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The behaviourofpassive tracer particles in capillary Poiseuille flow is in:vestiga.ted with 
regard to the residence time in short axial sections of length z, in which zla < Val D , 
where a is the capillary radius, V is the mean velocity and D the coefficient of 
molecular diffusion. ·while methods exist for calculating moments of the cross­
sectionally averaged axial concentration distribution as a. function oftime (e.g. Smith 
1982b), much le!;S is known about the distribution of residence time as a function of 
axial distance. An approximate theoretical solution for point sources in high­
Peclet-number flows reveals that the mean residence time (t(z)). which is asymptotic 
to zj Yo near the source, will then rise faster than zl Yo before c01werging to zj V [or 
large z . provided the source is not at the capillary wall. Yo is the advective velocity 
at the point of release. The variance (t2 (z)) is found to increase initially in proportion 
to z3 provided;.the source is not at the capillary wall or on the axis. A ~.fonte Carlo 
method based on the solution to the diffusion equation in the capillary-tube 
cross-section is developed to compute particle trajectories which are used to analyse 
both axial and residence-time distributions. The residence-time distribution is found 
to display significant changes in character as a function of axial position, for both 
point sources and a uniform flux of particles along the tube. 

1. Introduction 
·when passive tracer particles are introduced into Poiseuille flow. random lateral 

excursions caused by molecular diffusion coupled with the velocity profile cause an 
enhanced longitudinal dispersion. This phenomenon was first analysed by Ta.ylor 
(1953), who provided a complete description of the asymptotic, cross-sectionally 
averaged axial concentration distribution. Since that time, Taylor's analysis has been 
applied to a wide variety of fluid-flow circumstances (Taylor 1954; Elder 1959 ; 
Saffman 1962 ; Fischer 196i). Taylor's ( 1953) analysis requires a certain initialization 
t.ime t > a21 D, where a is the tube radius and D the molecular diffusivity , before his 
results may be applied. In some cases, for example blood flow in arteries, there is 
interest in what happens fort~ a 21 D (Chatwin 1916) . }fost analytical and numerical 
work for the near-field problem has analysed the behaviour oft.he spatial concentration 
distribution as a function of time. In this paper, we will consider the ntriation in 
concentration over time as a function of axial position. \Ve will limit our attention 
to small distances from the source, zla < Val D . where· Vis the mean \"elocity. 

The results to be presented are principally devoted to cases where longitudinal 
molecular diffusion may be neglected. It is well known that, when the Pee let number 
Pe = Vaj D is large relative to l , the longitudinal molecular diffusion is usually 
negligible. Chatwin (1976) shows for a source on the axis that if 

Dtla2 ~ Pe-i (l.l) 
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then longitudinal molecular diffusion is negligible. This relationship is developed 
through scaling a rguments which compare the amount of longitudina l spreading due 
to molecular diffusion versus differential advection. This reasoning may be extended 
for off-axis sources as follows. For a point source far from the axis and capillary wall . 
such that (DT)~ ~ a-r0 and (Dt)! ~ r0 , the velocity differential de..,·eloped due to 
radial diffusion over distances of order (Dt)~ is 

Ll V,...... Vr0 (Dt)i 
a a ' 

(1.2) 

where r0 is the radial location of the source. This leads to longitudinal spreading of 
order AV t, while the longitudinal spreading due to molecular diffusion is of order (Dt)!. 
For AV t ;;> (Dt)i we find 

(1.3) 

where 170 = r0 ja. Relation (1.3) also happens to be valid for a source at the wall, ·r0 = a. 
For sources far from the capillary wall, (Dt)! ~ a-r0 , we may scale t by z/ Vo, where 
Vo is the advective velocity at the source. For Poiseuille flow V0 is of order V( 1-17~) . 
Substituting into (1.1) fort we find 

zja ;;>Pet if 1J0 = 0. (1.4) 

For a source on the capillary wall, it is not possible to scale t by z/ Ji~ since Vo = 0. 
For this case we scale t by z/ AV, where AVis given in ( 1.2) using r0 = a; Csing this 
in (1.3) we find 

(1.5) 

For intermediate values of 17o the requirement on z may be constructed from (1.3), 
scaling t by z/ Vo to give 

z l-7J2 

-;;>--o , 
a 1Jo 

(1.6) 

which is valid if (l-170 ) 217g ;;> Pe-1 • Expressions (1.4)-(1.6) show when longitudinal 
molecular diffusion is negligible at a given distance z downstream of the source. 

Consider a point source which instantaneously injects a small volume of tracer into 
high-Peclet-number flow in a capillary tube. At an observation point downstream of 
the source, we are able to detect the cross-sectionally averaged concentration of tracer 
P(z0 b, t), where z0 b is the axial distance of the observation station from the source 
and tis the time since source injection. Assume z0 b/a to be sufficiently large such that 
longitudinal molecular diffusion may be neglected. The concentration distribution 
P(zob• t) defines the probability density that a tracer particle will be at z0 b at time 
t . In addition, P(zob• t) is the probability density for a tracer particle to spend a time 
tin residence with z ~ Zob· Suppose. for example, a r adioac tive subst ance is injected 
to irradiate a given length of the capillary tube. The residence-time distribution 
P(zob• t) would be needed to calculate the radiation dosage fo1· a given distance down­
stream. Another example may be a chemical rea ction which is desired to occur wi t hin 
a certain distance downstream of the source. In this case. a comparison of the residence 
time distribution with the reaction kine tics would be necessary. 

