CaltechAUTHORS
  A Caltech Library Service

Observation of Basal Sliding of Variegated Glacier, Alaska

Engelhardt, H. and Kamb, B. and Raymond, C. F. and Harrison, W. D. (1979) Observation of Basal Sliding of Variegated Glacier, Alaska. Journal of Glaciology , 23 (89). pp. 406-407. ISSN 0022-1430 . http://resolver.caltech.edu/CaltechAUTHORS:20181119-113107131

[img] PDF - Published Version
See Usage Policy.

2137Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20181119-113107131

Abstract

Variegated Glacier is a surge-type glacier in the St Elias mountain range in Alaska. The interval between surges is about 20 years; the last one occurred in 1964 to 1965. This glacier has been studied extensively since 1973 (Bindschadler and others, 1977). Thus far, measurements of ice velocities have been restricted to the surface. They have been analyzed using geophysically measured ice depths, in order to estimate ice velocities in the ice mass and at the base (Bindschadler and others, 1978). From 1973 to 1977 the distribution of annual ice velocities along most of the length of the glacier can be explained primarily by internal deformation without major contribution from sliding at the base. However, the variation of surface velocity with time gives definite indication that sliding occurs in summer and that the average summer rate is increasing progressively from summer to summer and that in a zone 5 to 7 km below the head of the glacier the summer-to-summer increase in inferred sliding rate is especially rapid. This is a notably distinguishing feature, which is probably indicative of a build-up toward the next surge. In order to obtain direct information about sliding-rates and water pressures at the base in this zone, a bore hole was drilled to the bottom of the glacier about 6 km below the glacier head. Observations in the hole started in June 1978 and were continued until 31 July 1978. The hole connected to an englacial water system at a depth of 204 m whereupon the water level dropped gradually to about 100 m below the surface. The last 6 m above-the base at 356 m could be drilled only by means of a cable tool because of the presence of debris-rich ice. Upon reaching the bottom, the water level increased rapidly to the firn water table at about 8 m below surface. Large variations in water level of about 200 m occurred during the following period of observation of 35 d. Major events such as audible icequakes, heavy rainfalls, and a period of unusually high ablation were associated with abrupt increases of water level up to the firn water table. High water pressure at the bottom drove a flow of muddy and sandy water upward in the hole. Consequently high freezing rates in the lower 150 m of the hole produced a very rough bore-hole wall covered with ledges, coral-reef-like features, grooves, and pockets filled with sand. Near the bottom, embedded rocks stuck out of the bore-hole wall. These features were recognized by bore-hole television. The bore-hole bottom consisted of sand which continuously proliferated and washed into the hole. Attempts to remove this sand by means of a sand pump failed, the bailed-out sand being replaced immediately. From bore-hole inclinometry an internal deformation of the ice mass of 0.22 m d^(−1) was obtained. Together with average surface velocity of 0.47 m d^(−1) we get a sliding velocity of 0.25 m d^(−1), averaged over the time of observation. This result confirms the sliding velocities inferred from surface velocity measurements. It also lies on the exponential trend line of increasing summer-to-summer velocities showing a doubling of sliding velocities about every two years (Bindschadler and others, unpublished). This strongly indicates that the next surge is likely to occur in the early eighties. Input of water from the surface probably will play a role in triggering the surge.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1017/S0022143000030033DOIArticle
Additional Information:© 1979 International Glaciological Society.
Record Number:CaltechAUTHORS:20181119-113107131
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20181119-113107131
Official Citation:Engelhardt, H., Kamb, B., Raymond, C., & Harrison, W. (1979). Observation of Basal Sliding of Variegated Glacier, Alaska. Journal of Glaciology, 23(89), 406-407. doi:10.1017/S0022143000030033
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:91022
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:19 Nov 2018 21:38
Last Modified:19 Nov 2018 21:38

Repository Staff Only: item control page