself isotropically dis-
dent of these matrices. tributed, and thd" eigenvalues\;, ..., Ar have the density [5]
» Conditioned onA4, the productA(?, is isotropically distributed. 1 4 . .
Since this conditional density doés not dependiotthe product pa(A) = TIAT H S(I\f* = 1) H e = Al (10)
AQ, is isotropic and independent df. The product is also inde- = s>t
pendent ofE,. The eigenvalues have unit magnitude, while the phésis), = ¢'%t
« By asimilar argumenE, = A, B isisotropic and independent are distributed as
of B and=. oT*-T L o (0= 8,
« Finally, becaus@;r% = I, conditioned on®y, ®, = =, Py is p(6) = TI(2m)7T tl:[l gsm < D) ) . 11)

T x M isotropically distributed, and since the conditional density
for &, has no dependence on eitieror on=, we conclude that On the other hand, the eigenvalueg®t which again have unit mag-
®, and®, = =, P, are independent. nitude and we denote; = \{,t =1, ..., T have phases, ..., v

) P _distributed as
We note a final simplification that can be made to the construction

(9). Specifically, the first signa®, can be chosen to be a determin-
istic (rather than isotropically randorff) x M unitary matrix without p(y) = T!(27)TT Z

changing the block probability of error for the constellation. To see z_l“*o ;

this, we introduce th& x (IT' — M) orthogonal complemeri, ; to Z H H sin? {% =y +27(js = ji) . (12)
the isotropically distribute@®,, such that together they formiax T _ 20

JT=0 t=1 s>t

2 0—1
21 4

isotropically distributed matrix@ = [®, $¢.]. Every signal in the
constellation can be premultiplied By without changing the block ForallT > 1,Q" isnotisotropically distributed for ang > 2. Further-
probab”lty of error. This transformation gives more,&ll reaches a ||m|t|ng density for a]lz T, where the eigenvalue

hases are independent and uniformly distributed
vla, ., =ulol .. osrvelie, P P Y
1

- (xpTQl\y)“ (\IJTQRT\IJ)URT {Iﬂ . p(y) = <§)T (>T. (13)

See [11] or, alternatively, Appendix B for derivations of these results.
These results are highly counterintuitive. For example, dthe
power of a3 x 3 real isotropically distributed orthogonal matrix is not
o } ) ) isotropic, as illustrated in Fig. 3. Lelt be a3 x 3 real, isotropically
distributed is equivalent to a co.nstellat}or) whérg= [y 0] distributed orthogonal matrix, and let be the unit vector that points
To summarize, a constellation " independent isotropically i, the ,-direction. The figure shows that the produit. is equally
random unitary space—time signals can be replaced, without alterm@y to lie anywhere on the unit sphere. However, the prodifat, ,
its union bound performance, by a highly structured random constgly aven powers of is biased toward., and for odd powers of is
lation that is specified by only the initidl x M signal and byRT  piased towardte, .
isotropically distributed” x T unitary matrices. For two signalsb, and®,, the pairwise error probability depends
on®l®, = &I 0*(®,, and if|¢ — k| > T then©2*~¢ has indepen-
dent uniformly distributed eigenvalue phases. Becdugeoften very
In the previous section, we presented a highly structured randdange(L = 2°°), most of the pairwise signals have an effective
constellation that is based dh- T independent isotropically random with this phase distribution, evendf is itself isotropic. We, therefore,
rotation matrices and which has the same (good) union-bound perfi@ek briefly at the performance of a constellation that is generated by a
mance (4) as a fully random constellation of independent isotropicafiingle rotation matrix that is not isotropic, but rather has independent
random signals. We now demonstrate why this new scheme is supetioiformly distributed eigenvalue phases. As we show, this constellation
to the earlier construction (6) that is based on a single rotation matryoes not perform as well as the constellation (9).

