
PHYSICAL REVIEW D, VOLUME 62, 084040
Radiation-reaction force on a particle plunging into a black hole
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We calculate the self-force acting on a scalar particle which is falling radially into a Schwarzschild black
hole. We treat the particle’s self-field as a linear perturbation over the fixed Schwarzschild background. The
force is calculated by numerically solving the appropriate wave equation for each mode of the field in the time
domain, calculating its contribution to the self-force, and summing over all modes using Ori’s mode-sum
regularization prescription. The radial component of the force is attractive at large distances, and becomes
repulsive as the particle approaches the event horizon.

PACS number~s!: 04.25.2g, 04.70.Bw
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The problem of finding the equations of motion for a pa
ticle in curved spacetime is a long-standing open problem
general relativity. Recently, this problem has also beco
timely and extremely important. The planned Laser Interf
ometer Space Antenna~LISA! is expected to detect~among
other sources! the gravitational waves emitted from a com
pact object orbiting a supermassive black hole~BH!. Accu-
rate templates, which include also the radiation-react
~RR! effects on the compact-object’s orbit, are essential
the detection of the signal.

The traditional approach for calculation of the orbital ev
lution under RR requires the calculation of the fluxes at
finity and through the BH’s event horizon~EH!, of quantities
which are constants of motion in the absence of RR. T
one uses balance arguments to relate these fluxes to the
quantities of the object@1#. However, such techniques typ
cally fail, because the evolution of the Carter constant, wh
is a non-additive constant of motion, cannot be found
balance arguments@2#.

Several prescriptions to include the RR effects in the
bital evolution have been suggested. Quinn and Wald@3# and
Mino, Sasaki, and Tanaka@4# recently proposed general ap
proaches for the calculation of self-forces. However, it is
clear how to practically apply these approaches for ac
computations, the greatest problem being the calculatio
the non-local ‘‘tail’’ contribution to the self-force, which
arises from the failure of the Huygens principle in curv
spacetime. More recently, Ori proposed a practical appro
for the calculation of the self-force@5,6#, which is based on
decomposition of the self-force into modes, and on a mo
sum regularization prescription~MSRP!. The MSRP has
been developed in full in Refs.@7,8# for a scalar particle in
static spherically symmetric spacetimes, and has been
plied for several non-trivial cases including a static sca
charge outside a Schwarzschild black hole~SBH! @9# and a
scalar charge in circular orbit around a SBH@10#. In addi-
tion, there is strong evidence that MSRP is applicable a
for electric-field RR@9,11#, and some evidence that it is ap
plicable also for gravitational-field RR@12#.

MSRP has been directly applied until now only for st
tionary problems, were the field was decomposed i
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Fourier-harmonic modes, and the analysis was done in
frequency domain. This was easy to be done in@10# for the
case of circular orbits around a SBH, because the RR in
case admits a discrete spectrum. However, in general
faces a time-dependent, evolutionary problem, and one
pects the spectrum to be continuous rather than discrete
this paper, we apply MSRP for the first time to a tim
dependent, dynamical problem.

We consider a pointlike massless particle of scalar cha
q, moving along a radial~timelike! geodesic outside a SBH
of mass M@uqu, where the metric isds252F(r )dt2

1F21(r )dr21r 2dV2, dV2 being the metric on the uni
2-sphere, andF(r )5122M /r . Let the particle’s world line
be represented byxm5xp

m(t), with t being the proper time
along the geodesic. For inward radial geodesic motion, to
considered here, we have~in Schwarzschild coordinates! u̇p

5ẇp50,

ṙ p52@E22F~r p!#
1/2, and ṫp5E/F~r p!, ~1!

where a dot denotesd/dt, and E is the energy paramete
~which is a constant of motion in the absence of the s
force!. The scalar fieldF coupled to the particle satisfies th
inhomogeneous wave equation

hF524pqE
2`

`

d 4@xm2xp
m~t!#~2g!21/2dt, ~2!

g being the metric determinant, andh denoting the covari-
ant wave operator. We next decomposeF into modes

F5(
l 50

`

f l52pq(
l ,m

Ylm~u,w!FYlm* ~up ,wp!
c l

r G , ~3!

whereYlm(u,w) are the standard scalar spherical harmon
an asterisk denotes complex conjugation, andc l

5c l(r ,t;r p ,tp). By expanding the delta function in Eq.~2!
asd(u2up)d(w2wp)5( l ,msinuYlm(u,w)Ylm* (up ,wp) and us-
ing the orthogonality of theYlm , we find thatc l satisfies
©2000 The American Physical Society40-1
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c ,uv
l 1Vl~r !c l5S~r ;r p!. ~4!

