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Abstract

Rigorously quantifying the information in high-contrast imaging data is important for informing follow-up
strategies to confirm the substellar nature of a point source, constraining theoretical models of planet—disk
interactions, and deriving planet occurrence rates. However, within the exoplanet direct imaging community, non-
detections have almost exclusively been defined using a frequentist detection threshold (i.e., contrast curve) and
associated completeness. This can lead to conceptual inconsistencies when included in a Bayesian framework. A
Bayesian upper limit is such that the true value of a parameter lies below this limit with a certain probability. The
associated probability is the integral of the posterior distribution with the upper limit as the upper bound. In
summary, a frequentist upper limit is a statement about the detectability of planets while a Bayesian upper limit is a
statement about the probability of a parameter to lie in an interval given the data. The latter is therefore better suited
for rejecting hypotheses or theoretical models based on their predictions. In this work we emphasize that Bayesian
statistics and upper limits are more easily interpreted and typically more constraining than the frequentist approach.
We illustrate the use of Bayesian analysis in two different cases: (1) with a known planet location where we also
propose to use model comparison to constrain the astrophysical nature of the point source and (2) gap-carving
planets in TW Hya. To finish, we also mention the problem of combining radial velocity and direct imaging
observations.
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1. Introduction

Direct imaging is a method that can spatially resolve
exoplanets’ light from their host star using large telescopes,
adaptive optics, coronagraphs and sophisticated data proces-
sing. With ground-based telescopes, this technique currently
allows the detection of young (<300 Myr), massive (>2 Mj,p),
self-luminous exoplanets at host-star separations that have not
yet been probed by indirect methods (a > 5au). Direct
imaging surveys of previously unobserved stars mostly
produce non-detections (>98% of stars do not have a
detectable planet with current instruments). A wide range of
science can be drawn from these null results, but thinking about
the definition of upper limits is important. In this paper, we will
discuss some of these applications.

First, we consider cases in which the position of the object is
known. Most detected point sources are background stars,
therefore confirmation of their planetary nature requires follow-
up observations (Black 1980). Several strategies can be
adopted depending on the information at hand. It is common
practice to use the upper limit from the non-detection and/or
the frequencies of the different astrophysical signals to make
the case for a planet and to reject the background or foreground
hypothesis (Meshkat et al. 2013; Macintosh et al. 2015;
Wagner et al. 2016; Chauvin et al. 2017; Nielsen et al. 2017).
When a point source has been detected in one of two spectral
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bands, for example, the upper limit on the second band can
place limits on its color and in some cases we can reject the
possibility of it being a star. Generally, a red object or an object
showing significant spectral features characteristic of low-
temperature atmospheres will favor lower masses and this will
increase the likelihood of it being bound. This can be a
powerful tool to prioritize follow-up observations. Fomalhaut b
is another interesting example of the use of upper limits in
determining the nature of an object. The signal was discovered
in the optical (Kalas et al. 2008) but all subsequent follow-up
observations in the infrared yielded non-detections, which cast
doubts on its planetary nature (Kalas et al. 2008; Marengo
et al. 2009; Currie et al. 2012, 2013; Janson et al. 2012). The
lack of infrared emission suggests that the signal comes from
starlight scattered by a disk surrounding a planetary body. A
more formal statistical approach, such as the one derived in this
work, could be used to set tighter limits on the mass of a self-
luminous planet or to compare different dust formation
hypotheses (Kenyon et al. 2014).

Another application of upper limits is to rule out models
where an undetected planet perturbs some visible source, such
as by clearing a gap in a circumstellar dust disk. Ruane et al.
(2017) used direct imaging data of the TW Hya system to
constrain the masses or the accretion rates of hypothetical gap-
carving planets. The mass upper limit is derived from the flux
constraint using a planet formation model (Baraffe et al. 2003;
Allard et al. 2012). In this case, the exact position of the planet
is not known but the shape of the gap defines its orbit.
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Figure 1. Processed images of a Keck II/NIRC2 observation of TW Hya (Ruane et al. 2017) including a simulated 100 point source located north of the center star.
The left-hand image is the combined dataset after the speckles were removed (the units are arbitrary). The middle image is a flux map resulting from cross correlating a
10 pixel wide aperture (white empty circle in the left image) across the image. For each position, the sample standard deviation is computed from a 10 pixel wide
annulus at the same separation after the surroundings of the pixel of interest have been masked out (white filled circle). The right-hand image is the resulting signal-to-

noise ratio (S/N) map.

A final example of the use of upper limits is to combine
radial velocity (RV) measurements and direct imaging
observations. As time baselines keep growing and sensitivity
improves, the overlap between the accessible mass and
semimajor axis parameter space of the two methods keeps
increasing. When a direct and a RV detection is available, it
can be combined to infer the dynamical masses of a binary
system. Spectroscopic binary stars that are spatially resolved
can be used in this way to constrain the age of moving groups
(Nielsen et al. 2016). A direct imaging non-detection can still
bring useful constraints on the mass of a bound companion
(Joergens et al. 2012; Hardy et al. 2015; Vaccaro et al. 2015).

The use of non-detections in the derivation of exoplanet
occurrence rates is also extremely important (Cumming
et al. 2008; Nielsen & Close 2010; Brandt et al. 2014;
Bowler 2016; Galicher et al. 2016; Vigan et al. 2017). In this
context, combining RV and direct imaging can also help to
yield better estimates of planet frequency (Bryan et al. 2016;
Lannier et al. 2017). However, this problem is complex and
outside of the scope of this work. Bayesian based occurrences
are very sensitive to the accuracy of the noise model, the
characterization of which remains an on-going effort for high-
contrast imaging.

Planet flux upper-limits are commonly defined using a
frequentist approach from a detection threshold (e.g., contrast
curve), usually 5o with o the standard deviation of the noise
(Meshkat et al. 2013; Macintosh et al. 2015; Mesa et al. 2017,
Nielsen et al. 2017). In principal, the detection threshold should
be derived to set an acceptable false positive rate (Wahhaj
et al. 2013) but in practice it is often set to the traditional 5o
limit. The upper-limit can also be thought of in terms of true
positive fraction (i.e., completeness). By definition, the
detection threshold corresponds to a 50% completeness. The
fundamental conceptual differences between frequentist and
Bayesian upper limits have been detailed in the context of
gravitational wave detection (Finn 1998; Abbott et al. 2004;
Brady et al. 2004; Rover et al. 2011). For example, Finn (1998)
emphasizes that Bayesian analysis makes a measure of our
degree of belief in a proposition while the frequentist analysis
addresses our confidence in the ability of a procedure to decide
if a signal is present or absent, making the Bayesian analysis
better suited for the study of individual events. Rover et al.
(2011) notes that a frequentist upper limit requires the
maximization of the likelihood while the Bayesian upper limits

requires integration and also argues that the latter is more easily
interpretable.

Although a detection threshold does provide a measure of
the depth of the observation (i.e., its sensitivity to faint point
sources), it is not a statement about the degree of belief in a
given point-source flux given the data. While the detection
upper limit indicates which planets would have been detected
with a given completeness, a Bayesian upper limit is a
statement about the probability of the planet flux given the data.
A Bayesian upper limit fj;, is defined from the planet flux
posterior and a fixed probability of the true flux to be smaller
than this value given the data, P(f < f;,|d), which is referred
to as the cutoff probability in the following. The cutoff
probability is the value of the cumulative distribution of the
posterior at the position of the upper limit. Note that the
posterior needs to be carefully defined as a function of the
question that is asked to the data and the assumptions made.
Additionally, using a detection threshold in all circumstances
makes the interpretation of the results more difficult. The
existing examples of combining RV and direct imaging
measurements treat the RV data in a Bayesian framework
while using the frequentist approach for direct imaging upper
limits. Using the concepts presented here, Mawet et al. (2018)
will make a step towards treating both data types in a consistent
Bayesian framework.

We will illustrate this approach for direct imaging by
revisiting practical cases of non-detection. Section 2 assumes
that the location of the planet is known and it proposes to use
Bayesian model comparison to decide the most probable nature
of a candidate. Section 3 considers the case of a known orbit
for the companion but no information of its precise location.
This case is applicable to constraining the mass of an
undetected accreting planet in a disk gap, for example. In
Section 4, we look at combining RV and direct imaging
measurements to constrain planet mass and orbital parameters.
We conclude in Section 5.

2. Companion at a Known Location
2.1. Bayes’ Rule and Upper Limit

In this section, we address the simple problem of defining an
upper limit for the flux of a point source at a known location. A
typical example can be found when the planet was clearly
detected in only one of two spectral bands. In the literature, the
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Figure 2. Flux posterior (solid line) and upper-limit as a function the estimated flux. The dashed line is the likelihood centered on the estimated flux, for which we
assume a unit standard deviation. We assume a different S /N for each plot (— 10, 0o, 1o and 30). The gray area represents the values of the flux that are rejected by the
positive prior. The upper limit is defined from a 97.7% cutoff probability represented by the orange area under the curve. The different y-scales are due to the necessary
normalization of the posteriors. For the 3o case, the likelihood is hidden in the width of the line from the posterior because the effect of the prior is negligible.

quoted upper limits are often defined as the detection threshold
(commonly 50) at the location of the object.

