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Radiation-reaction force on a particle plunging into a black hole
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We calculate the self-force acting on a scalar particle which is falling radially into a Schwarzschild black
hole. We treat the particle’s self-field as a linear perturbation over the fixed Schwarzschild background. The
force is calculated by numerically solving the appropriate wave equation for each mode of the field in the time
domain, calculating its contribution to the self-force, and summing over all modes using Ori's mode-sum
regularization prescription. The radial component of the force is attractive at large distances, and becomes
repulsive as the particle approaches the event horizon.

PACS numbeps): 04.25—~g, 04.70.Bw

The problem of finding the equations of motion for a par- Fourier-harmonic modes, and the analysis was done in the
ticle in curved spacetime is a long-standing open problem ifrequency domain. This was easy to be dongli@] for the
general relativity. Recently, this problem has also becomease of circular orbits around a SBH, because the RR in that
timely and extremely important. The planned Laser Interfercase admits a discrete spectrum. However, in general one
ometer Space Antenr&ISA) is expected to dete¢among  faces a time-dependent, evolutionary problem, and one ex-
other sourcesthe gravitational waves emitted from a com- Pects the spectrum to be continuous rather than discrete. In
pact object orbiting a supermassive black h@ef). Accu-  this paper, we apply MSRP for the first time to a time-
rate templates, which include also the radiation-reactiorfépendent, dynamical problem. _

(RR) effects on the compact-object’s orbit, are essential for We Qon5|der a pOIn'Fllk_e ma_\ssless partl_cle of _scalar charge
the detection of the signal. g, moving along a radialtimelike) ge_ode_5|c outside a SBH

The traditional approach for calculation of the orbital evo-of mass M>[q|, where the metric isds’=—F(r)dt’
lution under RR requires the calculation of the fluxes at in-+F ~(r)dr2+r2dQ?, dQ? being the metric on the unit
finity and through the BH’s event horizd&H), of quantities  2-sphere, andr(r)=1—2M/r. Let the particle’s world line
which are constants of motion in the absence of RR. Theibe represented by“=x{(7), with = being the proper time
one uses balance arguments to relate these fluxes to the lodbng the geodesic. For inward radial geodesic motion, to be

quantities of the objedtl]. However, such techniques typi- considered here, we havia Schwarzschild coordinates,
cally fail, because the evolution of the Carter constant, which

is a non-additive constant of motion, cannot be found by =0,

balance argumen{g]. )
Several prescriptions to include the RR effects in the or- p

bital evolution have been suggested. Quinn and WaJénd )

Mino, Sasaki, and TanaK@] recently proposed general ap- Where a dot denoteg/dr, andE is the energy parameter

proaches for the calculation of self-forces. However, it is notWhich is a constant of motion in the absence of the self-

clear how to practically apply these approaches for actua{Prce)- The scalar fieldb coupled to the particle satisfies the

computations, the greatest problem being the calculation ghhomogeneous wave equation

the non-local “tail” contribution to the self-force, which

arises from the failure of the Huygens principle in curved _ T aru_ g 12

spacetime. More recently, Ori proposed a practical approach He=-4mq f_ooa D =xp(Dl(=g) 7, (2)

for the calculation of the self-forckb,6], which is based on

decomposition of the self-force into modes, and on a modeg being the metric determinant, afd denoting the covari-

sum regularization prescriptiotMSRP. The MSRP has ant wave operator. We next decompagédnto modes

been developed in full in Ref$7,8] for a scalar particle in

static spherically symmetric spacetimes, and has been ap- o

plied for several non-trivial cases including a static scalar d=> ¢'=27q>, Yin(6,¢)

charge outside a Schwarzschild black h¢&8H) [9] and a =0 m

scalar charge in circular orbit around a SBHD]. In addi-

tion, there is strong evidence that MSRP is applicable als@/hereY,(6,¢) are the standard scalar spherical harmonics,

for electric-field RR[9,11], and some evidence that it is ap- an _asterisk denotes complex conjugation, ani

plicable also for gravitational-field RRL2]. =y/(r.t;rp.tp). By expanding the delta function in E¢)
MSRP has been directly applied until now only for sta-as (68— 6,) 5(¢— @p) == 1Sin 0Y(6,0) (6, @) and us-

tionary problems, were the field was decomposed intdng the orthogonality of the&f,,, we find thaty' satisfies