Here, v[t1r * and u[t2r * „with r * [r 12M ln@(r
22M)/2M #… are the ingoing and outgoing Eddington nu
coordinates, correspondingly, the effective potential is giv
by Vl(r )5(F/4)@ l ( l 11)r 2212Mr 23#, and

S[
F

2r E2`

`

d~r 2r p!d~ t2tp!dt5
F2

2rE
d~r 2r p!. ~5!

@In the last equality we usedt5dt/ ṫ5(F/E)dt, followed by
integration overt.# Finally, we express the modesf l in terms
of the (m-independent! functions c l by summing over the
azimuthal numbersm in Eq. ~3!. For radial motion we thus
find that

f l5qS l 1
1

2D c l

r
. ~6!

The total regularized self-force~including both the local
and the tail parts! exerted on the scalar particle,f a

RR, can be
calculated by@7,8,13#

f a
RR[(

l 50

` F f a
l 62Aa

6S l 1
1

2D2BaG ~7!

~evaluated on the particle’s world line!, where f a
l 5qf ,a

l is
the ~covariant! self-force contribution associated with th
l-mode of the particle’s self-field, andAa

6 andBa are regu-
larization parameters, whose values are given by Eqs.~101!
and ~134! of Ref. @8#. For the radial geodesics consider
here, these parameters take the form

Ar*
6

57
q2

r 2
E, At

656
q2

r 2
ṙ , ~8!

Br* 52
q2

2r 2
~2F2E2!, Bt52

q2

2r 2
ṙ E ~9!

~with all quantities evaluated atxm5xp
m). One should use

f a
l 1 ,Aa

1 ( f a
l 2 ,Aa

2) when one calculates the field’s gradie
from the r→r p

1 (r→r p
2) limit ~in generalf a

l 1Þ f a
l 2 @7,8#!.

~Of course, the physical quantityf a
RR can be derived from

either of these two values, or from any of their linear co
binations.! In practice, we take below ther→r p

2 limit.
Thus, in practice, to derive the self-force along any giv

radial geodesic~parametrized byE), one should first solve
Eq. ~4! for the various modes~with appropriately chosen
initial data—see below!, then construct the quantitiesf a

l ,
and finally sum over the regularized self-force modes us
Eq. ~7!. This sum over modes is expected to convergenc
least as 1/l , as theO(1/l ) term in the 1/l expansion off a

l

vanishes@7,8#.
To solve forc l , we integrate Eq.~4! numerically~in the

time domain! on a double-null grid. This grid is spanned b
v andu, covering the entire exterior of the SBH~with the EH
approached atu→`). A characteristic initial-value problem
08404
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for c l is set up by specifying initial data on two null hype
surfacesv5v0 and u5u0, taken to intersect at some poin
along the particle’s world line. As initial data we take th
exact solution corresponding to a static particle held fixed
r 0* [(v02u0)/2 @9#. This solution is not the actual initia
field of the geodesic particle considered here~which is un-
known, in general!. However, it does approximates the initi
field if r 0* is chosen to be a turning point of the geode
~when such exists! ~these initial data are inexact because t
acceleration of the geodesic particle atr 0* is not the one of a
static particle, although its position and velocity are!, or—for
a marginally bounded particle~with E51)—if r 0* is taken
large enough. The difference between the actual initial fi
and the static initial data results in the occurrence of spuri
waves superposed on the actual field; however, one may
pect such waves to die off quickly, unveiling the intrins
behavior of the field. Numerical experiments showed t
this is indeed the case: The spurious waves were foun
decay fast in all cases examined~see Fig. 2, e.g., forr 0*
540M ). For a marginally bounded particle it has been co
firmed that the field left after the spurious waves decay
comes independent ofr 0* —indicating that one indeed ex
tracts the actual physical behavior.~In addition, we found
that the largerr 0* , the smaller the amplitude of the spuriou
waves, and the quicker they decay.!