Figure 1 shows a typical example of a high-contrast image’
in which a simulated ~100 point source was injected north of
the center star. The left-hand image is the result of combining
the single exposures after the speckle noise was removed using
a principal component based approach (Soummer et al. 2012;
Wang et al. 2015). The simulated point source was injected in
the individual 357 frames before the speckle subtraction is
performed. The simplest approach to compute the flux of a
point source is aperture photometry, which consists of
integrating the flux inside an aperture with a diameter that is
equal to the width of the point spread function (PSF; Mawet
et al. 2014). Such a flux map is equivalent to the cross
correlation'” of that aperture with the image (middle panel in
Figure 1). A more accurate flux could be estimated using a
matched filter (Ruffio et al. 2017), as shown in Section 3.1. For
each position, the error bar ¢ on the flux estimate can be
defined as the sample standard deviation computed from a 10
pixel wide annulus at the same separation from the primary star
after the surroundings of the pixel of interest have been masked
out (white filled circle) (Marois et al. 2008; Mawet et al. 2014).
This is the same standard deviation that is used to define the
detection threshold as a function of separation. A signal-to-
noise ratio (S/N) map is simply the flux map divided by the
standard deviation at each separation (right-hand image in
Figure 1). Any signal brighter than 5o is generally flagged as a
possible candidate. The threshold can be defined to yield a
reasonable number of false positives over a fixed field of view.
In a direct imaging survey, this can be limited by the number of
candidates on which follow-up observations can be performed
or more generally by the follow-up strategy that maximizes the
science return of the survey.

This detection threshold is fundamentally not a statement
about the parameter space that was ruled out by the data. An
upper-limit is better understood in the context of Bayesian
inference. One first needs to define a probability, hereafter
cutoff probability, of the true planet flux to fall below the upper
limit. The Bayesian upper limit is then defined as the value for
which the cumulative distribution of the posterior is equal to
the cutoff probability. From now on, we will make a distinction
between such an upper limit and a detection threshold. For a
Gaussian noise with known standard deviation o, an

° Observation from Ruane et al. (2017) in L’ (3.4-4.1 um) including 357
single exposures totaling 4.5 hr of integration time.

For example, using the Python function scipy.signal.correlate2d.

unbounded uniform prior and a 97.7% cutoff probability, the
upper limit is 20 above the estimated flux (see Figure 2). The
flux can be estimated even if the planet is not formally detected
as long as its position is known. In the unlucky event of a very
negative noise sample (e.g., lower than —20) at the location of
the planet, the estimated flux and the upper-limit could become
negative. This might be unsettling because we know that a flux
is strictly positive but this will be corrected by a more
informative prior, which will forbid negative values of the flux.
For a given noise distribution, it is important to note that the
upper-limit is a function of the data, here the estimated flux,
while the detection threshold is a property of the noise. As we
said, the choice of the threshold is also somewhat arbitrary,
whereas a posterior is entirely defined by the properties of the
noise, the data and the choice of a prior. Consequently, using
the detection threshold in place of an upper limit does not make
optimal use of the data.

Let F be the true planet flux random variable and F; be its
estimate at the position x based on the observation. We denote
random variables and random vectors with an upper case and
their realization with a lower case. The posterior P(F |E}) is the
probability of the point-source flux given its estimated value
from the observation. In this context, we define the data as
being the flux map and following Bayes’ rule (Sivia &
Skilling 2006),

P(F|F)P(F)
P(F,)
where P(F;|F) is the likelihood, P(F) the flux prior and P(F,)
acts as a normalization factor to ensure the posterior

distribution has a unit integral. If the noise is Gaussian, the
likelihood P(F|F) is given by the Gaussian distribution,

1 L(f-f)
Jzafﬂp{‘i‘ﬁﬁ_‘} @

The term P(F,) is also called the marginal likelihood (or
model evidence) and can be written as,

PE) = [~ PEIF=)PE= D

PFIF) = ey

P, =fIF=f) =

3)
The marginal likelihood is used in Bayesian model comparison.
In the following, we use a simple uniform positive prior,

a, if f> 0, with o constant

0, iff<0 @)

P@zﬁz{
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The uniform prior corresponds to the objective Jeffreys’ prior
(i.e., square root of the determinant of the Fisher information)
for location parameters such as the mean of a normal
distribution (Kass & Wasserman 1996). The uniform prior is
improper (i.e., its integral is infinite) but the likelihood will be
very constraining for large values of the flux f, so an upper
bound for the prior of the companion flux will not make a
significant difference. The inverse prior P(f) < 1/f is a
common choice for positive real valued parameters because it
is the only prior invariant by rescaling, i.e.,
P()df = P(Bf)d (Gf). This means that the inverse prior does
not favor any particular scale of the parameter but it requires a
strictly positive lower bound to produce a normalizable
posterior. The problem is that the previous likelihood does
not constrain null values, which means that the inverse prior
will dominate at small values of the flux. Consequently, due to
the divergence of the integral of the inverse function, the upper
limit will be extremely dependent on the choice of the lower
bound in the prior. For example, the upper limit would tend to
zero for an infinitely small lower bound. The prior could also
be derived from our current knowledge of planet population.
This would suggest a log-uniform planet mass prior Cumming
et al. (2008) and the corresponding flux prior after a change of
variable, but this would lead to the same difficulty near zero. In
this context, the uniform prior remains a conservative choice
for the definition of an upper limit. Indeed, a more relevant
prior based on a planet population model would give more
weights to lower fluxes and, therefore, decrease the upper limit.
The uniform prior also facilitates the comparison of upper
limits resulting from different works because it does not
include a user-defined parameter. Note that in the absence of a
prior, the posterior is simply equal to the likelihood centered on
the estimated flux.

We will assume Gaussian noise in the following but the
previous statements apply irrespective of the choice of noise
distribution. We now define the cumulative distribution of a
Gaussian distribution with standard deviation o and mean f as

fo 1 1 _Fe
Cr o) :ff:m EGXP{E%

and its inverse Q, also known as the quantile function, such
that f; = Q(C(fy))-

The flux upper limit fj;, is the value for which the
cumulative distribution of the posterior is equal to a cutoff
probability 7 (for example 97.7%); i.e.,

[l e (e PULDPY)
n= ff}oo P11 df = L:m TP

with f, and o, the estimated flux and standard deviation at the

position x. We also used Equation (1) in the second equality.
'1:hen, we note that wusing Gaussian  statistics

P(f,) =1-Cf ,(0) and using a positive uniform prior
Jim z .

f'zﬂo PAOPSYf = C o fiim) — Cf.0,(0), which leads

S
to

}df. 5)

af,  (6)

~ Ciolfim) = Ci 0 (0)
1 - Cﬂ,c&(o) -

)

Ruffio et al.

After rearranging the terms and using the quantile function, one
finds

Jim=27.0(n + (1 —mCf +0)). (®)

Figure 2 illustrates the posterior and upper-limit for different
measured fluxes assuming a unit standard deviation. Note that
if we drop the positivity constraint on the prior P(F), or if the
estimated flux f, is large, then the 97.7% upper-limit does
correspond to 20 above the measured value. Figure 2 highlights
how the upper limit closely depends on the realization of the
noise, which is not true of the detection threshold. We
encourage the direct imaging community to consider quoting
upper-limits based on this definition instead of a detection
threshold.

We have assumed that the standard deviation of the flux
estimate was known. In practice, the standard deviation is
estimated from the data, which means that it needs to be
marginalized over when it is poorly constrained (e.g., when the
number of noise realizations in the annulus of Figure 1 is
small). The planet flux posterior can be defined as the two-
sample t-test in which one of the samples has one element
(corresponding to the location of the planet) and the other
sample contains all of the pixels of a region with similar noise
properties but free of astrophysical signal (Mawet et al. 2014).
The second sample is often defined as the pixels taken at the
same projected separation but located one resolution element
apart from each other. The goal of a two-sample t-test, with
unequal sample sizes but equal variance, is to estimate the
difference between the means of two samples given that the
variance is unknown and must be estimated from the data itself.
In this case, the differences of the means is no other that the
planet flux and its posterior must be marginalized over the
uncertainty of the sample means and standard deviation, which
results in a Student-t distribution:

Iy
F = f|D : 1
P( fl)oc[N 1+ , )

]—((N—l)+l)/2

with
_7\2
ty = V= 1) , (10)

(S /v = D) JI/N T

where N is the number of elements without an astrophysical
signal. Equation (8) can still be used after redefining C and Q
using Equation (9) in place of the normal distribution.

