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Energetics in Martensites
Oscar P. Bruno

Applied Mathematics, 217-50, Caltech, Pasadena, CA 91125

Abstract
Martensitic transformations are shape-deforming phase transitions which can be induced in certain alloys as a result of
changes in the imposed strains, stresses or temperatures. The interest in these alloys, which undergo a shape-deforming
phase transition from a high temperature phase (austenite) to a low temperature phase ar, stems in part from
their applicability as elements in active structures. In this paper we focus on the energy transfers that accompany the
martensitic phase change. We discuss, in three concrete examples, the ways in which temperature, together with the
elastic and dissipated energies, determine the equilibria as well as the quasi-static dynamics in martensites. Thus, in we
consider the pseudoelastic hysteresis in shape-memory wires; our treatment draws from [7, 3]. In on the other hand, we
follow [4] and discuss equilibrium configurations in polycrystalline martensitic polycrystals. In finally, we present some
new theoretical computations for certain typical microstructural lengthscales, the twin widths, observed in single-crystalline
martensite twinning.

1 Shape-Memory Wires

In this section we deal with the dynamics ofshape-memory materials in one ofits simplest settings, i.e., that ofone dimensional
wires under quasi-static deformations. The present discussion draws from recent experimental and theoretical work on NiTi
wires [3, 7], indicating that the pseudoelastic hysteresis in their strain—stress curves increases when the imposed strain rate is
increased. Our model of these wires combines nonlinear thermoelasticity with a problem of heat flow determined by latent
heat release at a two—phase interface. This model provides a law for the motion of a martensite—austenite interface which
results, in particular, in excellent predictions of a variety of experimental results, as explained at the end of this section.

A number of models have been proposed for the study of the phenomenon of hysteresis in tension experiments involving
SMA's. The experimental results mentioned above motivated us [7] to introduce yet another model of thermoelasticity. Our
model, which is very simple indeed, can predict quantitatively experimental results such as those mentioned above. Points
of contact as well as some essential differences between our approach and others are discussed in [2]. In this section a brief
review of our approach is presented.

Our model is based on a set of four assumptions which have been discussed extensively, cf. [2, 3, 7]. These assumptions
imply the following set of equations for the temperature profile O(x, t) and the interface s =s(t) in a wire of length L0:

pcOt=k8—(O—Oo), O<x<, (1)

[ke](s(t),t) = _l*.(t) (2)

and
I = (OM(O(8(t),t)) 0hYst) for o,
1 1°' — O!M(O(5(t), t)) � cyhyst for a = 0,

with initial and boundary conditions given by

9(x,O) =Oo, s(0) = 0 and 9(O,t) = e5(,t) = 0. (4)
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In equations (1) and (2), p is the mass density of the unstrained wire, c its specific heat, and k, h and r its thermal
conductivity, coefficient of convection of heat and radius, respectively. Equations (1)-(4) reflect the experimental observation,
mentioned above, of two interfaces, one starting from each end. Indeed, symmetry considerations on a wire of length L0 show
that we must have 9 (, t) = 0 at all times. The Maxwell stress oM may safely be assumed to be a known linear function
of temperature (which can be determined easily from very slow experiments), and the stress a, finally, is determined by the
overall elongation and the position s(t) of the interface.

Figure 1: Theoretical predictions for a strain-controlled experiment of elongation of a NiTi wire of length L0 = 13 cm in air
at three elongation rates L0: Solid curves, 50 mm/mm; Dashed curves, 5 mm/mm; Dot-dashed curves, 0.5 mm/mm. Left.-
Strain stress curves. Right.- Temperature proffies corresponding to the half transformation time 2 .s(t) = 6.5 cm.
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Figure 2: Same as in Figure 1, but for the experiments in water.

These equations may be used to model both strain controlled and stress controlled configurations. For sufficiently long
wires it is possible to derive, from equations (1)-(4), an analytic expression relating the hysteresis width as a function of the
imposed strain or stress rates:

l*v = ooi/(pcv)2 + 8hk/r; (5)

see [3]. Table 1 gives a comparison of theoretical and experimental results. The second and third columns in this table
correspond to numerical simulations of wires of length L with L =13 cm and L = 78 cm. Inspection of these figures shows
that the L = 13 cm wire used in the experiments is already in the asymptotic domain of validity of equation (5). The
experimental results are those of [7]; the agreement between theory and experiment falls within the experimental error.
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L0 L = 13 cm L = 78 cm Eqn. (5) Expt.
0.5 in water 350.4 350.4 350.4 345-355
5 in water 354.5 354.5 354.5 350-360

50 in water 391.2 391.3 391.2 370-400
0.5 in air 362-364 361.1 361.1 355-375
5 in air 415-425 425.1 425.0 420-440
50 in air 451.1 451.3 450.9 450-470

Table 1: Strain-controlled experiments. Comparison between the asymptotic stresses (in MPa) obtained from numerical solutions,
from equation (5) and from experiment for various imposed elongation rates Loé (in mm/mm).