=—[E2=F(rp]*2 and t,=E/F(ry), 1)

|
Yrm( ap ) ‘Pp)%} ) (3)
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WtV Y =S(riry). (4) (v-+h,u+h)

Here, v=t+r* and u=t—r* (with r*=r+2MIn[(r
—2M)/2M]) are the ingoing and outgoing Eddington null
coordinates, correspondingly, the effective potential is given
by V!I(r)=(F/4)[I(I+1)r 2+2Mr %], and

F (= F?
EEﬁxm—rp)é(t—tp)dfzﬁé(r—rp). 5 u

[In the last equality we usér=dt/t = (F/E)dt, followed by
integration ovet.] Finally, we express the modés in terms
of the (m-independentfunctions ¢! by summing over the FIG. 1. Numerical grid cell containing a section of the world
azimuthal numbersn in Eq. (3). For radial motion we thus |ine. (See the text for further explanation.

find that

| for ¢! is set up by specifying initial data on two null hyper-
ﬁ_ 6) surfacesv =vy andu=u,, taken to intersect at some point

r along the particle’s world line. As initial data we take the
) ) ) exact solution corresponding to a static particle held fixed at
The total regularized self-forcéincluding both the local r¥=(vo—Ug)/2 [9]. This solution is not the actual initial

and the tail parfsexerted on the scalar particle;, can be  fig|d of the geodesic particle considered hésdich is un-

|+1
2

#'=q

calculated by{7,8,13 known, in general However, it does approximates the initial
o field if ry is chosen to be a turning point of the geodesic
fRREE [f'i—Ai |+ 1 B } (7) (when such exisjsthese initial data are inexact because the
¢ =0l “ “ 2 “ acceleration of the geodesic particlergtis not the one of a

static particle, although its position and velocity Ja—for
(evaluated on the particle’s world linewheref,=q¢', is  a marginally bounded particlavith E=1)—if ry is taken
the (covarianj self-force contribution +associated with the large enough. The difference between the actual initial field
I-mode of the particle’s self-field, andl, andB, are regu-  and the static initial data results in the occurrence of spurious
larization parameters, whose values are given by BEd¥)  waves superposed on the actual field; however, one may ex-
and (134 of Ref. [8]. For the radial geodesics considered pect such waves to die off quickly, unveiling the intrinsic
here, these parameters take the form behavior of the field. Numerical experiments showed that
this is indeed the case: The spurious waves were found to
decay fast in all cases examinésee Fig. 2, e.g., for§

A= +r_E’ A= ir_Zr’ ®) =40M). For a marginally bounded particle it has been con-
firmed that the field left after the spurious waves decay be-
9 9. comes independent af;—indicating that one indeed ex-
Bix=— —2(2F—E2), Bi=—_—fE (9)  tracts the actual physical behavigin addition, we found
2r 2r that the larger , the smaller the amplitude of the spurious

i » waves, and the quicker they decay.
(‘l"ﬂth f“ quantities evaluated at“=xy). One Sh,OUId US€  To construct the difference scheme for the numerical in-
fo \Aq (fo ,A,) when one calculates the field's gradient tegration we use a method similar to that applied by Lousto
from ther—r; (r—r,) limit (in generalf,*#f.” [7,8)).  and Price in Ref[14]. We integrate the field equatio)
(Of course, the physical quantifii~ can be derived from over the unit cell shown in Fig. 1, which is centeredvat
either of these two values, or from any of their linear com-and whose sides are of lengtth2 Let ;=¢'(v—h,u
binations) In practice, we take below the—r, limit. —h), ¢=4'(v—h,u+h), Y;=y¢'(v+h,u—h), and ¢,