2.2. Bayesian Model Comparison: Is It a Star?

A recurring problem in direct imaging is to constrain the
astrophysical nature of a candidate given a set of concurrent
observations in different spectral bands. In this context, the
nature of a point-like source can, for example, be a background
star (H,), a galaxy, a brown dwarf (background/foreground or
gravitationally bound), a planet or a false positive (&), which is
also known-as a null hypothesis. Point-source detections are a
common occurrence in direct imaging surveys due to the
prevalence of background stars, which is why we would like to
prioritize their follow-up observations to optimize the dis-
covery of new planets. For the purpose of this section, we will
assume that we have two broadband observations, one of which
could be a non-detection. With a single detection, it is not
possible to compare the astrometric measurements of the
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Table 1
Evidence Against H; Compared to H, Given the Value of the Bayes Factor,
B = P(H,|D)/P(H,|D), from Kass & Raftery (1995)

log,o(B) B Evidence against H,

0-1/2 1-3.2 Not worth more than a bare mention
1/2-1 3.2-10 Substantial

1-2 10-100 Strong

>2 >100 Decisive

candidate to that of a background object. It is common practice
to use the upper limit from the non-detection and/or the
frequencies of the different astrophysical signals to make the
case for a planet and reject the background or foreground
hypothesis (Meshkat et al. 2013; Macintosh et al. 2015;
Wagner et al. 2016; Chauvin et al. 2017; Nielsen et al. 2017).
Deciding between alternative hypotheses, which are here the
possible classes of an astrophysical signal, can be done more
generally using Bayesian model comparison. Given an
hypothesis H, data D and model parameters ©, the marginal
probability P(D|H) is the probability of obtaining the data
assuming that an hypothesis is true. This is also defined as the
normalization factor in the denominator of the Bayes’ rule:

P(D|O, H)P(O|H)

POID, H) =
P(DIH)

(1)

This marginal probability also appears in the expression of the
posterior probability of an hypothesis
P(H|D) x P(D|H)P(H). The ratio of the posterior probability
of two hypotheses H; and H,, called the Bayes factor, is then
given by

P(Ha|D) _ P(DIHy)P(H,)
P(HID)  PDIH)YP(H)

12)

with P(H;) and P(H,) the prior probability that each
hypothesis to be true. The hypothesis H, is preferred when
the ratio is large. The significance of a given Bayes factor can
be read out of published tables (see Table 1, Jeffreys 1961;
Kass & Raftery 1995; Robert et al. 20~l ). ~

In the same way as we defined F,, we write G, as the
estimated photometry in a second spectral band. The
probability of the null hypothesis H = & given the observa-
tions, F; and G, is given by

P, G|2)P(2)
P(Fx, Gy)

P@IE, G) = ; 13)

with P(&) the prior probability of not having an astrophysical
signal. Given that the two observations are independent (i.e.,
P(F,, G|@) = P(F|2)P(G|2)) and assuming Gaussian dis-
tributions, the likelihood given the null hypothesis is defined as

7D(FN;C :ﬁ’ GX = gxlg)

~2 2

1 1/, 18,
T T 2 2

JxOgx 9 fx g

8Xx

We define m; and m, as the magnitude in each spectral band
and mj s, = m — my as the color. If H represents a given

Ruffio et al.

hypothesis of the astrophysical nature of a point source, then

P(H|F,, G,) = f PH, mi, m 2| Fy, Godmidmy 2,
my,m /2

= f P(Fy, GH, my, my )
my,m /2

P(H)

P(F, G

15)
From right to left, P(H) is the prior probability of the
hypothesis, P(m, m s»|*) is the prior probability of the color—
magnitude of an object defined by H, PE,, G*, m, my /2) is
the likelihood, and to finish, P(F, G,) is the marginal
likelihood. P(H) is therefore defined as the frequency of
objects H in a small arbitrary box at the position x on the
detector and P(my, my s|x) is the color-magnitude distribution
of these objects. The likelihood is given by

P(F:r :ﬁ7 Gx = gle’ my, ml/2)

1 L= 1@ - P
7exp{ > 2 2 o }, (16)

X PGy, my 2| H)dmydm, />

270 O

with = 107"/25 and g = 107"/23. g4, and o, are the error
bars respectively for the flux estimates f; and g..

To carry on our hypothetical example, we assume that a first
observation was made with the 4.4 ym filter (F444W) of the
NIRCAM instrument on-board the James Webb Space
Telescope (JWST). The follow-up observation is done in H
band with the Gemini Planet Imager (GPI). The goal is to
identify the most likely nature of a candidate given the JWST
detection and the GPI data. For the sake of simplicity, we will
only consider two stellar populations (high mass noted H, high,
low mass noted H, jow) and the null hypothesis to illustrate the
classification method. However, we would like to emphasize
that this framework is in no way restricted to this example and
should in practice at least include models of planets or brown
dwarfs.

The prior probability distributions of finding a background
star as a function of their position in a color—magnitude
diagram, P(my, my ;2| H, hign) and P(my, my /2| Hy ow), can be
calculated from the Besancon model of stellar populations
(Robin et al. 2003). We generated a galactic population
model'" within a solid angle of 0.23 deg” in the vicinity of p
Puppis (HD 60863, | = 242°96, b = —3°87). The area was
chosen to generate approximately 2 x 10° stars within 125 kpc
and with an apparent magnitude of K < 28. White dwarfs were
filtered out of the catalog based on their surface gravity. The
magnitudes for each star within the simulation were calculated
using a grid of stellar atmospheres (Castelli & Kurucz 2004)
and the properties of each star reported in the catalog; the
distance, effective temperature, surface gravity, metallicity,
radius, and extinction (using Ry = 3.1, Ay /Ay = 0.184, and
A4 /Ay = 0.0). Figure 3 shows the color-magnitude diagram
of the catalog in the JWST/F444W and GPI/H filters. We
identify two families of stars, low and high mass (198,027 and
32,292 stars), with a boundary at 0.65 M, which corresponds
to the soft boundary between the two modes of the two-
dimensional histogram. A low-mass star explanation will be

1 Using http://model.obs-besancon.fr.
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Figure 3. Color and apparent magnitude diagram of stars compared to
observations. The colormaps correspond to the density of low-mass (red) and
high-mass stars (>0.65 M, purple), which is only drawn up to a 95%
confidence levels. The inner (outer) contour represents the 68% (99.7%)
confidence level contours. The elongated contours represent the 68% (solid),
95% (dashed) and 99.7% (dotted) confidence levels of the likelihood for the
three scenarios described in Table 2. The probabilities of each candidate to be,
respectively, a low-mass or high-mass star is shown in Table 3.

preferred when the ratio P(H jowl B, Go) /P(Hshignl By Gy) s
large. The priors P(my, m /2| H,nign) and P(my, my 2| H o 1ow)
are, respectively, the normalized two-dimensional histograms
in color—magnitude resulting from the stellar population model.

The prior probabilities P(H, nigh) and P(H, jow) are defined
as the frequency of such stars in a patch of the sky
corresponding to a GPI resolution element (a ~50 mas
diameter circle). The probability of the null hypothesis is
defined such that P(2) + P(H, high) + P(H,1ow) = 1. The
size of the patch of sky will not impact the ratios of
probabilities of low-mass and high-mass stars but it will
influence the relative probability of the null hypothesis, which
is why the probability of the null hypothesis should not be
confused with a false positive rate.

The likelihood is a function of the fluxes and associated error
bars of the candidate in the different spectral bands. Assuming
that some sources were detected in JWST at S0 and
subsequently observed by GPI, we describe three possible
scenarios corresponding to three candidates. In these scenarios,
we vary the sensitivity of the JWST observation and the S/N of
the GPI follow up, assuming a clear detection (200) and two
non-detections (30, —10). The contours of the likelihood for
each of the candidates are drawn in Figure 3, which is therefore
an _illustration of the integrand of Equation (15),
P(E,, G|H.., my, my 2) P(my, my 5| H,). The details of the
parameters are described in Table 2 and the results are
presented in Table 3.

We can conclude that the first candidate (orange) is most
likely to be a high-mass star. The probability of a low-mass star
is still high because low-mass star are five times more common
that high-mass stars in this catalog. The nature of the second
candidate is undecided because the probabilities are too similar.
However it is still unlikely to be a false positive. The follow-up
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Table 2
5o Sensitivity in Apparent Magnitude, S/N and Apparent Magnitude of the
Point Source for three Hypothetical Candidates Detected with JWST/NIRCAM
with the F444W 4.4 um Filter and Followed-up with GPI in H Band

F444W (NIRCAM) H (GPD)
Candidate S0 S/N Mag S50 S/N Mag
1 (Orange) 15 5 15 17.5 30 15.6
2 (Blue) 17.5 5 17.5 17.5 3 18.1
3 (Gray) 20 5 20 17.5 -1 N/A

Note. These candidates are compared to a population of stars in Figure 3.

Table 3
Model Probabilities for the Three Scenarios Described in Table 2 and
Tllustrated in Figure 3

Candidate H*,high H*,low ) H*,]nw/H*,high
P(H) prior® 1074 5x 107 0.9994 5

1 (orange) 0.81 0.19 0.0 0.20

2 (Blue) 0.50 0.50 0.002 0.84

3 (Gray) 0.04 0.88 0.08 16.2
Note.

 The priors P(H, nign) and P(H, 1ow) are defined from the frequency of the
corresponding kind of stars from the Besancon stellar population model (Robin
et al. 2003).

epoch of the third candidate would be classified as a non-
detection and yielded a negative flux, which means that it is
entirely dominated by the noise. However, stars are still located
in the 20 region of the likelihood. The first epoch 5o detection
still makes it somewhat unlikely for the candidate to be pure
noise and the low-mass star hypothesis is preferred.

3. Companion on a Known Orbit
3.1. Definition

In this section, we will assume that we know the orbit of a
planet projected onto the sky plane but that we do not know its
position along it. For example, this situation can arise when
trying to constrain the mass of a planet in the gap of a proto-
planetary disk (Ruane et al. 2017), where the geometry of the
gap defines its orbit (Dong & Fung 2017). Future astrometric
discoveries of planets could also provide orbits of unseen
planets (Perryman et al. 2014).