To construct the difference scheme for the numerical
tegration we use a method similar to that applied by Lou
and Price in Ref.@14#. We integrate the field equation~4!
over the unit cell shown in Fig. 1, which is centered atv,u
and whose sides are of length 2h. Let c1[c l(v2h,u
2h), c2[c l(v2h,u1h), c3[c l(v1h,u2h), and c4
[c l(v1h,u1h), and suppose thatc1 , c2, andc3 are al-
ready known, and we wish to calculatec4. Integration over
the c ,uv

l term in Eq.~4! yields ~exactly! c12c22c31c4.
Integration over the potential term yields (c11c4)@1
1h2Vl(r )#2(c21c3)@12h2Vl(r )#1O(h3). ~Note that be-
causec l is continuous across the world line, the integrati
of the potential term here is much simpler than in@14#,
where the metric perturbations were studied using the M
crief gauge, in which the wave function suffers a discontin
ity across the world line.! Finally, integrating over the sourc
S ~which is most easily done by transforming to ther ,t co-
ordinates, recalling thatdv du52F21dr dt), we obtainZ

FIG. 1. Numerical grid cell containing a section of the wor
line. ~See the text for further explanation.!
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FIG. 2. The individual modes of the regula
ized RR force for a particle released from re
from r 0* 540M as a function ofr /M . Shown are
the first 18 modes (l 50,1,...,17). The mono-
pole (l 50) modes are displayed by dashed line
and the dipole (l 51) modes by thick lines. Ex-
cept for thel 50,1 modes, the modes’ amplitude
decrease monotonically withl. Top panel~A!:
f r*

l . Bottom panel~B!: f t
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[*S dv du50 if the world line does not cross the cell, or,
it does,

Z5E21@k~ tout!2k~ t in!#~ tout2t in!1O~h3!. ~10!

Here,k(t)[F@r p(t)#/r p(t), andt in (tout) is thet value where
the world line enters~leaves! the cell. We can now extrac
the desired quantityc4. To O(h2) we find

c452c11@122h2Vl~r !#~c21c3!1Z. ~11!

Our code, which is second-order convergent, evolves the
lar field in a straightforward marching. At each grid cell, t
code does the following:~i! it decides whether or not th
given world line crosses the cell;~ii ! if the world line crosses
the cell, it determines the point where it leaves it and cal
latestout ~given t in) to O(h2); ~iii ! it uses Eq.~11! to calcu-
late the fieldc l at the cell’s upper point; and~iv! at grid cells
containing a section of the world line, it constructs the qu
tities f r*

l and f t
l by appropriately extrapolating the field gra

dients along the world line~based on the already-derive
values of the field at a few neighboring grid points!.

We next present our results for a particle released fr
rest atr 0* 540M ~similar results are obtained also for oth
values ofr 0* and for the marginally-bound case!. Figure 2
displays the behavior of thef r*

l ~2A! and f t
l ~2B! components

of the RR force. Thel 50 components are everywhere neg
tive, whereas all the other modes (l>1) are everywhere
positive. Figure 2 also shows the decay of the spuri
waves. Clearly, for values ofr smaller than 25M they are
already too small to be noticed.

Three properties of the behavior of the individual mod
are particularly interesting: First, the dipole (l 51) modes
behave differently than the other modes, and the closer to
BH, the less important they are. Second, the relative imp
tance of the higher modes increases approaching the
This will require care in the evaluation of the remainder
08404
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the series when we sum over all modes~see below!. Third, as
we approach the BHf r*

l → f t
l . This latter property is obvious

from the following consideration: The covariant compone
f v

l and f U
l @whereU is the outgoing Kruskal coordinate, sa

isfying U}exp(2u/4M ) near the EH# assume finite values a
the EH itself, asv andU are regular coordinates at the EH
Consequently,f u