A difficulty arises when longitudina l molecula r diffus ion is not negligible. Although 
P(zob• t) is still defined, it is not the residence time distribution. Through molecular 
diffusion, it is poss ible for a pa rticle to mov·e upst rea m. A particle tha t has pa ssed 
the observation point zob • may diffuse upstream to .:: < .::0 0 a nd again contribute to 
l'i( zob• t) . The timet for this particle has not been spent entirely in the region z ~ :::ob• 

/ 



Shear di8per.~ion and re-'!idence time in capillary tubes 
.3 

000 

so P(z0 b , t) may not be considered a residence-time distribution in the sense given 
above. The difference in interpretation of P(z0 b , t) takes on more significance when 
one considers a continuous or intermittent source rather than an instantaneous 
source. If P(zob• t) may be considered a residence-time distribution. it is the same 
regardless of whether the source is instantaneous, intermittent or continuous. This 
is not true when P(zob• t) is considered the tracer concentration. 

Little work has been done to develop techniques for analysing P(z , t) as a 
residence-time distribution when zja ~ Pe . Tsai & Holley (1978) deri.,·e temporal 
moment equations in a manner analogous to the moment method developed by Aris 
(1956). Through a numerical solution of the moment equations, they compare spatial 
and temporal moments for a tracer-concentration distribution in open-channel flow. 
In this paper we derh-e approximate analytical expressions for 

(t(z)) = I 00 

tP(z, t) dt , 

(t2(z)) = I:o t 2P(z,t)dt-((t(z)))2 , 

which are derived under the condition that interaction between the tracer and the 
capillary wall are negligible. A ::VIonte Carlo simuiation of particle trajectories is 
developed to calculate moments of the residence time distribution and the full 
distribution P(z, t) . 

2. Governing equations 
The governing equation for the probability density of a particle's position in 

Poiseuille flow is the advective diffusion equation. which in standard cylindrical 
coordinates is 

aP aP (a2P c2P 1 aP 1 a2
:;) 

~t +u(r)~ = D ~+~+-~+-;; ::1()2 • 
v OZ uz orw r v T r- (j 

(2.1) 

The velocity profile is u( r) = 2 V( 1- r2 J a 2 ) , a is the tube radius, Vis the mean velocity 
and Dis the molecular diffusivity. Non-dimensionalizing (2.1). we find 

where 

aP aP 1 a2P c2P 1 aP 1 c2 P 
-at+ 2(1-1J

2
) oz = (Pe)2 cz2 + C1J 2 +~ C1J + 1J 2 082 ' 

• Dz 
z = Va2' 

• Dt 
t=-

2 ' a 

and Pe = Va/D is the Peclet number. 

(2.2) 

vVhen compared only with the axial distribution of the cross-sectionally averaged 
probability, (2.2) may be averaged over e. In addition, we will limit the analysis to 
flows with high Peclet numbers, so longitudinal molecular diffusion may be ignored. 
Equation (2.2) becomes 

where 

cP"' cP* c2 P* 1 cP* 
-+')(l-rJ2)- = --+--ai - az a,72 11 a17 • 

P* =- Pde. 1 f2" 
21t 0 

(:? .3) 

Equation 12.3) shows that the cross-sectionally a\'eraged pt·obability density is a 
function of z and i and the initial conditions. 
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·when advection dominates longitudinal transport, the main effect of random 
molecular motion on the axial position of particles is through the coupling of lateral 
diffusion with the velocity profile. Taylor (195a) successfully investigated the 
asymptotic (far-field) behaviour of a passive tracer's cross-sectionally averaged axial 
concentration distribution by focusing on the interaction between lateral diffusion 
and the velocity profile. Transforming to a coordinate system moving with the mean 
flow , Taylor (1953) showed that the axial mass transport is proportional to the axial 
concentration gradient, which leads to an effective advective diffusion equation for 
the mean flow. No such simple transport equation exists for near-field advective 
diffusion, though attempts have been made to derive one (Smith 1982a). Xumerical 
calculations for the near field (Gill & Ananthakrishnan 1967 ; Jayaraj & Subramanian 
1978) have shown complex behaviour for the cross-sectionally a'v·eraged axial 
concentration distribution, which indicates that a numerical solution may be 
necessary to calculate the entire distribution. It is possible, though, to derive exact 
expressions for the mean and variance of the axial dist ribution which are valid for 
all distances from the source. These may be derived by taking moments of (2.2) (Aris 
1956; Barton 1983), or by expanding the solution of (2.2) with orthogonal Hermite 
polynomials (Smith l982b). Perhaps the most direct method is to use a technique 
due to Saffman (1960), which has been applied in the present context by Chatwin 
(1977), who derived approximate expressions for the axial mean and .. -ariance when 
i ~ 1. 