In Figures 1 and 2 we show strain-stress curves and the temperature proffles predicted by our theory. These curves were
obtained by numerical integration of equations (1)-(4) by the method of lines [8]; comparison with the experimental curves
of [7] again shows good agreement. The temperature profiles shown on the right side of the Figures are snapshots taken at
the time for which half of the wire had transformed into martensite.

Further confirmation of our theory has been given by the experiments of Shaw and Kyriakides [9} and Shield, Leo and
Grebner [10]. The first of these papers shows a variety of experiments for wires in water and in air, with temperature
measurements in close agreement with those given above. The experiments of [10], finally, test the validity of the theory in
a stress controlled configuration. For this case our theory predicts the existence of a critical stress above which the speed
of transformation is infinite. This prediction was confirmed and, further, very good agreement of predicted and observed
stresses and strain rates was found.

2 Polycrystals and Martensitic Transformations

The patterns of transformation in martensitic polycrystals result as a compromise between two factors. On one hand they
recognize a tendency which, in order to avoid conflicts with the imposed boundary conditions, would have the grains transform
with an average transformation strain as close as possible to the applied strain. A second tendency, on the other hand, would
have the grains not transform at all in order to avoid increases in energy resulting from mismatch between the transformation
strains of neighboring grains. In we discuss numerical calculations and rigorous bounds for overall elastic energies in
martensitic polycrystals. Such overall energies should prove useful in a finite element studies of macroscopic phenomena,
such as the occurrence of two (macroscopic) interfaces, mentioned in the previous section, which occur during the elongation
of polycrystalline NiTi wires.

2.1 Elastic Energy

We consider a polycrystal consisting of disjoint crystallites G' , G2 . . . , covering all space, each one of which can undergo a
shape-deforming phase transition. Each grain in this martensitic polycrystal can undergo a phase deforming phase transition
and it transforms, under given solicitations, in order to reduce the total elastic energy in the structure. To characterize the
possible modes of transformation of the various grains it suffices to prescribe the set S of all strains that may arise as a
result of transformation of a fixed single crystal whose axes are, say, parallel to the coordinate axes. The set of admissible
transformation strains in a given grain is given, then, by conjugation of the set S by the rotation matrix associated with
its crystallographic orientation and restriction to In a two dimensional case, for example, calling

Q(O' [ cos(9) sin(9) 1'
—sin(O) cos(8) j

the planar rotation of angle 9, the set of admissible transformation strains in the grain G() is given by

= (Qt(o)sQ(o)); (6)
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see [4] for a more detailed mathematical description of random polycrystals.

In this paper we make the simplest assumption that all the phases are isotropic with identical elastic constants; these will
be denoted by

LI Poisson Ratio and p = Shear Modulus.

Assume a homogeneous displacement
€jxj

is applied on the boundary of our body B. Further, let €T(x, w) be a given admissible assignment of transformation strains, and
call u = u(x) = u(x, 8, w) the displacement which results from both the boundary displacement and the set of transformation
strains eT(x, ö) = 6T() on the rescaled grains G'5 = In the homogenization limit lim0 the elastic energy
produced by a given distribution 6T of transformation strains under given boundary conditions is given by

w = WeT ?WT < cJ — e) + y(T) >B.

Here 7(T) is the free energy of the phase associated with the transformation strain T, and the bracket notation indicates
volume averages: - .

<f(x,5)>B=lim± I f(x,5)dx.
o-+o BJ JB

For definiteness, our present discussion is restricted to estimation of overall energies at the critical temperature at which the
free energies of Austenite and Martensite coincide. We thus take

(T) 0
for all phases T; the general case can be handled similarly.

The overall (or homogenized) energy E is defined by the minimum value of W over all admissible stationary distributions
of transformation strains. That is

E= inf W
TEA

where, calling Tfr) the value of fT on

A = {T : T is stationary and €T(n)(w) E S(w) for all n and all w},

see(6).

