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1 Two-stage model equations

For reference in the derivations below, we provide the two-stage model, which is

derived in the main text

dH
dt
= P −

Qg

L
−

H
hgL

(
Q −Qg

)
(1)

dL
dt
=

1
hg

(
Q −Qg

)
(2)

Q = ν
Hα

Lγ
(3)

Qg = Ωhβg (4)

hg = −λb(L) (5)
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2 Fast and slow time scales

The two-stage model (equations 1-5) can be linearized into evolution equations for

fluctuations (H ′ and L′) about a stable equilibrium (H̄ and L̄)

dH ′

dt
= AH (H̄, L̄)H ′ + AL (H̄, L̄)L′ (6)

dL′

dt
= BH (H̄, L̄)H ′ + BL (H̄, L̄)L′, (7)

where the feedbacks between thickness and grounding line position are

AH (H̄, L̄) = Ωh̄β−1g L̄−1 − ν (α + 1) H̄α L̄−(γ+1) h̄−1g (8)

AL (H̄, L̄) = ΩL̄−2 h̄βg
[
1 + βλ b̄x L̄h̄−1g − H̄ h̄−1g − (β − 1)λ b̄x L̄h̄−2g H̄

]
− (9)

νH̄α L̄−(γ+2)
[
H̄ h̄−2g L̄λ b̄x − (γ + 1) H̄ h̄−1g

]
(10)

BH (H̄, L̄) = ναh̄−1g H̄−1 (11)

BL (H̄, L̄) = νH̄α L̄−γ
(
h̄−2g λ b̄x − γ h̄−1g L̄−1

)
+ (β − 1)Ωh̄β−2g λ b̄x . (12)

At stable equilibrium, the interior and grounding zone flux balance each another: Q̄ = Q̄g .

Thus, we can simplify the above feedbacks to

AH (H̄, L̄) = −Q̄gαh̄−1g L̄−1 (13)

AL (H̄, L̄) = Q̄g L̄−2
[
1 + γH̄ h̄−1g + βλ b̄x L̄h̄−1g

(
1 − H̄ h̄−1g

)]
(14)

BH (H̄, L̄) = Q̄gαH̄−1 h̄−1g (15)

BL (H̄, L̄) = Q̄g h̄−1g
(
βλ b̄x h̄−1g − γ L̄−1

)
. (16)

Equations (6) and (7) can be combined into a second-order homogenous differential equa-

tion
d2L′

dt2
− (AH + BL )

dL′

dt
+ (AH BL − ALBH )L′ = 0. (17)

The solution to this differential equation is two damped exponential functions if the ex-

ponents are negative and real-valued. To find the exponents, we generally must solve the

corresponding characteristic quadratic equation

r2 − (AH + BL )r + (AH BL − ALBH ) = 0. (18)

We can take a critical shortcut by guessing (or checking numerically) that one root of this

quadratic will be much larger than the other. As Figure 3 in the main text shows, for pa-

rameter values that are plausible for actual glaciers, one root is generally at least an order

of magnitude larger than the other and both roots are real (i.e. there are no oscillatory
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solutions). Thus, we can solve for the roots of the characteristic equation using Vieta’s

formulas

r1 = AH + BL (19)

r2 =
AH BL − ALBH

AH + BL
. (20)

We can use these solutions to simplify and solve for the fast and slow time scales, which

are equivalent to r−11 and r−12 , respectively. As given in the main text, the two characteris-

tic response time scales are

TF =
L̄h̄g

Q̄ (α + γ)
−

h̄2g
Q̄g βλ b̄x

(21)

TS = −
H̄ h̄g L̄2

αTFQ̄

[
Q̄ +

(
βλbx L̄

hg

)
Q̄g

]−1
. (22)

When note that P̄L̄ = Q̄ = Q̄g at a stable equilibrium, we can simplify to

TF =
h̄g

P̄
*
,
α + γ −

βλ b̄x L̄
h̄g

+
-

−1

(23)

TS = −
H̄ h̄g

αTF P̄2ST
. (24)