3. Analy~is of averaged quantities 
Let y(r, t; r0 ) be the probability density for the radial position of a particle released 

at r = r0 , t =. 0. Then the mean position may be calculated from (Saffman 1960; 
Chatwin 1977) J.a 

( V(r)) = 
0 

u(r) y(r, r; r0 ) r dr, (3.1) 

(z(t)) = J: ( V(r)) dr (3.2) 

and the variance with respect to the mean (neglecting longitudinal molecular 
diffusion) 

( V(r) V(r')) =fa fa u(r) u(r') y(r, T-r'; r ')y(r', r'; r 0 ) rr' drdr' , 
0 0 . 

(3.3) 

(z2(t)) = 2 J: J: (V(r) V(r'))dr'dr-((z(t)))2
• (3.4) 

X ow y(r. t ; r 0 ) is the solution of the diffusion equation in a cir cle with an initial 'ring' 
source, i.e. 

ay = D (c2y +.! cy) 
ot cr2 r or ' 

with boundary and initial conditions 

ay 
- = 0 on ·r =a. cr 

1 
y(r, O: r 0 ) = -o(r-r0 ) , 

ro 

\Vhere o(r- ro) is the Dirac delta function. 

(3.5) 
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The solution for any initial axially symmetric .distribution is well known (Crank 
1956), and in this case gives 

y(r.t;r0)= ~. 1+ I: exp(-a\,Dt) 0 '~ 0 0 .v . 
'> { oo J (r.x ) J (r a: )} 

a- N-1 • .fij(aa.v) 
(3.6) 

where a.v is defined by J 1(aa.v) = 0, and J 0 and .11 are Bessel functions of order 0 and 
1. Vsing (3.6) and performing the integrals in (3.1)-(3.4), the mean and variance may 
be found to be (in dimensionless form) 

(z(t)) = i-8 ~ [1-exp ( -,B~i)] ~o(r//~v\, 
.V-1 N o N 

(3.7) 

_16 ~ {1-(1+P.vi)exp(-,8~t)}Jo(7Jo.B.vl 
3 N-1 fJ6NJo(,8.v) 

+ 128 ~ I: U:~ + f!v ~ Jo~7Jo.B.v) [ 1 ,8~ exp (-,8~!)- ,a;"' exp (- ,B;n t)J 
•'>-1 m+N (f!'m P':..v~v,8mJo(,8N) flm-,BN 

-64{ ~ [1-exp(-,8rvt)]J0 (7Jo/l.v)}
2

• (3 .8) 
N-1 f14..v.fo(,8.v) 

where ,BN = aaN. Both (3.7) and (3.8) are given in Smith (1982b) . 
At first thought, one may reason that the average residence time in a section of 

length z3 may be found by inverting expression (3.7) to solve fort, with (z(t)) = z5 • 

However, this does not gi,-e the mean residence time, but the time for the mean 
position to move a distance z5 • The mean and variance of the residence time 
distribution are 

(t(z)) = I ~P(z, t) dt, (3 .9) 

(t2(z)) =I 72P(z, t) dt- ((t(z)))2
, (3 .10) 

where 
9 fa P = ~2 P*(z, r, t) dr. 
a o 

Pis the cross-sectionally averaged probability density function for an instantaneous 
point source. Pis normalized such that 

f
'Xl 

P(z , t) dt = 1. 
0 

(3.11) 

Fori> 1 we know Taylor's (1953) solution for P(z. t) applies (Chatwin 1970). Scaling 
t by z/ V we see that£> 1 is needed for the asymptotic solution to be \'alid. Taylor's 

solution is _" _ _ 1 [-(z-i)2J 
P(-" , t) - ~exp ..l.' . (3.12) 

( 121tt)~ 12t 

Substituting (3.12) into (3.9) a nd (3.10) gives for the mean and variance 

(i(z)) = z+f4, 
(t2(£)) = fii+zb. 

(3.13) 

(3.14) 
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As previously stated, an exact solution for P(z. t) is not available when i ~ 1, but 
an approximate solution for small times due to Chatwin (1976) may be used to 
investigate the initial behaviour of the residence time distribution. Chatwin 's solution 
for a point source located at.,= r 0 does not taken into account interaction between 
the tracer and the capillary wall , and is limited to t ~ ( 1-1]0 ) 2 . For Pe ~ 1 and 
t ~ ( 1-1]0 )

2
, we scale t by z/ Va. which is of order (z/ V) ( 1 -7]g)-1 • Substituting, we find 

the restriction on z for Chatwin's solution to be 

z ~ ( 1-17~) ( 1-7,10 ) 2• (3.15) 

Chatwin's (1976) approximate solution is 

P
-( A exp[ -(z- ~t) 2/4Dt] 

z t) = 
' 1ta2 2(ttDt)i 

x [ 1 - 4 Va (Dt)l (z- V0 t) +~( Jf\2 
.,2 (Dt)2{(z- Va t) 2 

1}]. (3 .16) D a2 2(Dt)! 3 15) 0 a2 2Dt 
A is determined through normalization ((3.11)). Performing the integral in (3.9), and 
non-dimensionalizing the solution in terms of z, 7J0 , V / V0 and Pe, we find 