Thus, in practice, to derive the self-force along any given=y'(v+h,u+h), and suppose thak,, i,, andy; are al-
radial geodesic¢parametrized bye), one should first solve ready known, and we wish to calculafg. Integration over
Eq. (4) for the various modegwith appropriately chosen the z/;[uv term in Eq.(4) yields (exactly) ¢ — o— h3+ 4.
initial data—see beloyy then construct the quantitidéa, Integration over the potential term yieldsy(+ ,)[1
and finally sum over the regularized self-force modes using+ h?V'(r)]— (¢, + ¢3)[1—h?V'(r) ]+ O(h®). (Note that be-
Eq. (7). This sum over modes is expected to convergence aausey! is continuous across the world line, the integration
least as 1/ as theO(1/) term in the 1/ expansion off!,  of the potential term here is much simpler than [],
vanisheq7,8]. where the metric perturbations were studied using the Mon-

To solve fory!, we integrate Eq(4) numerically(in the  crief gauge, in which the wave function suffers a discontinu-
time domain on a double-null grid. This grid is spanned by ity across the world ling Finally, integrating over the source
v andu, covering the entire exterior of the SBMith the EH S (which is most easily done by transforming to the co-
approached ai—x). A characteristic initial-value problem ordinates, recalling thadv du=2F ~1dr dt), we obtainZ
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FIG. 2. The individual modes of the regular-
ized RR force for a particle released from rest
from r§=40M as a function of /M. Shown are
the first 18 modesl|E&0,1,...,17). The mno-
pole (=0) modes are displayed by dashed lines,
and the dipole I(=1) modes by thick lines. Ex-
cept for thel =0,1 modes, the modes’ amplitudes
decrease monotonically with Top panel(A):

f', . Bottom panelB): f}.

0 02 0. 0. .8 1 1.2

4 6 0
Iog10(r/2M)

=[S d du=0 if the world line does not cross the cell, or, if the series when we sum over all modsse below. Third, as

it does, we approach the Blﬂ'r*—>f{. This latter property is obvious

from the following consideration: The covariant components

f'v andf'U [whereU is the outgoing Kruskal coordinate, sat-

isfying Uxexp(—u4M) near the EHassume finite values at

the EH itself, a=» andU are regular coordinates at the EH.

Consequentlyf'u vanishes exponentially with approaching

the EH, yieldingf,=f' +f,—f andf,=f —f —f aswe
= — P+ [1=2h2V' ()] (ot h3) + Z. (1)  approach the EH. Thua?'r*—>f't. This is, in fact, a result of

o spatial gradients becoming comparable to temporal gradients

Our code, which is second-order convergent, evolves the sCazar the EH. This behavior is shown in FigA3 for two

lar field in a straightforward .marching. At each grid cell, the jodes (=0,1), but similar behavior is found also for all the

cpde does the followingti) it de_m_des Whethe_r or not the gther modes. Figure(B) displays the behavior of the modes

given world line crosses the celli) if the world line crosses 55 3 function of the mode numberfor various values of.

the cell, it determines the point where it leaves it and calcuThe individual modes behave like 2 for large values of.

latest o, (givent;,) to O(h?); (iii) it uses Eq(11) to calcu-  Note, that the closer the particle to the BH, the later the

late the.fieldw' at the cell's upper point; an@v) at grid cells  asymptoticl ~2 behavior starts. Most importantly, the de-

containing a section of the world line, it constructs the quanyajled behavior of the modes confirms the expressions for the

tities f,, andf; by appropriately extrapolating the field gra- analytically-derived regularization paramet7sg].

dients along the world lingbased on the already-derived  Next, we sum over all modes to find the total RR force.

values of the field at a few neighboring grid points As noted above, the relative importance of the higher modes

