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 1069	

Fig. 7. Histogram of alpha-ERD responses over all participants (N=16) in the DecUp 1070	
experiment. The panels show the histogram of individual responses for each condition. No 1071	
significant magnetosensory response was observed in any condition, and no clear difference is 1072	
apparent between the three distributions. 1073	

 1074	

 1075	

 1076	
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 1077	

Fig. 8. Histogram of alpha-ERD responses over all participants (N=18) in the Sham Declination 1078	
experiment. The panels show the histogram of individual responses for each condition. No 1079	
significant magnetosensory response was observed in any condition, and no clear difference is 1080	
apparent between the three distributions. 1081	

 1082	

  1083	
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 Three statistical tests were performed using average alpha-ERD: (1) Inc ANOVA 1084	

(N=29), (2) DecDn ANOVA (N=26), (3) DecDn/DecUp ANOVA (N=16).  For the inclination 1085	

experiment, data were collected in Active and Sham modes for 29 of 34 participants.  Due to 1086	

time limitations within EEG sessions, sham data could not be collected for every participant, so 1087	

those participants without inclination sham data were excluded.  A two-way repeated-measures 1088	

ANOVA tested for the effects of inclination rotation (SWEEP vs. FIXED) and magnetic 1089	

stimulation (Active vs. Sham) on alpha-ERD.  Post-hoc testing using the Tukey-Kramer method 1090	

compared four conditions (Active-SWEEP, Active-FIXED, Sham-SWEEP and Sham-FIXED) 1091	

for significant differences (Tukey, 1949). 1092	

For the DecDn experiment, data were collected from 26 participants in Active mode.  A 1093	

one-way repeated-measures ANOVA tested for the effect of declination rotation (DecDn.CCW 1094	

vs. DecDn.CW vs. DecDn.FIXED) with post-hoc testing to compare these three conditions.  For 1095	

a subset of participants (N=16 of 26), data was collected from both DecDn and DecUp 1096	

experiments. The DecUp experiments were introduced in a later group to evaluate the quantum 1097	

compass mechanism of magnetosensory transduction, as well as in a strongly-responding 1098	

individual to test the less probable induction hypothesis, as shown in Video 1.  For tests of the 1099	

quantum compass hypothesis, we used the DecDn/DecUp dataset. A two-way repeated-measures 1100	

ANOVA tested for the effects of declination rotation (DecDn.CCW.N vs. DecDn.CW.N vs. 1101	

DecUp.CCW.S vs. DecUp.CW.S vs. DecDn.FIXED.N vs. DecUp.FIXED.S) and inclination 1102	

direction (Inc.DN.N vs Inc.UP.S) on alpha-ERD; data from another strongly-responding 1103	

individual is shown in Video 2.  Post-hoc testing compared six conditions (DecDn.CCW.N, 1104	

DecDn.CW.N, DecDn.FIXED.N, DecUp.CCW.S, DecUp.CW.S and DecUp.FIXED.S).  1105	

Within each group, certain participants responded strongly with large alpha-ERD while 1106	

others lacked any response to the same rotations.  To establish whether a response was consistent 1107	

and repeatable, we tested individual datasets for significant post-stimulus power changes in 1108	

time/frequency maps between 0 to +2 or +3 s post-stimulus and 1-100 Hz.  For each dataset, 1109	

1000 permutations of condition labels over trials created a null distribution of post-stimulus 1110	

power changes at each time/frequency point.  The original time/frequency maps were compared 1111	

with the null distributions to compute a p-value at each point.  False discovery rate correction for 1112	

multiple comparisons was applied to highlight significant post-stimulus power changes at the 1113	

p<0.05 and p<0.01 statistical thresholds (Benjamini & Hochberg, 1995). Fig. 9 shows repeated 1114	
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runs (Run #1 and Run #2) of two different participants (A and B) in the DecDn experiment. The 1115	

outlined clusters indicate significant power changes following magnetic field rotation. In each 1116	

case, the significant clusters are similar in timing and bandwidth across runs up to six months 1117	

apart. 1118	

 1119	

 1120	
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Fig. 9. Repeated results from two strongly-responding participants. In both (A) and (B), 1146	

participants were tested weeks or months apart under the same conditions (Run #1 and Run #2). 1147	