By our now-standard argument, the prodﬂrdLLQj is isotropic and in-
dependent of?. Likewise,‘llTQj‘Il is isotropically distributed and in-
dependent off. Therefore, the constellation (9) with, isotropically

IV. COMMENTS ONEARLIER SYSTEMATIC CONSTRUCTION OF[8]

A. Single Isotropically Random Rotation Matrix B. Rotation Matrix With Independent, Uniform-Phase Eigenvalues

Consider the construction (6), with the initial sigdal isotropically Consider the construction (6) whebg is isotropic buf2 has eigen-
random unitary, and with the rotation matfixindependent isotrop- values with independent, uniforffi, 27) phases (its eigenvectors are
ically random unitary. Becausg, is isotropically distributed, all of still isotropic). Then all of the signals are marginally isotropically dis-
the signals in the constellation are marginally isotropically distributettibuted and any two distinct signals have the same joint distribution.
For the construction to have the same union bound performance as\Weare unable to take the expectation of the pairwise probability of
construction (9), we would require evet¥, ( = 2, ..., L — 1tobe error (5) analytically, so we use Monte Carlo integration. The resulting
marginally isotropically distributed. For then, by an argument that isnion bound is shown in Fig. 4. We used 1flals to generate each pair-
parallel to that of the previous section, any two distinct signals wouldise probability of error so the curv€®, M) = (8, 3)and(T, M) =
be pairwise independent. (16, 7) are only approximate; nevertheless, a comparison with Fig. 2

It is an intuitively appealing proposition that, & is isotropically shows that the single-rotation matrix construction is worse than the
distributed, ther®?’ is isotropically distributed for any integér>> 2.  construction (9).
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Ye with W isotropic w2k e, with ¥ isotropic and k>0

2kt e, with ¥ isotropic and k>0

Fig. 3. The power of 8 x 3 real, isotropically distributed orthogonal matrix is not isotropically distributed. Upper left: single application of random rotation to
the unit vectok,, results in a unit vector that is equally likely to lie anywhere on the unit sphere. Upper right: an even number of applications of the same random
matrix is biased toward,,. Lower left: an odd number of applications of the same random matrix is biased téward

10° 3 T T T T T T T

4 21

4,2

R (bits/symbol)

Fig. 4. Upper bound on block probability of error versus transmission rate (bits/symbol) for codebook of unitary space—time signals, geneaasetyfeom
rotation matrix having independent, uniform-phase eigenvaluesyfer 4, p = 18 dB, and T, M) = (2, 1), (4, 2),(8, 3),(16, 7).
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V. CONCLUSION APPENDIX B
PROBABILITY DENSITY OF EIGENVALUES OF {TH POWER OF

The realization of the space—time autocoding effect requires two |SOTROPICUNITARY MATRIX

things: 1) a good, extraordinarily large, constellation of unitary
space-time signals, and 2) a decoding algorithm that avoids exhaustiveor aZ" x T isotropically random unitary matri®, and for any
search over the constellation. We have addressed the first proble@sitive integer, the eigenvector/eigenvalue decomposition is
with a construction that is random but highly structured. The

signals are specified lyg, L isotropically distributed” x T unitary ' = 'I/DﬁtlfT

matrices. These constellations can support transmission rates that

are a significant fraction of the autocapacity with extremely lowhere{Ai, ..., Ar} are distributed according to (10). Let the eigen-
probabilities of error, and their low complexity makes them practiciRlues ofe‘ be denoted by, = Af, ¢ = 1, ..., T'. Their conditional

for the transmitter to employ. Their ultimate utility, however, dependéensity is
entirely on the discovery of a good decoding algorithm.

T
pupa () = [T 8 = AD)
APPENDIX A t=1
THE ISOTROPICALLY RANDOM UNITARY MATRIX; SOME UNUSUAL T ! im0 10
OPERATIONSINVOLVING DIRAC DELTA FUNCTIONS = [1—11 6 HO [/\* - ¢ Fe ] (B1)
- Jt=

AT x T random unitary matrixp is isotropically distributed if its . . . . .
probability density is unchanged whris pre-multiplied by any"x T We obtain the marginal density far by taking the expectation of the

deterministic unitary matrix. This operational definition leads directigonditional density
to the unique probability density [10] as a function of thecolumn

. —1
vectors{¢i, ..., o7} pulp) = / Dpa(\) <H |:>\t _ 6i2wjt/,cl1:/,8:|>

7+=0

s
p(®) =p(61) - [ p(dslr, -y 651)
s=2

= [ (elen -1))

ﬂ—'T
HTAL=0) s (ofo, 1) I (s0:)

T
’ H R
—2

T
119
t=1
£—1
J1=0

= / dApa(X)

-1 T s ()\t _ ci27rjt/fl,;/f)

Z H I le2mie/t — eiznke/e)* | (B2)

(A1) o=t | L

where the Dirac delta function of a complex-valued argument is interhe Jacobian factors that appear with the Dirac delta functions are eval-
preted ass(z) = &(Re{z}) - 6(Im{z}). This density, defined with Yated as follows:
respect to Lebesgue measure, is invariant to postmultiplication of its H il Cizwk/(‘ _ H ‘1 B c"g”("‘”/”‘

k#3

argument by any deterministic unitary matrix.