We define the data D, or observation, as the random vector
representing the pixel values of the image. The point-source
parameters are its position on the projected orbit defined as the
curvilinear abscissa S and its flux F. We also define N as a
Gaussian random vector with zero mean and covariance matrix
Y. In practice, the noise is assumed to be independent, in which
case 2 becomes diagonal. Data, signal and noise are related
through,

D=Fm+N, (17

with m = m(s) the planet model in the direct imaging data,
which is effectively a function of the planet position S. We
assume that m (i.e., the shape of the PSF) is independent of the
flux F. When the planet is located outside the field of view or
inside the focal plane mask, the planet model m is simply null.
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The flux posterior given the data is
P(FID) = f P(F, SID)dS,
N
_ f PDIF, PE. S)
s P(D)

_ f PDIF, S)PE)PS) (18)
s P(D) ’

bl

where P(F) and P(S) are the priors for the point-source flux

and position.
The likelihood is defined as,

P =dIF =f,5=s)

1 1
— ——d — fm) =7'd — . (19
2] eXp{ 5@ — fim) 27 ﬁn)} (19)

which is the matrix version of a Gaussian likelihood seen in
Equation (2).
For simplicity, we assume a uniform positive prior over flux,

a, if f> 0, with « constant

0, iff<0 20)

PF=f)= {
The probability of finding the companion at any position in the
orbit is proportional to the time spent around that position
according to Kepler’s laws. We can write:

P(S) = —

21

Vproj

where T is the orbital period and vproj = Vproj(s) is the projected
velocity of a companion at position s on the ellipse representing
the projected orbit. vy, is constant in a face-on and circular
orbit. If P(S) is a delta function, we get the example from
Section 2.1.

We have not yet specified the data term d for the likelihood
in Equation (19). Although it is possible to choose the final
combined image, the planet model might be poorly known
when over- and self-subtraction from the speckle subtraction
applies. Instead, we directly define the likelihood from the
individual speckle-subtracted images, which are for example
defined by their exposure number and wavelength for an
integral field spectrograph. The speckles are here subtracted
using a principal component analysis based algorithm called
Karhunen-Loéve Image Projection (KLIP, Soummer
et al. 2012). KLIP consists in subtracting to each image its
own projection on a subset containing K elements of the
principal ~ components  z;.  Defining  the  matrix
Zx = [z1, 22 ,.... 2] , the speckle subtraction takes the form

isup = 1 — Zy Zxi, (22)

with i the science image and iy, the speckle-subtracted image.
Generally, the model of the signal is a function of the speckle-
subtraction algorithm used. When using a KLIP framework,
point sources are distorted by the speckle subtraction. Pueyo
(2016) derived a linearized approximation of this distorted PSF,
which will be referred to as the forward model of the signal.
Indeed, the existence of a faint point source in the data induces
a perturbation on the principal components denoted AZg. We
refer the reader to Pueyo (2016) for the analytical expression of
AZg, which is outside the scope of this paper. If a is the
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vectorized normalized planet signal in the science image, f the
planet flux and n; the associated noise containing the speckles,
such that i = fa + n;, then the normalized forward model then
can be written as

m=a—ZyZxa — (Zg AZx + (Z,IAZK)T)}. (23)

The linear approximation is valid when the planet signal is faint
relative to the speckles (i.e., fis small) and when there is little
spatial overlap between the planet signal in the different
reference images used in the principal components calculation.
The diagonal terms of the covariance matrix Y are directly
estimated from the data as the empirical variance of each pixel.
With the assumption of Gaussian noise, the likelihood can be
written directly as a function of the estimated flux f, and
associated error bar o, as defined in Ruffio et al. (2017) or
Cantalloube et al. (2015), with:

- d'Y'm

= — 24
YoM im 24)
and
2 1
ol = ——. 25
YoM m 25)

The estimated flux £, is defined as the value maximizing the
likelihood from Equation (19). The terms X and o, should not
be confused—the former characterizes the noise in the
uncombined data and the latter represents the noise in the
estimated flux map. We can also write the theoretical matched
filter S/N as
Ty-1
S = 4= m 26)
Nm'E"'m

These quantities are the final products of matched-filter based
data reduction (Cantalloube et al. 2015; Ruffio et al. 2017),
whose goal is to find the location of a known signal in noisy
data. This is a maximum likelihood approach and it consists in
maximizing the S/N from Equation (26) as a function of the
position of the planet. By substituting Equations (19)—(21),
(24), and (25) in Equation (18), we get the posterior

P(F = fID = d) o< H(f)

X fo exp {fl(fzmTZ)*lm — ZdeEflm)} ds,
s=s; 2 Vproj
5 1 2 = 1
< [ exp«{;?u - 2f,z§>} —
(27)

We have used the fact that d"3~'d does not depend on the
position s, so we can factor it out of the integral as a
proportionality constant.

In practice, the assumptions that were just made result in a
biased estimate of the flux and the standard deviation. For
example, the covariance X is not truly diagonal. The forward
model is also not a perfect model of the planet, which
underestimates the flux. Consequently, we define the algorithm
throughput as the ratio between the measured flux and the true
flux of a point source and we denote it as p,. A common
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Figure 4. Toy simulation illustrating Bayesian upper limits for planets on a known orbit but unknown location. The left-hand column features the observed flux as a
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dashed line. The central column shows the joint likelihood as a function of flux and position of the planet in arbitrary units. The likelihood globally decreases as the
signal increases because it becomes harder to explain with pure noise. The white arrow does not move in each plot and it highlights the location where the likelihood
changes. The right-hand column plots the flux posterior (black solid curve) of the planet compared to the completeness contours (gray horizontal lines) of a So
detection threshold (black horizontal lines). The dashed curve shows the posterior before the positive prior rejects the negative values of the flux (gray area). The
Bayesian upper limit with 98% cutoff probability is drawn as a horizontal solid red line. The posterior is marginalized over S, which corresponds to a horizontal

integral of the joint likelihood in the middle panels.

practice to mitigate the standard deviation bias (Cantalloube
et al. 2015; Ruffio et al. 2017) is to re-normalize the standard
deviation to yield a S/N map with unit standard deviation
(S¢/n, — Sy, with the 7, the standard deviation of the S,
map). The flux calibration is done with simulated planet
injection and recovery (f, /u, — £,), which is also known as
algorithm throughput correction. Equation (27) now becomes:

P(F = fID = d) o< H(f)

b
X exp
S=S5;

=3

ds.

1 s .
- -2
ey (s ) (e, D)

Vproj

(28)

Figure 4 features a toy simulation of the approach assuming
100 independent samples representing the pixel values along
the orbit path, a unit standard deviation and a Dirac-like planet
model (all of the flux contained in one pixel). The value of the
middle-data point was fixed to a given S/N to show the effect
of outliers on the upper limit. Similarly to Figure 2, Figure 4
shows that the upper limit should truly be a function of the data

—1in other words, a function of the realization of the noise,
which is not true of the detection threshold.

Note that this method is even valid when there is a strong (or
weak) signal in the gap, which could be either a rare occurrence
of the noise or an astrophysical object. This would not be true
for a detection threshold based approach because the latter does
not depend on the actual measurement.

3.2. Effect of the Size of the Orbit

Intuitively, the upper limit is to the first order defined by the
brightest signal in the data. As the number of elements
increases, it becomes more likely to draw high S/N signals.
Therefore, the larger the uncertainty on the location of the
planet, the more realizations of the noise have to be considered
and the poorer the upper limit will be. Figure 5 shows examples
of posteriors when varying the number of samples in the
Figure 4 simulation and assuming pure noise data with no real
signal. Unless the data contains an outlier—defined as an
unlikely event considering the number of realizations—the
posterior flattens out as the number of samples increases. At the
limit of an infinite number of elements, the data loses any
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Figure 5. Flux posterior as a function of the number of elements using a simple

simulation. The N = 107 samples case highlights the effect of an outlier in
the data.

constraining power on the flux of the planet and the posterior
becomes a constant. When defining the upper limit from a
detection threshold, this effect can be partially accounted for by
modifying the detection threshold to yield the same false
positive rate at any distance of the star (Ruane et al. 2017,
Jensen-Clem et al. 2018).

3.3. Qualitative Effect of Non-Gaussianity and Correlation

We have assumed that the noise was Gaussian and
uncorrelated. Figure 6 shows the histogram of the pixel values
in uncombined speckle-subtracted images for three different
separations. While the distribution approximates a Gaussian for
the largest two separations, it has a very large tail in the inner-
most case. In this section, we simulate the effects of the
correlation and the non-Gaussianity on the final upper limit in a
simplified example. We assume a discrete orbit made of
hundreds of elements similar to Figure 4, containing pure
noise. To explore the effect of the size of the planet with
respect to non-Gaussian noise and non-diagonal correlation
matrix, we consider two models: a small Dirac-like PSF and a
large PSF that is five-elements wide. In Figure 7, we estimate
the error made on the upper limit when we erroneously assume
that the noise is Gaussian or independent. To do so, we
compare the upper limits derived from the true properties of the
noise with the upper limits derived with the assumption of
Gaussian and independent noise. The non-Gaussianity is first
tested using a Student-t distribution with 10 degrees of freedom
and normalized to unit standard deviation (top panels of
Figure 7), which was a good fit to the pixel distribution of the
inner-most annulus in Figure 6. In this context, the Student-t
distribution is used because of its wider tails compared to a
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Figure 6. Histogram of the speckle-subtracted uncombined images for three
separations for the NIRC2 observation of TW Hya. A resolution element is
defined as 1.22\/D =~ 0”1 (A = 4 ym and D = 10 m).