It was shown in [4] that W is given by

1 o o 0 T(av) 1 1 T(av)W = — oç, + f Cijkzuk,L(x,O)e dx
(7)

—j limoo >k,p J'G(k),5 €dx.
Here 0 superindices denote quantities associated with the imposed boundary conditions, 4) denotes the transformation
strain of the k-th grain, 6t) denotes the overall average of the transformation strains, and denotes the stress produced

by transformation of the p-th grain. Except for the stresses a, all quantities in (7) can be computed explicitly for a given
distribution of transformation strains. The stresses cr, on the other hand, can be obtained, from Eshelby's formula, by
integration, without need of solving a partial differential equation. It is thus seen that W is a quadratic form in the array of
transformation strains fT• The overall energy E associated with given boundary conditions results from W by minimization
in the allowable set A of transformation strains.
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2.2 Numerics and Bounds

The expression (7) can be used to derive rigorous upper bounds on the overall energy E. Alternatively, statistical optimization
methods such as simulated annealing can be used to minimize this expression numerically. A number of interesting conclusions
can be drawn by comparison of such bounds and numerical results. We refer to [4J for such considerations and complete details
on our approach. In what follows we comment briefly on the nature of our bounds, and we give examples demonstrating the
quality of our numerics.

In Figure 3 we present a comparison of numerical results and bounds. In this simplified example the polycrystal is
assumed to be a square array of circular grains in two dimensions. (See [4] for details, where a number of additional examples
including deviatoric and hydrostatic transformation strains may be found as well.) The "Taylor bound" mentioned in the
caption, is the upper bound that results by assumption of a hypothesis of constant strain, such as that one used by G. I.
Taylor in the context of polycrystaffine plasticity [11]. We note from the figure that, here, the Taylor's hypothesis may lead
to errors of the order of 50% . The quantity AE, finally, is the "Austenite Energy" , that is, the elastic energy that results in
the polycrystal under the same boundary conditions if none of the grains transforms to martensite.

Figure 3: Square array with 2% hydrostatic transformation strain. Left: uniaxial applied strain ; Right: hydrostatic
applied strain h°. Upper curve: AE; Middle curve: Taylor bound; Lower curve: UG bound; Diamonds: numerical results.

3 Lenghtscales

A fundamental element in the development of the crystallographic theory of martensite was the consideration of a planar
surface, the habit plane, which separates twinned martensite from untransformed austenite in certain single crystals, cf. [12,
p. 170] and [13, p. 1505]. Such configurations certainly do not constitute the only fashion in which austenite and martensite
may coexist: a variety of regular as well as irregular patterns generally occur. But habit-plane morphologies are indeed
observed in carefully monitored experiments, as demonstrated by a number of compelling micrographs; see [12, p. 82], [1].

Here we follow [13, p. 1505] in their consideration of such especially simple configurations. Our focus is on elasticity
and dissipation of elastic energy into other mechanical observables. We present a theory which, based on the existence
of the simple patterns mentioned above, attributes the finiteness of the observed microstructures (which would be deemed
infinitesimal from an unqualified application of the crystallographic theory) not to competition between elastic and surface
energies but, instead, to an interplay between elasticity and energy dissipation. The resulting computations, presented in

show quantitative agreement with the observed twin sizes.
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3.1 Elasticity

Martensitic transformations give rise to a number of martensite variants, whose associated deformations are characterized by
a finite set T of constant distortions T = {rT(1) rT(n)}. The tensors FT(k) are defined by

ODè _

where I is the identity tensor and where D is the homogeneous deformation associated with transformation into the i-th
variant. Note that, with this convention, rT(k) o would indicate null deformation. Also, the tensors pT r need not be
symmetric; their symmetric parts equal the corresponding Bain strains 6T:

?; = (r +r).
As pointed out in [13, p.l5ll}, the set T must be invariant under conjugation by rotations in the symmetry group of the
parent phase.

In a general configuration, the transformation distortions vary in space, and the spatial distribution of such quantities
within the body is given by a tensor valued function yT #yT(r), r =(x,y, z). The actual transformation distortion yT(r) at
a given point in the material is not necessarily given by an element of T, since the phase transition may give rise to relative
rotations between the various parts of the body [13]. Further, the true deformation at a point r in the material is generally
not equal to 7T(r), since additional (small) elastic deformations occur as a result of transformation of the various parts of
the body. Thus, the true displacement vector u =u(r) at a point r in the material results as a small elastic deformation that
further changes the shape of the material element around point r after it has undergone a distortion of the form

'y(r) =
for some k and some rotation matrix R. The overall deformation vector D is given by D =D(r) = r + u(r).