(i(z)) = ~z[ 1 + 12( ~r z+64·1J~( ~y £+96( ~)
3 

(P~)2 +640?J5( :0~ (;e)2 

2 V 1 1 9 ( V)"' 1 1 9 2 ( V)
5 

1 1 J 
+ Va £ (Pe)2 + AO Va 2 (Pe)4 + 19-07Jo Va £ (Pe)4 

~[ 1 +8( ~r 2+32"'~( ~r z+24( ~r (;e)2 + 128·1J&U~Y (;e)2rl. 
Now, considering the case where Pe-+00 , we find 

iz -~.! {t+[12(~Y+647J~(fYJz} 
( ( ) ) - V. " [ ( v)2 ( V)3] · 0 

1 + 8 Va + 321]5 Va z 
(3.17) 

To neglect longitudinal diffusion for large but finite Peclet number, we have an 
additional restriction on z which is derived from ( 1.4) or ( 1.6), depending on the source 
position. These give restrictions on the downstream distance required such that 
longitudinal molecular diffusion is negligible. The complete set of restrictions on z 
for use of (3.17) are 

(3.18) 

A more convenient non-dimensional representation of the mean residence time is 
( t'(z)) = ( Vt(z)/z) = (t(i)) /Z., since this removes the bias that a longer section \vill 
have a larger residence time. A particle that mov·es with the mean \·elocity V will 
have a mean residence time ({(£)) = 1 for any distance downstream. Fsing this 
scaling, we have 

{ 
[ ( v)·' ( ~')3] i~ =..!:::. 1+ 12 i -+6-t"'~ r:~ · ::} 

< (-l> v [ ( v)2 ( r)3] · 
o 1+ 8 v~ +3217~ ~~ z 

(3 .1 9) 

when z ~ (1-7jg) (1-1]0 ) 2 and Pe _,. ,XJ, 
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Through a comparison with numerical results (§6), we find for roughly 10% 
accuracy in (i(z)) 

i ~ 0. 1(1-?J~) (1-7]0 ) 2 • 

Plots of (i(z)) versus z are shown in figure 8 . The initial behaviour of (t(z)) is to 
increase with increasing i , regardless of the position of the source (provided the source 
is not at the wall). As an example, consider a source located at 'lo = 0.8 so that 
Vj~ = 1.39. As .:-owe see that (i(£))- Vjl·~ = 1.39. Fod-+:.o we know (i(z))-1. 
Equation (3.19) predicts that (i(z)) will initially increase beyond 1.39 as£ increases, 
before eventually decreasing to 1 as .z- co. Further comments on the behaviour of 
the mean residence time will be given in §6, when Monte Cado simulation results are 
compared with (3.19). 

Integrating (3.16) for the variance and non-dimensionalizing as before gives 

(12(£)) = (;~)'z2 [1+16(~)' z+~?J~(~Y z 

( v)a 1 ( v)-~ 1 ( v) 1 1 
+240 ~ (Pe)2+1920?,1~ ~ (Pe)2+6 ~ "i(Pe)z. 

( V)! 1 1 ( v)~ 1 1 ( ~'\ i 1 1 
+ 1440 ~ i (Pe)'' + 13440?,1~ li~ ~ (Pe)4 + 12 ~ £2 (Pe)~ 

( V)
5 

1 1 ( V)6 
1 1 J 

+3.S60 ~ z2 (Pe)6 +35840 Vo z2 (Pe) 6 

[. (v)2 : (~\a (Da 1 (Ji~)~ 1 J-1 
X 1 +8 Vo 2+32?,1~ vj Z+24 vj (Pe)2+ 1287]~ Vol (Pe)2 

Taking the limit Pe-co, we find 

(t2(£)) = ~1]~ ( ~y £3 

·[ ( v)z ( v)a] 1 + 16 ~ + 641]~ ~ z . (3.20) 

Note that at this level of approximation the first-order correction to the variance for 
a source on the axis ('lo = 0) does not appear. Equation (3.20) is restricted to the range 
of£ given in (3.18). In the following sections a )Ionte Carlo method is derived which 
solves (2.3) numerically. The method is used to calculate both axial distributions and 
residence-time distributions. 

4 . A Monte Carlo method for axial dispersion in Poiseuille flow 

An approximate method for modelling the longitudinal motion of a particle in 
Poiseuille flow is to allow the particle to make a series of longitudinal steps for a fixed 
time step t:.t . Xeglecting axial molecular diffusion, the length of the ith longitudinal 
step is 

(4.1) 

The key is to select ri from the appropriate distribution for a gi,·en time step t:.t, and 
previous radial coordinate ri_1 . This selection is governed by (3.6). which in this case 
is (in dimensionless form) 

(-!.::!) 
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. (4.:3) 

where 8 is the cumulative probability distribution. For a fixed time step we invert 
(4.3) to give 

(4.-l) 

Since S is the cumulative probability distribution, it represents the probability that 
the new radial position of the particle will be less than or equal to T!t· given that the 
initial radial position is 1Jt-L· For a fixed 7J1_ 1, 8 varies monotonically with 1Ji between 
8(0) = 0 and S( l) = l. The probability that S will lie between any two values, say 
S 2 and 8 1 , is 182 -811. Since the probability that S lies within any interval is equal to 
the size of the interval, 8 is uniformly distributed between 0 and 1. 