Gaussian distribution but not because of its relation to small
sample statistics. We then try a correlated Gaussian noise with
a circulant covariance matrix'? (bottom panels of Figure 7).
The correlation profile is defined as a Gaussian with a standard
deviation equal to two elements. The upper limits are calculated
in a similar fashion as for Figure 4 by replacing the likelihood
from Equation (18) to include a non-diagonal covariance
matrix or to use a Student-t distribution. The Student-t joint
likelihood is computed as the product of the individual
likelihood for each pixel, which is granted by the independence
of the noise. Despite the simplicity of these simulations, we can
draw some general principles from them. First, it is necessary
to account for the non-Gaussian tail of the noise only when
considering high cutoff probabilities (e.g., >0.999, which is
equivalent to 30). It is therefore good practice to quote upper-
limits derived from reasonable cutoff probabilities if the
distribution of the noise is poorly known. In this crude
simulation, the non-Gaussian noise is uncorrelated, which
means that the effect is mitigated when the planet PSF is large.
Indeed, the noise becomes more Gaussian when combining
several pixels together because of the central limit theorem. In
practice, the non-Gaussian noise comes from the correlated
speckle noise with a correlation length equal to the PSF size,
which means that a larger PSF will not help. However, the
noise will be made more Gaussian thanks to the observing
strategies—Angular Differential Imaging (Marois et al. 2006)
and Spectral Differential Imaging (Marois et al. 2000; Sparks &
Ford 2002)—where the quasi-static speckle are subtracted and
the displacement of the planet relative to them is used.
Second, when neglected, correlated noise can create the
illusion of a signal, which results in inflated upper limits.
However, overestimated upper limits are a conservative choice,
which makes it acceptable. This effect is partially corrected

12 A circulant matrix is a matrix for which each row vector is shifted by one
element to the right relative to the preceding row vector. It is a special case of
Toeplitz matrix for which the diagonals are constant. The circulant matrix is
used here to express the periodicity of the projected orbit.
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Figure 7. Comparison of the upper limits derived from the true properties (x-axis) of the noise with the upper limits derived with the assumption of Gaussian and
independent noise (y-axis). The color corresponds to different cutoff probability (CP). The diagonal represents a correct estimation of the upper limit despite the
approximation that is made. Points below the diagonal show that the upper limits has been underestimated leading to over-confident constraints. Points above the
diagonal represent over-estimated upper limits leading to conservative results. Units are arbitrary.

when we calibrate the standard deviation as discussed at the
end of Section 3.1. Note that a large PSF here again mitigates
the effects of the correlation. Increasing the correlation length
and the PSF size in tandem is equivalent to reducing the
number of independent realizations of the noise.

3.4. Constraining the Mass of a Planet in the TW Hya
Protoplanetary Disk

We apply the previous framework to the Keck-NIRC2
observations of TW Hya at L’ presented in Ruane et al. (2017).
TW Hya features a proto-planetary disk in which gaps have
been detected (Weinberger et al. 2002; Akiyama et al. 2015;
Rapson et al. 2015; Andrews et al. 2016; Debes et al. 2016; van
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Boekel et al. 2017). A possible explanation for the gaps could
be the presence of accreting planets carving them (Dong &
Fung 2017). The goal is to use the high-contrast observation of
the system to set an upper limit on the mass of the hypothetical
planets, which can be compared to the predictions of theoretical
models of planet formation.

We will compare the different definitions of upper limit. As a
reminder, our Bayesian upper limits are defined from the flux
posterior and the probability of the true planet flux (or mass) to
be smaller than the limit, which we called cutoff probability.
The frequentist definition of upper limit relies on the detection
threshold and its associated completeness. A detection occurs
when the measured flux of a point source falls above the
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Figure 8. (a) Planet-to-star flux ratio of TW Hya and (b) its corresponding standard deviation maps. The maps were calculated according to Equations (24) and (25)
using a forward model matched filter described in Ruffio et al. (2017). The dashed lines represent the known gaps in the protoplanetary disk at 24, 41, 47, and 88 au.

detection threshold. The completeness is the probability that a
planet of a given flux (or mass) is detected. The completeness is
therefore always 50% for planets with a true flux equal to the
detection threshold. Otherwise, it will, for example, be equal to
16% if the true flux of the planet is 1o below the detection
threshold and 84% if it is 1o above the detection threshold. To
summarize, the frequentist upper limit makes a statement about
the detectability of a planet, while the Bayesian upper limit
makes a statement about the probability of the planet flux given
the data.

The units of the planet flux have not yet been defined and
will depend on the normalization of the planet model. In the
following, we will express the flux as the planet-to-star flux
ratio. Figure 8 shows the planet-to-star flux ratio of TW Hya
and its corresponding standard deviation maps, which are used
in the calculation of the likelihood in Equation (27). Figure 9
shows the resulting planet-to-star flux ratio and the mass upper
limits for different cutoff probabilities as a function of the
planet semimajor axis (white lines). It also features the So
detection threshold as a function of separation (dashed red
line). The location of the four gaps in TW Hya proto-planetary
disk are marked with gray lines. The planet to star flux ratio to
mass conversion was performed using the AMES-Cond model
(Baraffe et al. 2003; Allard et al. 2012) and an age of 10 Myr
for the star (Bell et al. 2015), which only accounts for
photospheric emissions and neglect possible effects of accre-
tion. We assume a uniform positive prior in flux or mass for the
calculation of the flux or mass posterior, respectively. This
means that the priors in both cases, mass or flux, are not
equivalent. We could use a more informed mass prior based on
observational results but it is still poorly constrained for giant
planets at large separation and the choice of a constant is
conservative.

Figure 9 does not allow for an easy comparison of the
different upper limits. Figure 10 features the posterior and its
cumulative distribution, as well as the completeness for each
gap, which are in substance vertical cuts through Figure 9. For
example, on the one hand, the detection threshold corresponds
to a ~1M; planet at the 88 au gap (gray lines). A possible
definition of mass upper limit would be the mass of a planet
that would be detected 95% of the time, which is ~1.3Mj for
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that gap. On the other hand, the value of the cumulative
distribution of the posterior at the detection threshold is 0.9995
(=~30), which already highlight a comfortable degree of
confidence in the fact that the mass of the planet is lower. In
hindsight, it seems unnecessary to look for such a high
completeness in this case. It is also common practice to quote
the detection threshold itself as the upper limit. This approach
can lead to confusion because the 5o of the detection threshold
can be easily mistaken for a cutoff probability, when it is really
associated to a false positive rate. A 5o detection threshold is
not equivalent to a Bayesian upper limit with a “50” cutoff
probability, but is truly ~30 in the specific example. An upper
limit should always be accompanied by a statement about its
probability, in which a sole detection threshold is lacking.

We have already mentioned other caveats coming from a
detection-based upper limit. First, the definition of the thresh-
old is somewhat arbitrary. The field has widely adopted a S0
threshold but it yields many false positives in practice due to
the non-Gaussianity of the noise. If we chose a larger threshold
to mitigate this issue, then should the upper limit change or
remain the same? Second, a detection threshold only indirectly
depends on the data through the sample standard deviation,
while the Bayesian upper limit fully expresses the information
contained in the data. The latter will be highly sensitive to
outliers. This dependence to the data is illustrated in Figure 9,
where the Bayesian upper limit varies strongly as a function of
the semimajor axis while the detection threshold is smoother.
Finally, and related to the previous point, an advantage of the
Bayesian upper limit is that it is valid regardless of the strength
of the signal (detection or non-detection), while the detection
threshold framework requires the absence of outliers. In
addition, the Bayesian approach is less sensitive to the assumed
noise distribution than the frequentist approach due to the
dominant impact of the strongest signal in the data.

In Ruane et al. (2017), the upper limit is calculated for a 95%
completeness and a detection threshold that is defined to yield
0.01 false positives within 1”7 of the host star. The threshold
varies from 8.10 to 4.5¢0 with increasing separation to the star
accounting for both the larger area available at larger separation
and small sample statistics using a Student-t distribution
(Mawet et al. 2014). The most conservative upper limits for the
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Figure 9. Cumulative distribution of the planet-to-star flux ratio (respectively mass) posterior for TW Hya as a function of the semimajor axis of the putative planet to
the star. The Bayesian upper limit contours are drawn for different probabilities and can be compared to the conventional 5o detection threshold. The equivalent
significance of each cutoff probability is also written in terms of sigmas in the legend. The location of the gaps are marked with a vertical gray solid line. The flux ratio
to mass conversion was performed using the AMES-Cond model and a 10 Myr old star.

mass of a companion around TW Hya assume an age of 10 Myr
and the AMES-Cond model. The reported upper limits for each
gap in the system are: 2.3 My at 24 au, 1.6 My at 41 au, 1.5 Mj at
47 au, and 1.2 My at 88 au. Using a Bayesian analysis and 0.999
cutoff probability (30), this work finds mass upper limits equal
to 2.4 My at 24 au, 1.5 Mj at 41 au, 1.3 Mj at 47 au, and 0.9 M,
at 88au. Note that this work uses a different reduction
algorithm compared to Ruane et al. (2017), which has not been
optimized and might explain the limited gains. Figure 10
should be used for a fair comparison of the frequentist and
Bayesian approach. The upper limits for the planet-to-star flux
ratio are 1.4 x 10 % at24au, 4.9 x 107> at41 au, 3.4 x 107>
at 47 au, and 2.2 x 107 at 88 au. The corresponding absolute
magnitudes are, respectively 12.9, 14.0, 14.3, and 14.9, where
we have assumed a TW Hya distance of 60.1 £ 0.15 pc (Gaia
Collaboration et al. 2016, 2018) and a 7.01 apparent magnitude
at Wise W1 band (proxy for Keck-NIRC2 L’ band) (Wright
et al. 2010).