Time/frequency maps show similar timing and bandwidth of significant alpha power changes 1148	

(blue clusters in outlines) after counterclockwise rotation, while activity outside the alpha-ERD 1149	

response, and activity in other conditions is inconsistent across runs. Black/white outlines 1150	

indicate significance at the p<0.05 and p<0.01 thresholds. The participant in (A) had an alpha 1151	

peak frequency at <9 Hz and a lower-frequency alpha-ERD response. The participant in (B) had 1152	

an alpha peak frequency >11 Hz and a higher-frequency alpha-ERD response. Minor power 1153	

fluctuations in the other conditions or in different frequency bands were not repeated across runs, 1154	

indicating that only the alpha-ERD was a repeatable signature of magnetosensory processing. 1155	

 1156	
Video 1.    Test of the electrical induction mechanism of magnetoreception using data from a 1157	
participant with a strong, repeatable alpha-ERD magnetosensory response. Bottom row shows 1158	
the DecDn.CCW.N, DecDn.CW.N and DecDn.FIXED.N conditions (64 trials per condition) of 1159	
the DecDn.N experiment; top row shows the corresponding conditions for the DecUp.N 1160	
experiment. Scalp topography changes from –0.25 s pre-stimulus to +1 s post-stimulus. The 1161	
CCW rotation of a downwards-directed field (DecDn.CCW.N) caused a strong, repeatable alpha-1162	
ERD (lower left panel, p<0.01 at Fz); weak alpha power fluctuations observed in other 1163	
conditions (DecDn.CW.N, DecDn.FIXED.N, DecUp.CW.N, DecUp.CCW.N and 1164	
DecUp.FIXED.N) were not consistent across multiple runs of the same experiment. If the 1165	
magnetoreception mechanism is based on electrical induction, the same response should occur in 1166	
conditions with identical ∂B/∂t (DecDn.CCW.N and DecUp.CCW.N), but the response was 1167	
observed only in one of these conditions: a result that contradicts the predictions of the electrical 1168	
induction hypothesis. 1169	
 1170	

Video 2.   Test of the quantum compass mechanism of magnetoreception using data from 1171	
another strongly-responding participant. Bottom vs. top rows compare the DecDn.N and 1172	
DecUp.S experiments in the CCW, CW and FIXED conditions (DecDn.CCW.N, DecDn.CW.N, 1173	
DecDn.FIXED.N, DecUp.CW.S, DecUp.CCW.S and DecUp.FIXED.S with 100 trials per 1174	
condition). The quantum compass is not sensitive to magnetic field polarity, so magnetosensory 1175	
responses should be identical for the DecDn.CCW.N and DecUp.CCW.S rotations sharing the 1176	
same axis. Our results contradict this prediction. A significant, repeatable alpha-ERD is only 1177	
observed in the DecDn.CCW.N condition (lower left panel, p<0.01 at Fz), with no strong, 1178	
consistent effects in the DecUp.CCW.S condition (top left panel) or any other condition. 1179	
 1180	

 1181	

 1182	

 1183	

Extended Discussion 1184	
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 1185	