We will need to integrate coupled Dirac delta functions whose ar- o
guments are nonlinear functions. Lgtr) be aK -component vector- _ H ‘1 _ (,,:zﬂ-,/fr
valued nonlinear function of A -dimensional real-valued vectorand i
consider the integral

k#j

k=1

-1
. . K = H w ﬁ’%}“/ér
/ dah(x)6(f(x)) = / dxh(x) H 8(fr(x)) k=1 w=t
k=1 wt =1 ‘
whereh(x) is scalar-valued. Furthermore, suppose that the function w=11,5
has only a single zerf(xo) = 0. Clearly, the support for the integral = ‘wﬁ w4 1‘
occurs att = x¢. A change of coordinates= f(x) gives —¢ w=1 (83)
. K
/ dah(z) H 5(fr(x)) The combination of (B2), (B3), and (10) gives
= K 1 ¢—1 —1 ( )
. h(z) } p(p) = o= Z Z ) ji2mji/e 1/t ji2mjr /e, 1/t
= dy | —— . 6(yw pin 2T px e My 5 eees © Ky
/ y |:| det{VfT(:U)H a*:f*l(zr/) l};[l (yk) t 71=0 J7=0
_ h(;Eo) B 1 ¢—1 ‘-1 7 , 2e
| det{V T (2)} =g = TigT 2T Z T H O(|lpe]™" = 1)
71=0 J7=0 t=1
where[V T = 0f¢/dx,. Formally, this means that ) H 6i2m/t‘ui” 3 el'?m/wi” 2 54
5(«1’ - ivo) s>t

5(f(x)) = : : (A2)

| det{V () =z, The transformation (A2) simplifies the Dirac delta functions to
This expression accommodates multiple zeros by taking a sum of delta )

functions at the individual roots, and dividing by the appropriate Jaco- 5(|M|2/€ 1) =6 <|"“|__1>

bian determinants. It is modified for complex variables by squaring the {

determinants. =(6(|e]> = 1) (B5)
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which when substituted into (B4) gives where theT components ofg range over all permutations of
1 =1 {0, 1, — 1}, anda, = x1 depending on whether the permu-
p(p) = TITT Z e tatlon is even or odd. We substitute this expression into (B8) to give
J1=0 C(-1,1,0,...,0)
£—1 2
oi2mis i2mgefent | 1 " i0(—61462) ia=mto
(5(|/lt| i2 ls/f; —e 2m gy /by ) (B6) - — / dbe 1402 aga,e’d . (B9)
pop T} T 2

The change-of-variables; — g/;/gciw, combined with the appro- Itis apparent that the nonvanishing terms of (B9) satisfy the following:

priate Jacobian, gives the joint density fprand~. The integration —t+q—r1=0
overy gives the joint density for the eigenvalue phases (+qz—7r2=0

g — 1 =0, t=3,...,T.
We substitute the equivalent expressions{far} into (B9) to give
,(—1 1,0,...,0)

-1 T . .

Z H H51112 {% i +22;(]8 —Jt) . (B7) T—1 T—1—¢

JT=0 t=1 s>t T‘ Z Z Z Z Aq1,92,93, - a7 bq1—C, 924+, 93, .-, a7+
Merely by inspection, one cannot verify that this complicated expres- a1=C ¢2=0 g3 ar
sion differs from the density fof = 1, though one could establish Recall that the:’s are nonzero only when theff arguments are dis-
this fact numerically. In the following, we show that, for> T the tinct. Given the lasfl” — 2 arguments of the's, there are only two
eigenvalue phases are independent and uniformly distributed, and gssible values for the first two arguments. Either= ¢; — ¢ and
a different density is obtained for evefy< T. These results have alsoq2 = ¢2 + { (an impossibility sincé # 0) or g2 = ¢1 — £, which
been established in [11]; our treatment is more direct, and it avoiderresponds to exchanging the first two arguments of:theHence,
using the Haar measure.