3 Magnitude of glacier sensitivity to external forcing

We derive the sensitivity of marine-terminating glaciers to forcing by linearizing the

two-stage model about the stable equibrium glacier state (H̄ , L̄), and the time-averaged pa-

rameter values (e.g. P̄). We start by decomposing P (the spatially-averaged surface mass

balance) into time-averaged and perturbed components

P = P̄ + P′ (25)

which leads to linear equations for glacier state that include a perturbation in surface mass

balance

dH ′

dt
= AH (H̄, L̄)H ′ + AL (H̄, L̄)L′ + P′ (26)

dL′

dt
= BH (H̄, L̄)H ′ + BL (H̄, L̄)L′, (27)

which now includes the glacier response to perturbations in surface mass balance. Given a

perturbation in mass balance, we would like to calculate the resulting change in glacier

state that occurs after the glacier has transiently equilibrated and reached a new stable
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equilibrium. Or, in other words, we set dH ′

dt = 0 and dL′

dt = 0 in equations (26) and (27)

0 =
[
−Q̄gαh̄−1g L̄−1

]
H ′ + Q̄g L̄−2

[
1 + γH̄ h̄−1g + βλ b̄x L̄h̄−1g

(
1 − H̄ h̄−1g

)]
L′ + P′ (28)

0 =
[
Q̄gαH̄−1 h̄−1g

]
H ′ +

[
Q̄g h̄−1g

(
βλ b̄x h̄−1g − γ L̄−1

)]
L′. (29)

We solves this linear system of equations for fractional changes in glacier state, relative to

the stable equilibrium state:

H ′

H̄
=

1
αST

*
,

βλ b̄x L̄
h̄g

− γ+
-

P′

P̄
(30)

L′

L̄
= −

1
ST

P′

P̄
. (31)

We can also derive the glacier sensitivity to changes in observable parameters that

go into Ω. Taking the form of grounding line flux for a glacier strongly buttressed by an

ice shelf that primarily loses ice through calving,

Ω = (n/2)n (n + 1)−(n+1)
[
ρig

(
1 − λ−1

)]n
AgL−ns W n+1

s , (32)

We can take the same approach as above and linearize the two-stage model about a stable

equilibrium and time-averaged ice shelf length

dH ′

dt
= AH (H̄, L̄)H ′ + AL (H̄, L̄)L′ − nφ̄L̄−(n+1)

s h̄β−1g
*
,

H̄
L̄
−

h̄g

L̄
+
-

L′s (33)

dL′

dt
= BH (H̄, L̄)H ′ + BL (H̄, L̄)L′ + nφ̄L̄−(n+1)

s h̄β−1g L′s, (34)

where φ̄ = (n/2)n (n + 1)−(n+1)
[
ρig

(
1 − λ−1

)]n
AgW n+1

s , or all the parameters in equation

(32), except for the parameter being perturbed, Ls . We can now set the LHS to zero

0 = AH (H̄, L̄)H ′ + AL (H̄, L̄)L′ − nφ̄L̄−(n+1)
s h̄β−1g

*
,

H̄
L̄
−

h̄g

L̄
+
-

L′s (35)

0 = BH (H̄, L̄)H ′ + BL (H̄, L̄)L′ + nφ̄L̄−(n+1)
s h̄β−1g L′s, (36)

and solve for the the fractional glacier sensitivity to changes in the ice-shelf length (Ls)

H ′

H̄
= −

(γ + 1)n
αST

(
L′s
L̄s

)
(37)

L′

L̄
= −

n
ST

(
L′s
L̄s

)
. (38)

We also consider an ice shelf that strongly buttresses a glacier and loses mass en-

tirely through basal melting where

Ω = (n + 1)−
1

n+1
[
ρig

(
1 − λ−1

)] n
n+1 A

1
n+1
g Ws

(
−

ḃ
2

) n
n+1

. (39)
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Linearizing the two-stage model about a stable equilibrium and time-averaged basal melt

rate

dH ′

dt
= AH (H̄, L̄)H ′ + AL (H̄, L̄)L′ +

( n
n + 1

)
ψ̄ ¯̇b

1
n h̄β−1g

*
,

H̄
L̄
−

h̄g

L̄
+
-

ḃ′ (40)

dL′

dt
= BH (H̄, L̄)H ′ + BL (H̄, L̄)L′ +

( n
n + 1

)
ψ̄ ¯̇b

1
n h̄β−1g ḃ′, (41)

where ψ̄ = (n + 1)−
1

n+1
[
ρig

(
1 − λ−1

)] n
n+1 A

1
n+1
g Ws

(
− 1

2

) n
n+1 , or all the parameters in

equation (39), except for the parameter being perturbed, ḃ. We can now set the LHS to

zero

0 = AH (H̄, L̄)H ′ + AL (H̄, L̄)L′ +
( n

n + 1

)
ψ̄ ¯̇b

1
n h̄β−1g

*
,

H̄
L̄
−

h̄g

L̄
+
-

ḃ′ (42)