The algorithm for each step is to generate a uniform random number for S and 
using "TJt-L solve for 1Jt· Equation (4.1) may then be used to calculate the amount of 
axial motion for each time step. As to the selection of the time step, it is not possible 
to say a p·riori how large a step may be used, but the results can always be checked 
by the exact analytical results given by (3.7) and (3.8). Restrictions on the time step 
are based upon accuracy requirements since the solution is stable for any time step. 
We have found the time step M = 0.001 to be sufficiently small for the calculations 
done here. Generating random values of 1Ji from (4.4) turns out to be too slow for 
practical calculations, so a large table of values has been computed. from which 1Jt 
could be accurately estimated by .four-point interpolation. A grid of g(201, 51) is used 
to approximate (4.4), the finer divisions inS being necessary since g changes rapidly 
nearS= 0 and S = l. Uniform random numbers are generated by combining two 
linear congruential random-number generators to produce a third ' ultra ' random 
sequence. This technique, attributed to ::.VIacLaren and :VIarsaglia. is discussed in 
Knuth (1969) . Axial and residence-time distributions are produced by computing 
simple histograms of the particle positions or times and filtering the resulting 
distribution with a numericallopas filter. which removes high-frequency ::.Vlonte Carlo 
' noise ' from the distribution. 

The calculation procedure presented here may be extended to include longitudinal 
molecular diffusion. To do this, a stochastic longitudinal step tlz01 is chosen from 
a Gaussian distribution with a mean of 0 and a variance cr! = 2Dtl t. Equation ( 4.1) 
becomes 

As stated in§ 1. when longitudinal molecular diffusion is important at the observation 
point zob• P(z0 b, t) fails to qualify as a residence-time distribution. With the ::.Vlonte 
Carlo technique, it is possible to calculate a residence-time distribution based on a 
definition suitable to the application. For example, if the distribution in time when 
particles first pass z0 b is desired, it is very easy to set up the )fonte Carlo routine 
to do this. 

In general, the )fonte Carlo method described here is attractive when an analytical 
solution to the diffusion equation in the cross-section is available . Except for this 
restriction, the method is very flexible and can easily accommodate any velocity field 
or time-dependent phenomena. For example, it is possible to have an oscillating tlow 
or flow through a comrerging~iverging tube, provided that the cross-section 
maintains a constant shape. The velocity field. which must be kno\rn for all positions 
and times, is always superimposed on the random motion. T•1rbulent flow may be 
modelled as well, if the assumption of a constant transverse turbulent diffusivity is 
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Dimensionless :\[onte Carlo Theoretical )[onte Carlo Theoretical 
Source time average average variance variance 

location i (z(il> (i(t)) (z2(il > (;;2(t)) 

0 0.01 0.01969 0.01960 0 .9410 (-7) 0.1069 ( -6) 
0 0.05 0.09006 0.09031 0 .647 5 ( -4) 0.6410 ( -4,) 

0 0.10 0.1623 0.1622 0 .7016(-3) 0 .7041 (-3) 
0 0.20 0.2780 0.2784 0 .003963 0.003949 
0 0.30 0.3812 0.3822 0 .008099 0.008079 
0 0.50 0.5817 0.5833 0.01652 0 .01648 

0.67 0.01 0.01073 0.01072 0.4717 ( -5) 0.4745 ( -5) 
0.67 0.05 0.05008 0.04997 0.3354 (-3) 0.3361 (-3) 
0.67 0.10 0.09873 0.09849 0.001-447 0.001443 
0.67 0.20 0.1968 0.1973 0.004917 0.00484.5 
0.67 0.30 0.2958 0.2970 0.008895 0.008816 
0 .67 0.50 O.J950 0.4969 0.01717 0.01709 

1.0 O.Ql 0.002699 0 .002714 0.2118 (-5) 0.2119(-5) 
1.0 0.05 0.02644 0.02643 0.1629(-3) 0.1654 ( -3) 
1.0 0.10 0.06700 0 .06691 0.8809 (-3) 0.8823 ( -3) 
1.0 0.20 0.1596 0 .1603 0.003736 0.003711 
1.0 0.30 0.2574 0.2588 0.007463 0.007 458 
1.0 0.50 0.4562 0.4584 0.01550 0.01564 

AREAt 0.01 0 .01005 0.01000 0.3108 (-4) 0.3177 (-4) 
AREA 0.05 0.05023 0.05000 0.6146 ( -3) 0.6295 ( -3) 
AREA 0.10 0.1003 0.1000 0.001975 0.002024 
AREA - 0.20 0.1994 -- 0.2000 0.005627 0.005i02 
AREA 0.30 0.2986 0 .3000 0.009614 0.009756 
AREA 0.50 0.4979 05000 0.01779 0.01806 

t Equivalent to an instantaneous source uniformly distributed over the cross-section. 

TABLE 1. Axial-distribution data 

used. Calculations for turbulent flow in .tubes of circular cross-section may be done 
by changing from the laminar velocity profile to the mean turbulent velocity profile. 
Everything else carries through as before, including the • diffusion table ' g(S, 1f1_ 1 ) . 