We next present our results for a particle released fronincreases as we approach the horizon. This causes two prob-
rest atrg =40M (similar results are obtained also for other [ems: (i) it is crucial to include an accurate approximation of
values ofr§ and for the marginally-bound caseFigure 2 the remainder of the series due to our computation of only a
displays the behavior of tﬁé* (2A) andf} (2B) components finite number of modes, an(i) the noise contribution from
of the RR force. Thé=0 Components are everywhere nega_the I-mode to the overall force increases withThe |_2
tive, whereas all the other modes=(1) are everywhere behavior of the modes indicates that we can sum over the
positive. Figure 2 also shows the decay of the spuriougnodes and calculate the remainder as was done in[ Rgf.
waves. Clearly, for values af smaller than 281 they are ~ Specifically, the full RR force is
already too small to be noticed.

Three properties of the behavior of the individual modes
are particularly interesting: First, the dipolé=(1) modes fRR= 2 e R, (12)
behave differently than the other modes, and the closer to the n=0
BH, the less important they are. Second, the relative impor-
tance of the higher modes increases approaching the Bmvhere the remainder can be approximated &,
This will require care in the evaluation of the remainder of ~I2f, 'y (1 +1). Here,}® is the regularized-mode

Z:Eil[k(tout)_k(tin)](tout_tin)+o(h3)- (10

Here,k(t)=F[ry(t) ]/r,(t), andt;, (toy) is thet value where
the world line entergleaves the cell. We can now extract
the desired quantitys,. To O(h?) we find
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of the force, andyV(x)~x~1+x"2/2+x3/6+0O(x %) is
the trigamma function. As we sum the series only ugd to
=17, this approximation foR';l guarantees accuracy of
7x10°* (we neglect here the contribution ®),"* from
terms which scale liké~3). Obviously, approaching the EH
f.«—f; (as each of the individual modes dpeFigure 4
shows the full RR force as a function ofor two cases: Fig.
4(A) showsfE for a marginally-bound trajectoryE(=1).
At large distances this force behaves IikeErR*R
~—(G/c?) Bg?M/r3. The exponent of is found here to a
1% accuracy, and we find the paramefe+ (1.00+0.15)
X 10" *. Figure 4B) shows the case of fall from rest, starting eral conditions. In particular, if this behavior persists also for
fromr§ =40M. At large values of both components of the charged BHs, and for an electrically-charged particle, then
force vanish, in accord with the vanishing of the force for athe properly-defined covariant spatial-component of the RR

static scalar charge. The covariartomponentf{<, is ev-
erywhere positive and increases monotonically approaching
the BH. This is a consequence of the particle losing energy
by radiating, part of which escapes to infinity, and the rest
being captured by the BH. The covariarit component,
er*R, is attractive at large distances. However, near the peak
of the effective potential barriefnearr* ~0) its behavior
changes, and near the EH it approaches the valdé'ﬁfas
expected. Note that both components arrive at the EH at a
bounded value. Becaud&” is expected to be positivéhe
particle only loses energy by radiatingve infer thater*R
would also be positive approaching the EH, under very gen-

FIG. 4. The full RR force as a function of

0.6 07 08 0.9 1

Top panel(A): fF*R for a marginally-bound world
line (solid line) and the curve—0.1X(r/M) 3

(dashed ling Bottom panel(B): Free fall from
rest starting fromr =40M. Dashed line:f<R.
l Solid line: 1.
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force at the EH would be repulsive. If this is indeed the case, We thank Amos Ori, Lee Lindblom, and Kip Thorne for
then the RR force acts to reduce the parameter space fdiscussions. L.M.B. wishes to thank the Technion Institute of
which a nearly-extreme spherical charged BH can be overfheoretical Physics, where part of this research was done,
charged 15]. The question of whether cosmic censorship forfor hospitality. At Caltech this research was supported by
that case is saved by RR effects, however, awaits furthelSF grants AST-9731698 and PHY-9900776 and by NASA
considerations. grant NAG5-6840.
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