The previous mass upper limits do not consider possible
accretion of the planet, which is most likely to occur for proto-
planetary disks like TW Hya. The absolute magnitude of a
circumplanetary disk is a function of the product of the planet
mass with the accretion rate, MM, and the inner radius of the
circumplanetary disk, R;, (Zhu 2015). For small enough
planets, which is most often the case, the intrinsic flux of the
planet can be neglected because the accretion appears much
brighter. We can compute the probability corresponding to
each set of parameters (MM, R;,) using Zhu (2015) model
predictions for the circumplanetary disk absolute magnitude in
L band and the posterior distribution of Figure 10. We compare
the map of cutoff probabilities and completeness for each gap
in Figure 11. On a logarithmic scale, the 99.9% Bayesian cutoff
probability leads to marginally better constraints on (MM, Ry,)
than the 50 completeness based approach. However, we argue
that it is easier to statistically interpret the Bayesian constraints.
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Dong & Fung (2017) argues that hypothetical gap opening
planets should have mass of the order of 0.1} in the 20 and
80 au gaps. The thermal emission of such planets would be
invisible at our current sensitivity and, therefore, can be
neglected. Consequently, assuming a 0.1Mj planet, we can set
constraints on the accretion rate M by adding one unit to the
y-logarithmic-scale in Figure 11. In conclusion, given the data,
we are 99.9% confident that the accretion rate of a 0.1M; planet
in the TW Hya gaps, if it exists, is below 9.3 x 1077 My yr~! at
24au, 5.0 x 107" My yr~! at 41lau, 4.5 x 107" My yr~! at
47 au, and 3.4 x 1077 My yr—! at 88 au.

4. Combining RV and Direct Imaging Observations

Combining RV data with direct imaging is another very
promising avenue for constraining the masses of non-transiting
wide-orbit planets detected with Doppler measurements. An
example of application of this method can be found in the case
of ¢ Eridani in Mawet et al. (2018) for which this section
describes the theoretical concepts.

Radial velocity only provides a lower limit on the mass of
the planet due to the M sin(i) mass-inclination degeneracy.
Direct imaging non-detection can provide a mass upper bound
and therefore reject the lower inclinations. We define Dry as
the time series of RVs and Dp; as the direct imaging
observation. The model parameters © to be inferred include
the orbital elements and the mass of the planet as well as the
star. We also define ©' such that © = {M,, Q, ©'} with M,, the
mass of the planet and €2 the position angle or longitude of
ascending node.
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Figure 10. Posterior, cumulative distribution assuming a positive prior and completeness for each gap of Figure 9. The first column features the distributions as a
function of the planet-to-star flux ratio while the second column uses the planet mass. The completeness is calculated for a So detection threshold, which itself
corresponds to a 50% completeness. The value of the cumulative distribution of the posterior (i.e., the cutoff probability) corresponding to the detection threshold is

indicated above the curve for each gap.
Dgvy and Dpy are independent so the posterior can be written
as,

P(Drv. Dpi|©)P(O
P(O|Dry. Dpyp) = L LRV, DoilO)P(O)

P(Drv, Dp1)
_ PORIOPDLIOPO) oy
P(Drv, Dpr)
The RV log-likelihood can be written as (Howard
et al. 2014)
log P(Dgrv|©)
i = V(1)) 2, 2
= — ————— +log .27 (07 + 0%) |, 30
D Tt o g f2m( PYRED

where v; are the measured RVs at the times #; and v,,(¢;) are the
corresponding projected Keplerian velocities. The standard
deviations o; and o; are, respectively, the internal uncertainty
for each measurement and the instrument-specific jitter term.
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As was shown in Section 3.1, the direct imaging log-
likelihood can be written as

~(f2 = 2f )

X

log P(Dpi|F = f, X = x) x —% 3D

The planet flux fis a function of the planet mass and stellar age,
and the position x is determined by the orbital parameters.
The posterior on © can be inferred using a Markov Chain
Monte Carlo. Keeping both spatial dimensions in the direct
imaging likelihood, such as in Mawet et al. (2018), requires a
much longer Markov chain to converge. It is possible to make
the problem more tractable by marginalizing the problem over
the position angle of the planet with minimal loss of
information. Indeed, the RV cannot constrain this parameter
and the image has little valuable information about the position
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Figure 11. Cutoff probabilities and detection completeness as a function of (MM, R;,) for each gap (rows) in TW Hya protoplanetry disks. The L/-band absolute
magnitudes for each value of (MM, R;,) were linearly interpolated from the table in Zhu (2015). The left-hand images show the cutoff probability, which is the value
of the cumulative distribution of the posteriors in Figure 10 at the flux of the planet. The middle images show the corresponding completeness for a 5o detection
threshold. The right-hand plots compare the 99.9% cutoff probability with the 95% completeness contours.
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angle in the absence of an obvious outlier.

PM,, ©'|Dry, Dpy) = f P(O|DRry, Dpy)

_ f P(Drv|©)P(Dpi|©)P(O)
w P(Drv, Dp1)
o P(Drv|M,, ©"PO")P(M,)

x [ f P(DuilF, r, w)P(w)] (32)

with P(2) = 1/27 the prior for the position angle and r, w are
the cylindrical coordinates of the planet.

Equation (32) shows that the RV likelihood can be factored
out of the integral, which leaves an integral over the sole direct
imaging likelihood. The calculation of the integral is then
equivalent to Section 3.1 with a circular face-on orbit. Note that
it is always possible to derive an upper limit, even when the
existence of a planet is still in doubt. For example, one could
use this framework to constrain masses for RV trends.

5. Conclusion

In this work we have addressed the differences between
frequentist and Bayesian definitions of planet flux upper limits
in the context of exoplanet direct imaging. The frequentist
upper limit makes a statement about the detectability of a
planet, while the Bayesian upper limit is about the probability
of a given planet flux. While upper limits are often thought of
in a Bayesian way, they are mostly quoted as detection
threshold in our field. This makes the interpretation of
detection-based upper limit more challenging. The detection
threshold, or contrast curve, is somewhat arbitrary and only a
property of the noise (o), which means it is not an optimal use
of the data.

Our goal is to provide a conceptual framework for the
analysis of direct imaging data, as well as informative examples
rather than an explicit analysis recipe or formalism. Clearly
defining a problem and its statistical representation before any
calculation is extremely important. Our conceptual framework
can also be applied to other cases, such as estimating planet
occurrence rates, or combining multiple measured quantities,
such as relative motion. Here, we have illustrated three typical
cases:

1. Deriving an upper limit on planet flux when the location
of the planet is known, which happens when, for
example, the planet is robustly detected in a set of filters
but not in others. The set of observations can be used to
inform the astrophysical nature of a candidate (planet,
brown dwarf, star, galaxies and so on) using Bayesian
model comparison.

2. Constraining the mass of a hypothetical planet carving a
gap in a protoplanetary disk (Ruane et al. 2017). We have
shown that the data contains more information and is
typically more constraining than the sole detection
threshold suggests. Illustrating our method on the TW
Hya system, there is a 99.9% probability given the data
that the mass of hypothetical non-accreting planets in the
gaps are below 2.4 My at 24 au, 1.5 My at 41 au, 1.3 My at
47 au, and 0.9 Mj at 88 au. With the same probability, the
accretion rate of a 0.1Mj planet with a 1R; circumplane-
tary disk inner radius, if they exist, is below
93 x 107" Myyr! at 24au, 5.0 x 1077 Myyr~! at
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41 au, 45 x 1077 My yr~! at
3.4 x 1077 My yr~! at 88 au.

3. We also introduced the problem of combining the RV
and direct imaging measurement, where a joint Bayesian
likelihood brings out the power of the two methods and
can be used to infer the mass and orbital parameters of a
planet (see Mawet et al. 2018).

47 au, and

This research was supported by grants from NSF, including
AST-1411868 (J.-B.R., B.M.) and AST-1518332 (R.J.D.R.).
Support was provided by grants from NASA, including
NNX14AJ80G (B.M., J.-B.R.), NNX15AD95G (R.J.D.R.)
and NNXI15AC89G (R.J.D.R.). This work benefited from
NASAs Nexus for Exoplanet System Science (NExSS)
research coordination network sponsored by NASAs Science
Mission Directorate.

Facility: Keck:II(NIRC2).

Software: pyKLIP'? (Wang et al. 2015), astropy'* (Astropy
Collaboration et al. 2013), Matplotlib'> (Hunter 2007).