The calculations that produced g(S, 1fi_1 ) are independent of the specific value of the 
diffusion coefficient (molecular or turbulent), owing to the dimensionless nature of 
(4.3). 

The .Monte Carlo method has been previously used in studies of turbulent diffusion 
(Kraichnan 1970), for longitudinal dispersion in turbulent open-channel flow (Sullivan 
1971) and for longitudinal dispersion in laminar flows (Dewey & Sullivan 1982). The 
technique as presented here is somewhat different in that exact analytical results are 
used to model the random motions. It is essentially a numerical technique for solving 
(2.3). It is of some interest to see how well this technique can perform when no 
assumptions are involved and exact calculations are available for comparison. In 
addition, the Monte Carlo method has some ad...-antages over st_andard numerical 
solution techniques. It contains no numerical dispersion, is a bsolutely stable. can 
exactly simulate delta-function :Sources in space and time. and is extremely simple 
to implement on a computer. 
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FIGURE 1. Axial distribution. area. source: probability density P versus axial distance i .• 0 . :'1-Ionte 
Carlo (unfiltered), 5000 particles;--, )lonte Carlo (filtered), -----. equation (5.2) . t = 0.01. 

S. Resul~ of calculations: axi~l profiles at a given time 
Axial profiles provide an opportunity to check the calculations against the 

theoretical results given by (3.7) and (3 .8) and with other numerical results. Table 1 
summarizes the calculations for axial mean and variance, and is seen to be within 
1 % for the mean and 2% for the variance in most cases. Previous published works 
(Chatwin 1970; Gill & Ananthakrishnan 1967) have used an instantaneous spike 
source uniformly distributed over the ct·oss-section as a characteristic example. To 
produce this type of initial distribution most easily, we would like to introduce 
particles uniformly over the cross-section in a random fashion (the AREA source in 
table 1). The probability for a particle to enter the tube at a given radius 7J within 
a differential range d7J is in proportion to the differential area TJ dTJ . Siq.ce the problem 
has axial symmetry, the initial angular position in the cross section is not important. 
The cumulative distribution is 

S(7J0 ) = 2 {"" 7J d7J = 7J~ · 
To select initial coordinates 7Jo from the appropriate distribution, TJo is chosen 
randomly as the square root of a uniformly distributed random number. Figure 1 
shows the Monte Carlo calculations for a short time (t = 0 .01) after release oft he tracer 
particles. Plotted along with this is the solution for pure advection. which in terms 
of the dimensionless variables z and t is (Chatwin 1970) 

-.. 1 •• 1 • 
P(z, t) = 2tj((1-zj2t)") (0::;; £::;; 2t), 

P(z, t) = 0 otherwise. (5.1) 

wheref{-YJ) is the initial radial distribution of tracer. at t = 0 and E = 0. subject to the 
condition 
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For the present casef(7J) = 1, and the pure-advection .solution is 

- • 1 • } ~(z, ~) = 21 (O ~ z ~ 2t), 

P(z, t) = 0 otherwise. 
(5.2) 

The peak lagging t he mean in figure 1 is in agreement with intuitive arguments put 
forward by Chatwin (1970) regarding the effects of preferential. radially inward, 
diffusion of particles initiated near the capillary wall. Figure 2 (a) compares the 
finite-difference calculations of Gill & Ananthakrishnan ( 1967) with the current :\lonte 
Carlo calculations. The two calculations com pare very closely. with the finite-difference 
solution showing slightly lower peak values with greater spreading at the tails of the 
distribution. These differences may be the result of inclusion oflongituclinal molecular 
diffusion in the finite-difference calculations. As is evident fi·om figures 1 and 2. the 
unfiltered :\-lonte Carlo histogram contains a great deal of high-frequency noise which 
results from the estimation of a probability density function from a finite set of 
discrete samples. Figure :Z (b) shows the effect of doubling the number of particles and 
indicates that the )lonte Carlo solution is less reliab le for high-frequency information. 
The various small ' bumps ' in the filtered .\.fonte Carlo solution should be considered 
residual noise which is passed through the lopas numerical filter·. Figure 3 shows a 
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sequence of distributions from t = 0.01 to i = 0.5. T aylor 's (1953) asymptotic 
Gaussian solution (3.12) is plotted along with the )-fonte Carlo solutions. The ::\ionte 
Carlo distribution and the Gaussian solution are seen to match relati,~elv well bv the 
time i = 0.3 , which is in agreement with ·a prediction of Chatwin (19.70) that the 
Gaussian limit is applicable beyond i = 0 .25. 