l vanishes exponentially withu approaching
the EH, yieldingf t

l5 f v
l 1 f u

l → f v
l and f r*

l
5 f v

l 2 f u
l → f v

l as we
approach the EH. Thus,f r*

l → f t
l . This is, in fact, a result of

spatial gradients becoming comparable to temporal gradi
near the EH. This behavior is shown in Fig. 3~A! for two
modes (l 50,1), but similar behavior is found also for all th
other modes. Figure 3~B! displays the behavior of the mode
as a function of the mode numberl, for various values ofr.
The individual modes behave likel 22 for large values ofl.
Note, that the closer the particle to the BH, the later
asymptotic l 22 behavior starts. Most importantly, the de
tailed behavior of the modes confirms the expressions for
analytically-derived regularization parameters@7,8#.

Next, we sum over all modes to find the total RR forc
As noted above, the relative importance of the higher mo
increases as we approach the horizon. This causes two p
lems:~i! it is crucial to include an accurate approximation
the remainder of the series due to our computation of on
finite number of modes, and~ii ! the noise contribution from
the l-mode to the overall force increases withl. The l 22

behavior of the modes indicates that we can sum over
modes and calculate the remainder as was done in Ref.@10#.
Specifically, the full RR force is

f a
RR5 (

n50

l

f a
n (reg)1R a

l 11 , ~12!

where the remainder can be approximated byR m
l 11

' l 2f m
l tailc (1)( l 11). Here, f a

n (reg) is the regularizedl-mode
0-3
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FIG. 3. Top panel~A!: The relative difference
( f r*

l / f t
l)21 for l 50 ~upper! and l 51 ~lower! as

functions of (r 22M )/M . Bottom panel~B!: The
behavior of the individual modes as a function
the mode numberl for different values ofr.
Shown aref r*

l for r 512M ~* !, r 56M ~1!, and
r 52.01M ~x!, and f t

l for r 512M (L), r 56M
~o!, andr 52.01M (h).
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of the force, andc (1)(x)'x211x22/21x23/61O(x25) is
the trigamma function. As we sum the series only up tl
517, this approximation forR m

l 11 guarantees accuracy o
731024 ~we neglect here the contribution toR m

l 11 from
terms which scale likel 23). Obviously, approaching the EH
f r* → f t ~as each of the individual modes does!. Figure 4
shows the full RR force as a function ofr for two cases: Fig.
4~A! shows f r*

RR for a marginally-bound trajectory (E51).
At large distances this force behaves likef r*

RR

'2(G/c2)bq2M /r 3. The exponent ofr is found here to a
1% accuracy, and we find the parameterb5(1.0060.15)
31021. Figure 4~B! shows the case of fall from rest, startin
from r 0* 540M . At large values ofr both components of the
force vanish, in accord with the vanishing of the force fo
08404
static scalar charge. The covariantt component,f t
RR, is ev-

erywhere positive and increases monotonically approach
the BH. This is a consequence of the particle losing ene
by radiating, part of which escapes to infinity, and the r
being captured by the BH. The covariantr * component,
f r*

RR, is attractive at large distances. However, near the p
of the effective potential barrier~near r * '0) its behavior
changes, and near the EH it approaches the value off t

RR, as
expected. Note that both components arrive at the EH
bounded value. Becausef t

RR is expected to be positive~the
particle only loses energy by radiating!, we infer that f r*

RR

would also be positive approaching the EH, under very g
eral conditions. In particular, if this behavior persists also
charged BHs, and for an electrically-charged particle, th
the properly-defined covariant spatial-component of the
FIG. 4. The full RR force as a function ofr.
Top panel~A!: f r*

RR for a marginally-bound world
line ~solid line! and the curve20.13(r /M )23

~dashed line!. Bottom panel~B!: Free fall from
rest starting fromr 0* 540M . Dashed line:f t

RR.
Solid line: f r*

RR.
0-4



se

ve
fo
th

r
of
ne,
by

SA

RADIATION-REACTION FORCE ON A PARTICLE . . . PHYSICAL REVIEW D 62 084040
force at the EH would be repulsive. If this is indeed the ca
then the RR force acts to reduce the parameter space
which a nearly-extreme spherical charged BH can be o
charged@15#. The question of whether cosmic censorship
that case is saved by RR effects, however, awaits fur
considerations.
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