As we discuss configurations which consist of a planar interface separating austenite on one hand, and fine alternating
layers of martensite on the other, we will find it convenient to use coordinates (x, y, z) with the (x, y) coordinate plane
orthogonal to both the inter-twin planes and the twin-austenite interface. In such coordinate system the transformation
distortions yT are independent of the z variable

7T

Assuming, further, that the x axis coincides with the twin-austenite interface, our three dimensional x-periodic configuration
is described by Figure 4: the plane y = 0 separates the austenite y > 0 and the twinned martensite y < 0 and the z axis is
perpendicular to the plane of the figure. The distortion yT vanishes for y> 0, and it is constant and equal to a rotation of
an element of T in each one of the twin bands in the region y <0.

Clearly, the stress u(r) at point r in the material vanishes if Vu(r) =7T(r). Thus, for the small elastic deformations that
the austenite and the martensite can undergo without additional phase change, it is reasonable to assume a linearly elastic
law

o3(r) = Ckz(r)(Okuj(r) —

where Ckl (r) is the stiffness tensor of the phase at point r. In view of the relation Cjikl =C2zk and calling

= yjj + 'yjj)

we also have
cr(r) = — €(r)). (8)

Our subsequent analysis assumes isotropic elasticity and identical elastic constants for the austenite and martensite phases,
with Lamé constants

A and t,

where jz is the shear modulus and where, denoting by , the bulk modulus, A is given by i =A + p.
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y

Let us now introduce a transformation displacement uT which satisfies

T_ Tui,j — (9)

and it is continuous outside the interface y =0. We take uT = 0 for y > 0. To define uT for y � 0 we note that equations (9)
admit a unique solution up to an arbitrary constant. Indeed, on each martensite band we must have

u2T = + const.,

and, in view of the compatibility conditions implied by the crystallographic theory of martensite, it is clear that constants
may be chosen to make up a function uT which is continuous in the region y 0 and periodic, of period d, in the xdirection;
generically, however, uT is discontinuous at y = 0. By periodicity, the vector g(x) = uT(x, 01, g = (gl,g2,g3) admits a
Fourier series expansion

with vector coefficients,

and with

00

g(x) =
t=—00

/ 1 2 3\
91 =

2irt=

In an example below we will assume a simplified configuration in which both types of twins have the same width. In this
case the Fourier coefficients are given by

for a certain vector t. Note that in this case we have

((1)11)
91 = (t1,t2,t3)

irtot

Calling

our problem then becomes

I12 =99.-i = tjI2Ul)
— 1)12

4ii-1

= u — uT

20
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Figure 4: An Austenite-Martensite configuration
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with the boundary conditions

U iS everywhere continuous and [Cjk1 (r)i3k,lm] = 0 on y = 0.

Equivalently,
[i3] = g(x) and [C3k1(r)i3k,zn] =0.

It can be shown that, by consideration of stresses cry' corresponding to a problem of plane strain and a stress cra corre-
sponding to an anti-plane shear problem, the 3 x 3 system (8) can be reduced to a decoupled pair of scalar equations in the
plane.

For simplicity, we compute the elastic energy in the antiplane shear case only. Assuming transformation strains equal
in magnitude to those observed in experiment, we then use our antiplane-shear energy expression in a calculation of the
twin widths. Naturally, only order of magnitude predictions should be expected from this analysis. Complete results for the
general case will be presented elsewhere.

It is easy to check that, calling w =?3, in the antiplane-shear case under consideration we have Fourier expansions

w EK oo for y > 0
(10)

1 — E::_oo for y < 0.

The total elastic energy in the configuration of Figure 4 (per unit length in the x- and z-directions) is given by

1 °° d
w = dy f aj(€j —E)dy.

For our specific example this reduces to
pt2d ((1)L 1)2 11z_d ItI (

t=—oo

where t is the projection of the strain of transformation on the habit plane. The infinite sum in this expression equals
approximately 8.4, so that the energy is

0.068pt2d. (12)

Estimating t by a magnitude of the transformation strain, we find from [5] t 0.013. With regards to the elastic modulus,
we follow [5] and use p = 10(h1)

3.2 Twin widths

The calculation of the twin widths now proceeds from three main assumptions: 1) Energy dissipation is associated with the
formation of the inter-twin interfaces, and this is the only dissipative mechanism in the experiment; 2) The first occurrence
of an austenite-martensite interface is as indicated in Figure 5. That is, calling b the side of the square base in the tetragonal
bar of Figure 5, a fully formed austenite-martensite interface of length bv, and corresponding twins filling a triangular
region T, arise not as a propagation of a continuously moving interface, but, instead, as a single nucleation event. After
this nucleation event the austenite-martensite interface moves continuously (as observed experimentally). And, 3) The
forementioned triangular configuration is formed exactly when the excess energy obtained by cooling in the triangular region
reaches a value consistent with the formation of a austenite-martensite interface (which stores a certain amount of energy in
elasticity) as well as the formation of the inter-twin interfaces (which, we have postulated, involves dissipation).