The solution for the axial distribution from a point source at any initial radial 
position can also be calculated using the :.\Ionte Carlo technique. Figure 4 sh o\VS the 
progression of the axial distribution from an instantaneous point source with 'lo = 0. 
F rom table 1 it is seen that all the mean values have sma ll error ( < 1 °0). while a 
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FIGURE 4 . Axial distributions, point source, 7Jo = 0: probability de nsity [i versus axial distance £. 
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T imes : (a) t = 0.01 ; (b) 0.05: (c) 0.10; (d) 0.20 ; (e) 0 .30; lj) 0.50. 

fairly large error occurs in the variance of the first distribution. This more substantial 
error is a result of the highly skewed shape of the distribution. for which a small error 
in representing its long tail results in a la rge error in the variance . .:\:> the di:>tribu tion 
becomes more symmetric and approaches a Gaussian shape. errors in the variance 
a re reduced. This is consistent with theoretical requirements that errors in the mean 
go to zero as .N-} for any distribution. whi le errors in the ,·ariance are guaranteed 
to go to zero as (!...V)-t only for a Gaussian distribution . .N being t he number of samples 
from the distribution (Hammersley & Handscomb 196-±). The de\·eloprnent of a.· knee ' 
in the distribution at i = 0.2 is a resu lt of interaction between t.he capillary wall and 
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the radialfy diffusing tracer. At i"= 0.1 the capillary wall lies roughly 2.2 standard 
deviations from the source position, while at t = 0.2 the wall is within 1.6 standard 
deviations. This means roughly 10 % of the particles have diffused to the wall when 
i = 0.2, compared with about 2% at t = 0.1. Being unable to diffuse further out, the 
particles begin to migrate radially inward. The axial position of particles which have 
traversed the cross-section should be roughly equal to the cross-sectional mean 
velocity V times t , which in dimensionless terms means z = t. This closely corresponds 
to the location of the knee. 

6. Results of calculations: residence-time distributions 
Residence-time distributions provide the complement of axial distributions, being 

the distribution of the particle's probability density over time at a fixed location. This 
viewpoint is by far the most common in experimental work. Rather than introducing 
particles uniformly in the cross-section as we d id for axial distributions. a more 
interesting problem is to allow particles to enter in proportion to the flux a long a 
given streamline. This will model a uniform flux of tracer particles along the tube, 
where we are interested in the residence time for the particles in a particular axial 
section . For example, a well-mixed solution pumped through a short tube under 
steady-state conditions would be represented by this initial condition. neglecting end 
effects. The probability that a particle will enter the axial section at a given radiu;; 
"fJ within a differential range cl?J is (1-Y~ 2)Y/d77 (Saffman 1959). The cumulati\·e 
distribution is 

therefore 

S(·Y/0 ) = 4 f" ( 1-772
) 'I d77: 

?Jg = 1-(1-S)i. 

(6.1) 
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Xow if S is a uniform random number it has the same distribution as 1-S so 

Tfo = (1 - S!)!. 

Figure 5 shows the comparison of the pure-advection solution with :\Io nte Carlo . From 
(6 .1) it is seen thatf(TJ) = 2(l-TJ 2 ) . Substituting into (5.1) . we find for pure advection 

P(z. iJ = ~ (O ~ £ ~ 2i).} 
~t-

P(z. t) = 0 otherwise. 
(6.2) 



/(, 

000 J. E. Hausewo·rth 

100 

75 

50 

25 

"' 0 
0 
0 

"' 0 
0 
0 

"' 0 
0 
0 

i 

"' "' 8 
0 

"' N 

"' 0 
0 
0 

..... 
"' 8 
0 

(c) 

oQ' 

"' 0 
0 
0 

---~---------- -0~~~~~~~-----~-~-~--~-~-~--~-~-~-,~-~----~-----~ 
~\,QOO t"'I~\O.:xl N 
0 0 0 N N 
o ~ o o o o o ci . o o 

12.5 

10 

p 1.5 

5 

2.5 

o.,., 0 
N 

0 0 

(e) 

-----------

500[ (b) 1 
400l 1 

j :~ ~t •~.::..::-----."""a--..- ·..-...- · --..-- • ...,..- ,-__,-·~a --.,....zrQOU.C""....,0 ·----J~ 
NM~\n..Or-:lO oqooooo 
ooooooo 

i 

30~~--~--~------~--~----~ 

(d) 
25 1 

J 

l 
i 

.... 
0 
i 

3 

0~~--~--~--~~~~~--__J 
0.2 0.3 0.4 0.5 0.6 0.7 

i 

FIOt-""RE i . Residence-time distributions, points source. 'lo = 0: probability density. J5 ~·ersus 
res idence time i. 0 . Monte Carlo (unfiltered) . 5000 particles ; --, :\-Ionte Carlo (filtered) : ---- - . 
equation (3.12). Locations: (a) £ = 0.01 ; (b) 0 .05 ; (c) 0 .10 ; (d) 0.:20: (e) 0 .30: (j) t) .50. 

Advection is seen to be the prime phenomenon that initially shapes the residence time 
distribution. Figure 6 shows the sequence of distributions starting at: = 0.01 through 
z = 0.5. Taylor's (1953) asymptotic solution (4.3) is again plotted along with the 
~Ionte Carlo solution. By £ = 0.5 the asymptotic solution is a reasonable approxi· 
mation. Figure 7 shows the sequence of distributions from a point sou rce at .,,0 = 0 to 
successively more distant axial stations. ~ote the sharpening of the pea.k between 
£ = 0 .01 a.nd % = 0.05. As in the case with a flux som·ce. the residence-time 
distributions are skewed to the right. a feature found in all residence-time distribu tions 
investigated. Table 2 displays some statistical properties of the residence time 
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000 

Source 
location 

0 
0 
0 
0 
0 
0 

0.67 
0.67 
0 .67 
0.67 
0.67 
0.67 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