ORCID iDs

Jean-Baptiste Ruffio @ https: //orcid.org/0000-0003-

2233-4821

Dimitri Mawet ® https: //orcid.org /0000-0002-8895-4735

Tan Czekala @ https: //orcid.org/0000-0002-1483-8811

Bruce Macintosh ® https: //orcid.org/0000-0003-1212-7538
Robert J. De Rosa @ https: //orcid.org/0000-0002-4918-0247
Garreth Ruane @ https: //orcid.org/0000-0003-4769-1665
Michael Bottom @ hittps: //orcid.org/0000-0003-1341-5531
Jason J. Wang © https: //orcid.org/0000-0003-0774-6502
Lea Hirsch @ https: //orcid.org/0000-0001-8058-7443
Zhaohuan Zhu @ https: //orcid.org/0000-0003-3616-6822

References

Abbott, B., Abbott, R., Adhikari, R., et al. 2004, PhRvD, 69, 082004

Akiyama, E., Muto, T., Kusakabe, N., et al. 2015, ApJL, 802, L17

Allard, F., Homeier, D., Freytag, B., & Sharp, C. M. 2012, in EAS Publications
Ser. 57, Low-Mass Stars and the Transition Stars/Brown Dwarfs, ed.
C. Reylé, C. Charbonnel, & M. Schultheis (Les Ulis: EDP Sciences), 3

Andrews, S. M., Wilner, D. J., Zhu, Z., et al. 2016, ApJL, 820, L40

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A,
558, A33

Baraffe, 1., Chabrier, G., Barman, T. S., Allard, F., & Hauschildt, P. H. 2003,
A&A, 402, 701

Bell, C. P. M., Mamajek, E. E., & Naylor, T. 2015, MNRAS, 454, 593

Black, D. C. 1980, NASSP, 436, 191

Bowler, B. P. 2016, PASP, 128, 102001

Brady, P. R., Creighton, J. D. E., & Wiseman, A. G. 2004, CQGra, 21, S1775

Brandt, T. D., McElwain, M. W., Turner, E. L., et al. 2014, ApJ, 794, 159

Bryan, M. L., Knutson, H. A., Howard, A. W, et al. 2016, ApJ, 821, 89

Cantalloube, F., Mouillet, D., Mugnier, L. M., et al. 2015, A&A, 582, A89

Castelli, F., & Kurucz, R. L. 2004, arXiv:astro-ph/0405087

Chauvin, G., Desidera, S., Lagrange, A.-M., et al. 2017, A&A, 605, L9

Cumming, A., Butler, R. P., Marcy, G. W., et al. 2008, PASP, 120, 531

Currie, T., Cloutier, R., Debes, J. H., Kenyon, S. J., & Kaisler, D. 2013, ApJL,
7717, L6

Currie, T., Debes, J., Rodigas, T. J., et al. 2012, ApJ, 760, L32

Debes, J. H., Jang-Condell, H., & Schneider, G. 2016, ApJL, 819, L1

Dong, R., & Fung, J. 2017, AplJ, 835, 146

Finn, L. S. 1998, in Gravitational Waves, Second Edoardo Amaldi Conf., ed.
E. Coccia, G. Veneziano, & G. Pizzella (Singapore: World Scientific), 180

'3 Documentation available at http: / /pyklip.readthedocs.io /en/latest /.
14 http: / /www.astropy.org
15 https: / /matplotlib.org


https://orcid.org/0000-0003-2233-4821
https://orcid.org/0000-0003-2233-4821
https://orcid.org/0000-0003-2233-4821
https://orcid.org/0000-0003-2233-4821
https://orcid.org/0000-0003-2233-4821
https://orcid.org/0000-0003-2233-4821
https://orcid.org/0000-0003-2233-4821
https://orcid.org/0000-0003-2233-4821
https://orcid.org/0000-0003-2233-4821
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0002-8895-4735
https://orcid.org/0000-0002-1483-8811
https://orcid.org/0000-0002-1483-8811
https://orcid.org/0000-0002-1483-8811
https://orcid.org/0000-0002-1483-8811
https://orcid.org/0000-0002-1483-8811
https://orcid.org/0000-0002-1483-8811
https://orcid.org/0000-0002-1483-8811
https://orcid.org/0000-0002-1483-8811
https://orcid.org/0000-0003-1212-7538
https://orcid.org/0000-0003-1212-7538
https://orcid.org/0000-0003-1212-7538
https://orcid.org/0000-0003-1212-7538
https://orcid.org/0000-0003-1212-7538
https://orcid.org/0000-0003-1212-7538
https://orcid.org/0000-0003-1212-7538
https://orcid.org/0000-0003-1212-7538
https://orcid.org/0000-0002-4918-0247
https://orcid.org/0000-0002-4918-0247
https://orcid.org/0000-0002-4918-0247
https://orcid.org/0000-0002-4918-0247
https://orcid.org/0000-0002-4918-0247
https://orcid.org/0000-0002-4918-0247
https://orcid.org/0000-0002-4918-0247
https://orcid.org/0000-0002-4918-0247
https://orcid.org/0000-0003-4769-1665
https://orcid.org/0000-0003-4769-1665
https://orcid.org/0000-0003-4769-1665
https://orcid.org/0000-0003-4769-1665
https://orcid.org/0000-0003-4769-1665
https://orcid.org/0000-0003-4769-1665
https://orcid.org/0000-0003-4769-1665
https://orcid.org/0000-0003-4769-1665
https://orcid.org/0000-0003-1341-5531
https://orcid.org/0000-0003-1341-5531
https://orcid.org/0000-0003-1341-5531
https://orcid.org/0000-0003-1341-5531
https://orcid.org/0000-0003-1341-5531
https://orcid.org/0000-0003-1341-5531
https://orcid.org/0000-0003-1341-5531
https://orcid.org/0000-0003-1341-5531
https://orcid.org/0000-0003-0774-6502
https://orcid.org/0000-0003-0774-6502
https://orcid.org/0000-0003-0774-6502
https://orcid.org/0000-0003-0774-6502
https://orcid.org/0000-0003-0774-6502
https://orcid.org/0000-0003-0774-6502
https://orcid.org/0000-0003-0774-6502
https://orcid.org/0000-0003-0774-6502
https://orcid.org/0000-0001-8058-7443
https://orcid.org/0000-0001-8058-7443
https://orcid.org/0000-0001-8058-7443
https://orcid.org/0000-0001-8058-7443
https://orcid.org/0000-0001-8058-7443
https://orcid.org/0000-0001-8058-7443
https://orcid.org/0000-0001-8058-7443
https://orcid.org/0000-0001-8058-7443
https://orcid.org/0000-0003-3616-6822
https://orcid.org/0000-0003-3616-6822
https://orcid.org/0000-0003-3616-6822
https://orcid.org/0000-0003-3616-6822
https://orcid.org/0000-0003-3616-6822
https://orcid.org/0000-0003-3616-6822
https://orcid.org/0000-0003-3616-6822
https://orcid.org/0000-0003-3616-6822
https://doi.org/10.1103/PhysRevD.69.082004
http://adsabs.harvard.edu/abs/2004PhRvD..69h2004A
https://doi.org/10.1088/2041-8205/802/2/L17
http://adsabs.harvard.edu/abs/2015ApJ...802L..17A
http://adsabs.harvard.edu/abs/2012EAS....57....3A
https://doi.org/10.3847/2041-8205/820/2/L40
http://adsabs.harvard.edu/abs/2016ApJ...820L..40A
https://doi.org/10.1051/0004-6361/201322068
http://adsabs.harvard.edu/abs/2013A&amp;A...558A..33A
http://adsabs.harvard.edu/abs/2013A&amp;A...558A..33A
https://doi.org/10.1051/0004-6361:20030252
http://adsabs.harvard.edu/abs/2003A&amp;A...402..701B
https://doi.org/10.1093/mnras/stv1981
http://adsabs.harvard.edu/abs/2015MNRAS.454..593B
https://doi.org/10.1088/1538-3873/128/968/102001
http://adsabs.harvard.edu/abs/2016PASP..128j2001B
https://doi.org/10.1088/0264-9381/21/20/020
http://adsabs.harvard.edu/abs/2004CQGra..21S1775B
https://doi.org/10.1088/0004-637X/794/2/159
http://adsabs.harvard.edu/abs/2014ApJ...794..159B
https://doi.org/10.3847/0004-637X/821/2/89
http://adsabs.harvard.edu/abs/2016ApJ...821...89B
https://doi.org/10.1051/0004-6361/201425571
http://adsabs.harvard.edu/abs/2015A&amp;A...582A..89C
http://arxiv.org/abs/astro-ph/0405087
https://doi.org/10.1051/0004-6361/201731152
http://adsabs.harvard.edu/abs/2017A&amp;A...605L...9C
https://doi.org/10.1086/588487
http://adsabs.harvard.edu/abs/2008PASP..120..531C
https://doi.org/10.1088/2041-8205/777/1/L6
http://adsabs.harvard.edu/abs/2013ApJ...777L...6C
http://adsabs.harvard.edu/abs/2013ApJ...777L...6C
https://doi.org/10.1088/2041-8205/760/2/L32
http://adsabs.harvard.edu/abs/2012ApJ...760L..32C
https://doi.org/10.3847/2041-8205/819/1/L1
http://adsabs.harvard.edu/abs/2016ApJ...819L...1D
https://doi.org/10.3847/1538-4357/835/2/146
http://adsabs.harvard.edu/abs/2017ApJ...835..146D
http://adsabs.harvard.edu/abs/1998grwa.conf..180F
http://pyklip.readthedocs.io/en/latest/
http://www.astropy.org
https://matplotlib.org

THE ASTRONOMICAL JOURNAL, 156:196 (16pp), 2018 November

Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, arXiv:1804.
09365

Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, A&A, 595, Al

Galicher, R., Marois, C., Macintosh, B., et al. 2016, A&A, 594, A63

Hardy, A., Schreiber, M. R., Parsons, S. G., et al. 2015, ApJL, 800, L24

Howard, A. W., Marcy, G. W., Fischer, D. A, et al. 2014, ApJ, 794, 51

Hunter, J. D. 2007, CSE, 9, 90

Janson, M., Carson, J. C., Lafreniere, D., et al. 2012, ApJ, 747, 116

Jeffreys, H. 1961, Theory of Probability (Oxford: Oxford Univ. Press)

Jensen-Clem, R., Mawet, D., Gomez Gonzalez, C. A., et al. 2018, AJ, 155, 19

Joergens, V., Janson, M., & Miiller, A. 2012, A&A, 537, Al3

Kalas, P., Graham, J. R., Chiang, E., et al. 2008, Sci, 322, 1345

Kass, R. E., & Raftery, A. E. 1995, J. Am. Stat. Assoc., 90, 773

Kass, R. E., & Wasserman, L. 1996, J. Am. Stat. Assoc., 91, 1343

Kenyon, S. J., Currie, T., & Bromley, B. C. 2014, AplJ, 786, 70

Lannier, J., Lagrange, A. M., Bonavita, M., et al. 2017, A&A, 603, A54

Macintosh, B., Graham, J. R., Barman, T., et al. 2015, Sci, 350, 64

Marengo, M., Stapelfeldt, K., Werner, M. W., et al. 2009, ApJ, 700, 1647

Marois, C., Doyon, R., Racine, R., & Nadeau, D. 2000, PASP, 112, 91

Marois, C., Lafreniere, D., Doyon, R., Macintosh, B., & Nadeau, D. 2006, ApJ,
641, 556

Marois, C., Lafreniere, D., Macintosh, B., & Doyon, R. 2008, ApJ, 673, 647

Mawet, D., Hirsch, L., Lee, E. ., et al. 2018, ApJ, in press (arXiv:1810.03794)

Mawet, D., Milli, J., Wahhaj, Z., et al. 2014, ApJ, 792, 97

Mesa, D., Zurlo, A., Milli, J., et al. 2017, MNRAS, 466, L118

Meshkat, T., Bailey, V., Rameau, J., et al. 2013, ApJL, 775, L40

Nielsen, E. L., & Close, L. M. 2010, ApJ, 717, 878

16

Ruffio et al.