6. Controlling for Magnetomechanical Artifacts.  A question that arises in all studies of 1186	

human perception is whether confounding artifacts in the experimental system produced the 1187	

observed effects.  The Sham experiments using double-wrapped, bonded coil systems controlled 1188	

by remote computers and power supplies indicate that obvious artifacts such as resistive 1189	

warming of the wires or magnetomechanical vibrations between adjacent wires are not 1190	

responsible.  In Active mode, however, magnetic fields produced by the coils interact with each 1191	

other with maximum torques occurring when the moment u of one coil set is orthogonal to the 1192	

field B of another (torque = u x B).  Hence, small torques on the coils might produce transient, 1193	

sub-aural motion cues.  Participants might detect these cues subconsciously even though the coils 1194	

are anchored to the Faraday cage at many points; the chair and floor assemblies are mechanically 1195	

isolated from the coils; the experiments are run in total darkness, and the effective frequencies of 1196	

change are all below 5 Hz and acting for only 0.1 second.  No experimenters or participants ever 1197	

claimed to perceive field rotations consciously even when the cage was illuminated and efforts 1198	

were made to consciously detect the field rotations.  Furthermore, the symmetry of the field 1199	

rotations and the asymmetric nature of the results both argue strongly against this type of artifact.  1200	

During the declination experiments, for example, the vertical component of the magnetic field is 1201	

held constant while a constant-magnitude horizontal component is rotated 90˚ via the N/S and 1202	

E/W coil axes.  Hence, the torque pattern produced by DecDn.CCW.N rotations should be 1203	

identical to that of the DecUp.CW.S rotations, yet these conditions yielded dramatically different 1204	

results.  We conclude that magnetomechanical artifacts are not responsible for the observed 1205	

responses. 1206	

 1207	

7. Testing for Artifacts or Perception from Electrical Induction.  Another source of artifacts 1208	

might be electrical eddy currents induced during field sweeps that might stimulate subsequent 1209	

EEG brain activity in the head or perhaps in the skin or scalp adjacent to EEG sensors.  Such 1210	

artifacts would be hard to distinguish from a magnetoreceptive structure based on electrical 1211	

induction. For example, the alpha-ERD effects might arise via some form of voltage-sensitive 1212	

receptor in the scalp subconsciously activating sensory neurons and transmitting information to 1213	

the brain for further processing.  However, for any such electrical induction mechanism the 1214	
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Maxwell-Faraday law holds that the induced electric field E is related to the magnetic field 1215	

vector, B(t), by: 1216	

 1217	

∇ × E = -∂B(t)/∂t (1). 1218	

 1219	

During a declination rotation, the field vector B(t) is given by:  B(t) = BV + BH(t), where BV is 1220	

the constant vertical field component, t is time, BH(t) is the rotating horizontal component, and 1221	

the quantities in bold are vectors.  Because the derivative of a constant is zero, the static vertical 1222	

vector BV has no effect, and the induced electrical effect depends only on the horizontally-1223	

rotating vector, BH(t): 1224	

 1225	

∇ × E = -∂BV/∂t - ∂BH(t)/∂t = - ∂BH(t)/∂t (2). 1226	

 1227	

As noted in the main text, Video 1 shows results for the induction test shown in Fig. 2C 1228	

for which the sweeps of the horizontal component are identical, going along a 90˚ arc between 1229	

NE and NW (DecDn.CCW.N and DecUp.CCW.N).  The two trials differ only by the direction of 1230	

the static vertical vector, BV, which is held in the downwards orientation for the bottom row of 1231	

Video 1 and upwards in the top row.  As only the DecDn.CCW.N sweep elicits alpha-ERD, and 1232	

the DecUp.CCW.N sweep does not elicit alpha-ERD, electrical induction cannot be the 1233	

mechanism for this effect either via some artifact of the EEG electrodes or an intrinsic 1234	

anatomical structure.   1235	

We also ran additional control experiments on “EEG phantoms,” which allow us to 1236	

isolate the contribution of environmental noise and equipment artifacts.  Typical setups range 1237	

from simple resistor circuits to fresh human cadavers.  We performed measurements on two 1238	

commonly-used EEG phantoms: a bucket of saline, and a cantaloupe.  From these controls, we 1239	

isolated the electrical effects induced by magnetic field rotations.  The induced effects were 1240	

similar to the artifact observed in human participants during the 100 ms magnetic stimulation 1241	

interval.  In cantaloupe and in the water-bucket controls, no alpha-ERD responses were observed 1242	

in Active or Sham modes suggesting that a brain is required to produce a magnetosensory 1243	

response downstream of any induction artifacts in the EEG signal. 1244	

 1245	
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8.  Non-polar magnetoreceptivity (attributed to birds) cannot explain the present data.   1246	