FLL"Xt 
FLUX 
FL UX 
FLex 
FLUX 
FLL"X 

Dimensionless 
d isttmce 

: 
0.01 
0.05 
0.10 
0.20 
0.30 
0.50 

0.01 
0.05 
0 .10 
0 .20 
0.30 
0.50 

0.01 
0.05 
0.10 
0 .20 
0.30 
0.50 

0.01 
0.05 
0.10 
0.20 
0.'30 
0.50 

}[onte Carlo }[onte Carlo :\Ion te Carlo 
average median \·ariance 
(t(£)) iso(i) ( i2(E)) 

0.005052 0.005040 0.1700 ( -8) 
0.02661 0.02602 0.5200 ( -5) 
0.059 19 0 .05464 0.2061 1-3) 
0.1437 0. 1222 0.002 27-! 
0.2401 0.2180 0.'1)05764 
0.437 5 0..!223 0.01-!01 

0.01033 0.009178 0.1558 (-4) 
0.05970 0.05021 0.70.59 (-3) 
0.1162 0.1071 0.002109 
0.2215 0.2126 0.005130 
0.3229 0.3 123 0.009575 
0.5245 0.5094 0.01829 

0.02886 0.027:37 0.1023 ( -3) 
0.09100 0.08736 0.8942 ( -3) 
0.1518 0.1477 0.002263 
0.2598 0.2528 0.005764 
0.3617 0.3546 0.009834 
0.5641 0.5523 0.0 1850 

0.009813 0.007144 0.4706 (-4) 
0 .04920 0.03814 0.6995 ( -3) 
0.09978 0.08323 0.002117 
0.1996 0.1846 0.0055:34 
0.2997 •.::- 0.2850 0.009631 
0.5006 0.4833 0.0183.5 

t Equivalent to a. steady-state uniformly mixed source of particles entering the capillary tube 

TABLE 2. Residence-time distribution data 

d istributions calculated with the )fonte Carlo model. The median residence time, t30(z) 
in table 2, is the time for 50% of the particles to pass the downstream position z. 
For the uniform ' flux' case at the nearest station (z = 0.01), the residence-time dis­
tribution is highly skewed, having 50~-~ of the par ticles pass through the section 
in a time roughly 30% less t han the mean residence time. As the distance to the 
downstream section increases, the median moves closer to the mean (in a relative 
sense) and the distribution becomes more symmetric. . 

The mean residence time as a function of axial distance for -.·arious source positions 
is shown in figure 8. The mean residence time here is non·dimensionalized as 
(i(z)) = ( Vt(z)/z) = (t(z))/z. The approximate theoretical solution (3.19) obtained 
earlier is shown with the Monte Carlo solution. The approximate solution is seen to 
maintain roughly 10% accuracy if z ~ 0.1(1 - 1]~}(1-7]0 )2 . Since the dimensionless 
mean residence time (i(z)) will always initially rise (except for a source at the wall) , 
and since (i(z))-+ 1 as z-+a::>. particles starting out on streamlines slower than the 
mean \"elocity must necessarily display a maximum at some intermediate~- As -it turns 
out. particles started on streamlines somewhat faster than the mean a lso display t his 
maximum behaviour since the initial rise in the mean residence time may exceed 1. 

The initial rise in mean residence time is intuitively easy to understand . Con~ider 
a linear velocity profile with a continuous point source of tracer material ·being 
measured at a fixed downstream station. Particles diffusing into the lower .,.-elocity 
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region will take longer to pass by the downstream station and hence will have more 
time to diffuse laterally, allowing some particles to sample even lower axial velocities. 
Particles diffusing into the higher-velocity zone are more rapidly swept by the 
downstream station and do not have as much time to diffuse laterally. This 
asymmetry causes the initial rise in mean residence time. with the boundary 
preventing further increase. 
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7. Conclusions 
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000 

Theoretical studies of near-field advective diffusion have been successful in 
analysing some of the features of the cross-sectionally averaged axial distribution. A 
Monte Carlo method is used here to investigate some of the important features of 
the residence-time distribution for both point and uniform sources. The residence-time 
distribution is shown to change from a highly skewed character to a more symmetric 
form with increasing axial distance for· both point sources and a uniform flux of 
particles along the tube. All residence-time distributions maintain the same sense to 
their skewness in that the median always lies at a smaller time than the mean, which 
in short sect.ions can be quite pronounced. The dimensionless mean residence time 
(i(£)) displays a maximum as a function of downstream distance for point sources 
located approximately between 7J0 = 0.6 and 7Jo < 1, Through integration of an 
approximate theoretical solution due to Chatwin (1976), the mean and variance of 
the residence-time distribution are found for z ~ 1. For a point source located at 7J 0 , 

0 < 7!o < 1, the variance (t2(z)) is found to increase initially in proportion to z3 before 
converging to an asymptotic growth rate proportional to z. The dimensionless mean 
residence time ({(£)) is found to rise initially with increasing downstream distance 
for any point source in the cross-section. with the exception of a point source at the 
capillary wall. This phenomenon is in agreement with the .Monte Carlo calculations 
and with intuitive reasoning. 
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