We provide some justification for assumptions 1) and 2); assumption 3) appears quite natural but will not otherwise be
discussed. With regards to 1), clearly no dissipation occurs in the austenite region. If the main energy dissipation took
place at the twin-autenite interface, on the other hand, then such dissipation would diminish with diminishing twin widths,
and would be very small if the twin widths are small. Of course, this does not rule out the possibility that dissipation
takes place both at the austenite-martensite interface, and at the inter-twin interfaces. We think this possibility unlikely
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Figure 5: Twins within a bar

in the Indium-Thallium configurations of [5], in view of their small transformation strains. A better understanding in this
connection, however, will probably require further experimental investigations.

Assumption 2), on the other hand, is based on the following simple symmetry argument. If a small interface develops on
the left hand corner of the bar of Figure 5, then a corresponding interface should develop on the right hand corner as well. As
these interfaces grow they would intersect each other, and eventually produce an X-interface -which is crystallographically
admissible, and experimentally observed in some circumstances [5, 1]. In the bars considered in these experiments, however,
such X interfaces tend to occur in specimens which have been mishandled, or which have not been annealed properly. As
reported in [5, 1], in well annealed bars of dimensions of those used in these papers, X interfaces tend not to occur. Single
nucleation events involving regions substantially larger than the one of Figure 5 would probably not have gone unnoticed, on
the other, hand, an therefore our assumption 2) seems fairly well substantiated.

A calculation of the twin widths on the basis of these hypothesis follows easily, now, from the results of the previous
section. The energy W of the twin-austenite interface per unit length of interface and per unit length in the z direction
equals

W=Ad
with A = O.068pt2. The total length of twin-twin interfaces in Figure 5, on the other hand, is given by ,where s is the
length of the twin-austenite interface. It follows that the energy dissipated in the formation of this configuration can be
expressed in the form

Ed=Q
where Q is the total dissipated energy per unit length of twin-twin interface. Thus, using assumption 3), the configuration
of Figure 5 may not have been formed unless the triangular region T was cooled in such a way that an amount

E=Adsb+Q (13)

of excess energy was made available within T. The configuration will form as soon as the available energy in the triangular
region reaches a value equal to the minimum of equation (13) for all positive values of d. Differentiation shows that this
minimum is achieved when

d=Ed-, (14)
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or dT
V 2Ab

It follows that the minimum energy value is

(Notice, parenthetically, that the energy needed to form a small triangular region scales with s ,which is much larger than
the area s2/4 of the corresponding triangle, (and thus the energy contained in the triangle) for sufficiently small s. This
remark provides further support for our assumption 2) , in that it establishes that some triangular configuration must be
nucleated as a single event.)

These are our main results. We now evaluate the expression (14) for parameter values corresponding to the indium-
thallium system of [5].

From Figure 8 of [5, p. 1521] the hysteresis width equals 1.6 *iOr, so that the dissipative force equals 1.6 *iO*b2,
or equivalently, 1.6 * 106 * b2 . Half of the hysteresis force times the strain should give a reasonable estimate for the
dissipation per unit length of bar on the cooling transformation. Since from [5, p. 1520] the total elongation of the bar is
0.37%, the total dissipation per unit length of bar equals

0.8 * 106 0.37* 1O(_2)

Because the area of the triangular region equals , the dissipation involved in its formation equals one half the dissipation
involved in propagating the austenite-twin interface by an amount b. So, the dissipation involved in the formation of triangular
region equals

Ed 0.4 * 106 b32 * 0.37* 1O(_2)

Since s = j = iø" (cf. [5]), and using t = c = 0.013 and b = 0.5cm equation (14) gives

15
O.O68*j*t2' ( )

or
d=4.6pm, (16)

and the twin width is therefore equal to

= 2.3pm. (17)

Roughly, this value is in agreement with the experimental observation of [5], which gives a twin width of about 5pm.
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