Nielsen, E. L., De Rosa, R. J., Rameau, J., et al. 2017, AJ, 154, 218

Nielsen, E. L., De Rosa, R. J., Wang, J., et al. 2016, AJ, 152, 175

Perryman, M., Hartman, J., Bakos, G. A, & Lindegren, L. 2014, ApJ, 797, 14

Pueyo, L. 2016, ApJ, 824, 117

Rapson, V. A., Kastner, J. H., Millar-Blanchaer, M. A., & Dong, R. 2015,
AplL, 815, L26

Robert, C. P., Cornuet, J.-M., Marin, J.-M., & Pillai, N. S. 2011, PNAS, 108,
15112

Robin, A. C., Reylé, C., Derriere, S., & Picaud, S. 2003, A&A, 409, 523

Rover, C., Messenger, C., & Prix, R. 2011, arXiv:1103.2987

Ruane, G., Mawet, D., Kastner, J., et al. 2017, AJ, 154, 73

Ruffio, J.-B., Macintosh, B., Wang, J. J., et al. 2017, ApJ, 842, 14

Sivia, D. S., & Skilling, J. 2006, Data Analysis, A Bayesian Tutorial (Oxford:
Oxford Univ. Press)

Soummer, R., Pueyo, L., & Larkin, J. 2012, ApJL, 755, L28

Sparks, W. B., & Ford, H. C. 2002, ApJ, 578, 543

Vaccaro, T. R., Wilson, R. E., Van Hamme, W., & Terrell, D. 2015, ApJ,
810, 157

van Boekel, R., Henning, T., Menu, J., et al. 2017, ApJ, 837, 132

Vigan, A., Bonavita, M., Biller, B., et al. 2017, A&A, 603, A3

Wagner, K., Apai, D., Kasper, M., et al. 2016, Sci, 353, 673

Wahhaj, Z., Liu, M. C., Biller, B. A., et al. 2013, ApJ, 779, 80

Wang, J. J., Ruffio, J.-B., De Rosa, R. J., et al. 2015, pyKLIP: PSF Subtraction
for Exoplanets and Disks, Astrophysics Source Code Library, ascl:1506.001

Weinberger, A. J., Becklin, E. E., Schneider, G., et al. 2002, ApJ, 566, 409

Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868

Zhu, Z. 2015, ApJ, 799, 16


http://arxiv.org/abs/1804.09365
http://arxiv.org/abs/1804.09365
https://doi.org/10.1051/0004-6361/201629272
http://adsabs.harvard.edu/abs/2016A&amp;A...595A...1G
https://doi.org/10.1051/0004-6361/201527828
http://adsabs.harvard.edu/abs/2016A&amp;A...594A..63G
https://doi.org/10.1088/2041-8205/800/2/L24
http://adsabs.harvard.edu/abs/2015ApJ...800L..24H
https://doi.org/10.1088/0004-637X/794/1/51
http://adsabs.harvard.edu/abs/2014ApJ...794...51H
https://doi.org/10.1109/MCSE.2007.55
http://adsabs.harvard.edu/abs/2007CSE.....9...90H
https://doi.org/10.1088/0004-637X/747/2/116
http://adsabs.harvard.edu/abs/2012ApJ...747..116J
https://doi.org/10.3847/1538-3881/aa97e4
http://adsabs.harvard.edu/abs/2018AJ....155...19J
https://doi.org/10.1051/0004-6361/201118208
http://adsabs.harvard.edu/abs/2012A&amp;A...537A..13J
https://doi.org/10.1126/science.1166609
http://adsabs.harvard.edu/abs/2008Sci...322.1345K
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1080/01621459.1996.10477003
https://doi.org/10.1088/0004-637X/786/1/70
http://adsabs.harvard.edu/abs/2014ApJ...786...70K
https://doi.org/10.1051/0004-6361/201628677
http://adsabs.harvard.edu/abs/2017A&amp;A...603A..54L
https://doi.org/10.1126/science.aac5891
http://adsabs.harvard.edu/abs/2015Sci...350...64M
https://doi.org/10.1088/0004-637X/700/2/1647
http://adsabs.harvard.edu/abs/2009ApJ...700.1647M
https://doi.org/10.1086/316492
http://adsabs.harvard.edu/abs/2000PASP..112...91M
https://doi.org/10.1086/500401
http://adsabs.harvard.edu/abs/2006ApJ...641..556M
http://adsabs.harvard.edu/abs/2006ApJ...641..556M
https://doi.org/10.1086/523839
http://adsabs.harvard.edu/abs/2008ApJ...673..647M
http://arxiv.org/abs/1810.03794
https://doi.org/10.1088/0004-637X/792/2/97
http://adsabs.harvard.edu/abs/2014ApJ...792...97M
https://doi.org/10.1093/mnrasl/slw241
http://adsabs.harvard.edu/abs/2017MNRAS.466L.118M
https://doi.org/10.1088/2041-8205/775/2/L40
http://adsabs.harvard.edu/abs/2013ApJ...775L..40M
https://doi.org/10.1088/0004-637X/717/2/878
http://adsabs.harvard.edu/abs/2010ApJ...717..878N
https://doi.org/10.3847/1538-3881/aa8a69
http://adsabs.harvard.edu/abs/2017AJ....154..218N
https://doi.org/10.3847/0004-6256/152/6/175
http://adsabs.harvard.edu/abs/2016AJ....152..175N
https://doi.org/10.1088/0004-637X/797/1/14
http://adsabs.harvard.edu/abs/2014ApJ...797...14P
https://doi.org/10.3847/0004-637X/824/2/117
http://adsabs.harvard.edu/abs/2016ApJ...824..117P
https://doi.org/10.1088/2041-8205/815/2/L26
http://adsabs.harvard.edu/abs/2015ApJ...815L..26R
https://doi.org/10.1073/pnas.1102900108
http://adsabs.harvard.edu/abs/2011PNAS..10815112R
http://adsabs.harvard.edu/abs/2011PNAS..10815112R
https://doi.org/10.1051/0004-6361:20031117
http://adsabs.harvard.edu/abs/2003A&amp;A...409..523R
http://arxiv.org/abs/1103.2987
https://doi.org/10.3847/1538-3881/aa7b81
http://adsabs.harvard.edu/abs/2017AJ....154...73R
https://doi.org/10.3847/1538-4357/aa72dd
http://adsabs.harvard.edu/abs/2017ApJ...842...14R
https://doi.org/10.1088/2041-8205/755/2/L28
http://adsabs.harvard.edu/abs/2012ApJ...755L..28S
https://doi.org/10.1086/342401
http://adsabs.harvard.edu/abs/2002ApJ...578..543S
https://doi.org/10.1088/0004-637X/810/2/157
http://adsabs.harvard.edu/abs/2015ApJ...810..157V
http://adsabs.harvard.edu/abs/2015ApJ...810..157V
https://doi.org/10.3847/1538-4357/aa5d68
http://adsabs.harvard.edu/abs/2017ApJ...837..132V
https://doi.org/10.1051/0004-6361/201630133
http://adsabs.harvard.edu/abs/2017A&amp;A...603A...3V
https://doi.org/10.1126/science.aaf9671
http://adsabs.harvard.edu/abs/2016Sci...353..673W
https://doi.org/10.1088/0004-637X/779/1/80
http://adsabs.harvard.edu/abs/2013ApJ...779...80W
http://www.ascl.net/1506.001
https://doi.org/10.1086/338076
http://adsabs.harvard.edu/abs/2002ApJ...566..409W
https://doi.org/10.1088/0004-6256/140/6/1868
http://adsabs.harvard.edu/abs/2010AJ....140.1868W
https://doi.org/10.1088/0004-637X/799/1/16
http://adsabs.harvard.edu/abs/2015ApJ...799...16Z

	1. Introduction
	2. Companion at a Known Location
	2.1. Bayes’ Rule and Upper Limit
	2.2. Bayesian Model Comparison: Is It a Star?

	3. Companion on a Known Orbit
	3.1. Definition
	3.2. Effect of the Size of the Orbit
	3.3. Qualitative Effect of Non-Gaussianity and Correlation
	3.4. Constraining the Mass of a Planet in the TW Hya Protoplanetary Disk

	4. Combining RV and Direct Imaging Observations
	5. Conclusion
	References