0 = BH (H̄, L̄)H ′ + BL (H̄, L̄)L′ +
( n

n + 1

)
ψ̄ ¯̇b

1
n h̄β−1g ḃ′, (43)

and solve for the the fractional glacier sensitivity to changes in the ice-shelf length (ḃ)

H ′

H̄
=

(γ + 1)n
α(n + 1)ST

(
ḃ′

¯̇b

)
(44)

L′

L̄
=

n
(n + 1)ST

(
ḃ′

¯̇b

)
. (45)

4 Transient glacier response to trend in external forcing

We define a linear trend in surface mass balance

P′(t) = Ṗt, (46)

where Ṗ is the time rate of change of surface mass balance, and t is the time (where the

onset time of the trend occurs at t = 0). We also assume that the glacier begins at stable

equilibrium

L′(t = 0) = 0 (47)

dL′

dt
����t=0
= 0. (48)

The linearized two-stage model equations with a trend in surface mass balance (equations

26-27 where P′ is defined as in equation 46) can be combined to form a second-order

nonhomogenous differential equation for grounding-line position

d2L′

dt2
− (AH + BL )

dL′

dt
+ (AH BL − ALBH )L′ = BH Ṗt, (49)

which can be rewritten

d2L′

dt2
= −T−1F

dL′

dt
− T−1F T−1S L′ − T−1F T−1S LP Ṗt, (50)
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where

LP =
d

dP′

(
−

L̄P′

ST P̄

)
= −

L̄
ST P̄

(51)

is the grounding-line sensitivity to perturbations in surface mass balance (which is also

derived for various parameters in the last section). We can find a general time-dependent

solution to this equation using the method of undetermined coefficients

L′(t) = CFe−
t

TF + CSe−
t

TS + BH ṖT2
STF (TL + t), (52)

Using the initial conditions, we then find a particular solution

L′(t) = ṖLPTS

[
1
2

(1 − τ) e−
t

TF +
1
2

(1 + τ) e−
t

TS − 1 +
t

TS

]
, (53)

where

τ =
TS − 2TF(

T2
S
− 4TSTF

) 1
2

(54)

is a dimensionless parameter that defines the relative importance of the fast and slow time

scales to the magnitude of the response. This solution is valid only when TS > 4TF .

5 Expected glacier variability for noisy external forcing

The linearized two-stage model equations with included perturbations in a forcing

parameter (equations 26-27) can be combined to form a second-order ordinary differential

equation for grounding-line position

d2L′

dt2
= −T−1F

dL′

dt
− T−1F T−1S L′ − T−1F T−1S LPP′, (55)

with coefficients related to the slow and fast time scales, and where P′ represents noise in

surface mass balance (this can be formulated for additive noise in other forcing parameters

as well). Discretizing using the forward Euler method in time, this leads to a second-order

autoregressive (AR(2)) model for the grounding-line position

Lt = φ1Lt−∆t + φ2Lt−2∆t − T−1F T−1S ∆t2LPP′, (56)

where the coefficients are given by

φ1 = 2 − T−1F ∆t − T−1F T−1S ∆t2 (57)

φ2 = −1 + T−1F ∆t, (58)

where ∆t is the discrete time step length at which the noisy process occurs (throughout

this study, we take ∆t = 1 year). Writing the two-stage model in the form of an autore-
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gressive process allows us to leverage existing statistical characterizations of low-order au-

toregressive models. Box et al. [2015] gives the variance of a second-order autoregressive

process (σ2
L) forced by white additive noise (i.e. no interannual persistence or memory) as

σ2
L =

1 − φ2
1 + φ2

B2
Hσ

2
P

(1 − φ2)2 − φ21
, (59)

where σ2
P is the variance of the white noise forcing process (surface mass balance in this

case). This gives

σ2
L =

2 − T−1F ∆t

−T−1F ∆t

B2
Hσ

2
P(

2 − T−1F ∆t
)2
−

(
2 − T−1F ∆t − T−1F T−1

S
∆t2

)2 , (60)

Expanding, and then assuming that the timescale of stochastic perturbations is small com-

pared to the fast time scale of grounding-line response, ∆t << TF , we can simplify and

derive the variance of the grounding-line position (σ2
L)

σ2
L =

TS∆t
2



αTF P̄L̄
H̄ h̄g



2

σ2
P . (61)
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