Birds and some other animals display a magnetic inclination compass that identifies the 1247	

steepest angle of magnetic field dip with respect to gravity (R. Wiltschko & W. Wiltschko, 1995; 1248	

W. Wiltschko, 1972), and as noted earlier this compass can operate at dips as shallow as 5˚ from 1249	

horizontal (Schwarze et al., 2016).  This allows a bird to identify the direction of the closest pole 1250	

(North or South) without knowing the polarity of the magnetic field.  If a bird knows it is in the 1251	

(e.g.) Northern Hemisphere, it can use this maximum dip to identify the direction of geographic 1252	

North.  However, this mechanism could not distinguish between the antipodal (vector opposite) 1253	

fields used in our biophysical test of polarity sensitivity.  If we create a field with magnetic north 1254	

down and to the front, the bird would correctly identify North as forward.  However, if we point 1255	

magnetic north up and to the back, the bird would still identify North as forward because that is 1256	

the direction of maximum dip. 1257	

Because magnetism and gravity are distinct, non-interacting forces of nature, the 1258	

observed behavior must arise from neural processing of sensory information from separate 1259	

transduction mechanisms (J. L. Kirschvink et al., 2010).  If polarity information is not present 1260	

initially from a magnetic transducer or lost in subsequent neural processing, it cannot be 1261	

recovered by adding information from other sensory modalities.  As an illustration, if we gave 1262	

our participants a compass with a needle that did not have its North tip marked, they could not 1263	

distinguish the polarity of an applied magnetic field even if we gave them a gravity pendulum or 1264	

any other non-magnetic sensor. 1265	

At present our experimental results in humans suggest the combination of a magnetic and 1266	

a positional cue.  However, we cannot tell if this positional cue is a reference frame using gravity 1267	

or one aligned with respect to the human body.  This could perhaps be addressed by modifying 1268	

the test chamber to allow the participant to rest in different orientations with respect to gravity. 1269	

 1270	

9. Sastre et al. EEG Study.  Our results perhaps shed light on a previous study attempting to 1271	

detect the presence of a low-frequency magnetic stimulus on human brainwaves, which found no 1272	

significant effects.  As part of a major initiative to investigate possible electromagnetic effects on 1273	

cancer by the US National Institute of Health and the Department of Energy during the 1990’s, 1274	

Sastre et al. (Sastre et al., 2002) analyzed EEG signals for power changes in several frequency 1275	

bands averaged over 4 s intervals before and after changes in the background magnetic field.  1276	
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However, they did not do the time/frequency analysis that we report here nor averaging of 1277	

repeated rotations over many trials; wavelet methods were not used as frequently at that time.  1278	

To test the impact of these differences in data analysis algorithms, we analyzed our data using 1279	

the techniques in Sastre et al.  These analyses did not reveal any significant differences in total or 1280	

band-specific power between any conditions. Thus, our results are consistent with previous 1281	

findings. 1282	

Other differences between our studies lie in the stimulation parameters.  In four of seven 1283	

conditions from Sastre et al. (A, B, C and D), the field intensities used (90 µT) were twice as 1284	

strong as the ambient magnetic field in Kansas City (45 µT) and were well above intensity 1285	

alterations known to cause birds to ignore geomagnetic cues (W. Wiltschko, 1972).  1286	

Additionally, Sastre et al. chose to use clockwise but not counterclockwise rotations (conditions 1287	

B and C).  In our study, rotating the declination clockwise did not yield statistically significant 1288	

effects although the reasons are not yet understood (Table 1). 1289	

 1290	
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