5T2=T -1

PO = Fgmrr 2
J

1=0

Aqy1, a2, a3, - arlq1—C, 92+, g3, ..., a7

A. Eigenvalue Density fof > T' = Y a1-tas, o arfar—Liar, s, a7
It is more convenient to work with the characteristic function =-L
ot We apply this result, and sum over t#€—2)! values of{¢s, ..., gr}
C(k) = { } to obtain
T—1
co - _M —
:E{e"“’ C(=1.1,0,....0)= = Z‘( 1)
g1="¢
To 2 T—¢
deith ‘ 01 BS =
T'(ZT)T / 1:[ 11 (B8) (T -1)

which, because of the periodicity of the density, need only be consid- #0, vé=1,...,T-1. (B10)

ered for integer values of the components of the veetBor all¢ > T,  Therefore, we conclude that, foe=1, . ... 71, the eigenvalue phases
we wish to show tha€'(k) = 0 for all k not identically equal t¢). arenotindependent and uniformly distributed, and, furthermore, that
Without loss of generality, suppose tHat # 0. Then the integrand the eigenvalue density is different for evefry 1, ..., T'—1.

of (B8) may be regarded as a trigonometric polynomialinand the  This yields the following lemma.

integral with respect t6, takes th? form Lemma 1: The eigenvalue phases of tlith power of aT' x T
- ithy6, =y iion isotropically distributed unitary matrix have a uniform joint distribu-
/ dbhe Z aje’ T tion if and only if ¢ > T.
j==—(r-1)
Sincel > T and|j| < T, for all nonzero integer values &f, (k1 +
j # 0, sothe integral vanishes. It follows th@t %) = 0, unlesst = 0,
so the eigenvalues phaseare independent and uniformly distributed. [1] I. C. Abou Faycal, M. D. Trott, and S. Shamai (Shitz), “The capacity of
discrete-time Rayleigh fading channels, Hroc. Int. Symp. Information
Theory Ulm, Germany, 1997, p. 473.
[2] E. Biglieri, J. Proakis, and S. Shamai (Shitz), “Fading channels: In-
The converse also holds: for dll< ¢ < T, the eigenvalue phases formation-theoretic and communications asped&EE Trans. Inform.
arenotindependent and uniformly distributed. We need only show that __ Theory vol. 44, pp. 2619-2992, Oct. 1998.

. . [3] G. J. Foschini, “Layered space—time architecture for wireless commu-
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. . N . The correspondence is organized as follows. Section Il provides a
A New View of Performance Analysis of Transmit Diversity formulation ofpa generic quadgratic form of a zero-mean CGRF\)/ and de-

Schemes in Correlated Rayleigh Fading rives a useful property on the pdf of this quadratic form. Section Il
. . gives the description of the system under consideration. Section IV de-
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Michael P. Fitz Member, IEEEand Jimm H. GrimmMember, IEEE tion, a simple approximation, and an asymptotic bound.

Abstract—This correspondence provides a new formulation for the pair- Il. QUADRATIC FORMS OF ACGRV

wise error probability for any coherently demodulated system in arbitrarily . L . .
correlated Rayleigh fading. The novelty of the result is that the error prob- In digital communications, performance analysis generally involves

ability expression can be described as a function of the eigenvalues of athe evaluation of the probability distribution of a generic quadratic form
“signal™-only matrix. We also provide the relationship between the pole of a CGRV. With an appropriate formulation of a quadratic form of
location of the characteristic function and the resulting error probability. CGRV, the analysis is unified for all varieties of applications (e.g., see

This result allows us to approximate and bound the desired probability. . . .
A new simple bound on the pairwise error probability is derived that is [71, [4], [9], [10)). In this section, we formally describe the pdf of the

better than the standard Chermoff bound and asymptotically tight with the ~ quadratic form of a CGRV, and derive a useful property on the density
signal-to-noise ratio (SNR) to the true probability. function which will lead to later results of interest.
Index Terms—Asymptotic bounds, diversity, pairwise error probability, A quadratic form of anV x 1 CGRV Z is a real-valued random

performance analysis, Rayleigh fading. variable given as

Q.=7"K7 @)
I. INTRODUCTION

Performance analysis of digital communications systems in fadimgiereX is a certainV x N Hermitian matrix. The form in (1) often
channels has been an area of long-time interest. Results were firstafises in performance analysis of digital communication systems and a
tained in [1]. An elegant unified technique was presented in [2], [3] fovide variety of results exist to characterizeand K for different ap-
signals experiencing complex Gaussian fading and advanced textboglkgations. For a zero-mean CGR¥/ the characteristic function (ChF)
have significant sections discussing related results [4]. Improvemegtd?- is given by [11]
1

] = det(Iy — jtC.K) @

Do (1) = B[O
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